
From “Image analogies”, Herzmann et al, SIGGRAPH 2001



Entropy

• Given a discrete probability distribution

• Its ENTROPY is 

• Right way to think of entropy:
• the number of bits required, on average, to communicate the identity of X
• eg die

p(x) = prob(X = x)

H(p) = H(X) = −
∑

x∈X

p(x)log2p(x)



Joint entropy

• Consider a pair of random variables, X, Y with p(x, y)

• Joint entropy is:

• Number of bits required, on average, to give identities of 
X and of Y

H(X, Y ) = −
∑

x∈X,y∈Y

p(x, y) log2 p(x, y)



Conditional Entropy

• How many bits, on average, you need to supply to specify 
Y given X is known

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x)

=
∑

x∈X

p(x)



−
∑

y∈Y

p(y|x) log2 p(y|x)





= −
∑

x∈X,y∈Y

p(x, y) log2 p(y|x)



KL divergence

• We would like to compare two probability distributions
• perhaps model and reality?
• model1 and model2
• etc

• use  Kullback-Leibler divergence

• always non-negative, 0 iff p=q, not a metric

D(p || q) =
∑

x∈X

p(x) log2
p(x)
q(x)

= Ep(log2
p(x)
q(x)

)



KL divergence

• average number of bits that are wasted by encoding events 
from a distribution p using a code based on q



Evaluating string models

• Assume we have a N iid samples x_i from a process with 
pdf p, which is unknown

• We have models with pdf q_j
• We would like to compare models
• Idea:  compute D(p||q)

• But we don’t know p?

1
N

∑

i

(− log2(q(xi)))→
∑

p(x) log2(
1

q(x)
) = Ep(log2(

p(x)
q(x)

))− Ep(log2(p(x)))

= D(p || q) + H(X)



Evaluating string models

• i.e. ranking models in order of average negative log-
likelihood ranks them in order of D(p||q)
• we don’t know H(x)
• but if we use a really really good model, then negative log-likelihood 

could be quite close to H(x)



String models of English

• Recall we’re working with letters

• uniform pdf on letters       4.76
• first order                           4.03
• second order                      2.8
• people  guessing                1.3 (1.34)



Collocation

• Characterized by:
• limited compositionality

• meaning is not a straightforward composition
• kicked the bucket -> kicked the cat
• hear it through the grapevine -> hear it through the air (speakers?)

• non-substitutability
• cannot substitute even if words are appropriate

•  white wine -> yellow wine
• non-modifiability

• generally, can’t apply grammatical transformations, additional material
• bacon and eggs-> bacon and fried eggs
• kick the bucket -> kick the red plastic bucket



Collocation: range

• Examples
• she knocked on his door
• they knocked at his door
• 100 tourists knocked on Donaldson’s door
• a man knocked on the metal front door

• Notice “knock” ... “door”
•  (rather than “hit”, “beat”, “rap”, etc.)

• We want methods to find pairings like this
• non-accidental
• over some range
• note possible vision applications



Strategy

• Find pairs
• with possible inserts
• that occur with high frequency
• where there is little support for the hypothesis that the pair is accidental

• Technology: 
• Hypothesis testing



Approach 1

• Count mean and variance of separation between words in 
a k-word window

• Low variance suggests collocation/pattern



Figure from Manning and Schutze



Figure from Manning and Schutze



The t-test

• We have a data set x_i
• We wish to test the hypothesis that this data set comes 

from a univariate normal distribution of mean
• we compute

• this has known distribution. We can look up in tables 
• P(T=obs|mu)
• if this is too small, we reject

µ

T =
x− µ√

s2

N



T-test and collocations

• Work with bigram counts
• Null hypothesis:  P(w1 w2)= P(w1)P(w2)
• Compute numbers from frequencies
• Pretend P(w1 w2) is normal
• Compute T statistic, test for significance
• Wrinkle

• almost nothing is significant
• instead, rank by T



T-test and collocation: example

• Numbers:
• #(tokens)=14, 307, 668
• #(new)=15, 828
• #(companies)=4, 675
• #(bigrams)=14, 307, 668
• #(new companies)=8

• Probabilities:
• P(new companies)=   P(new) P(companies)

• (15828/14307668)*(4675/14307768)=3.615e-7
• a bernoulli trial with p=3.615e-7

• mean is 3.616e-7
• variance is p(1-p)



T-test and collocation: example

• Probabilities:
• P(new companies)=8/14307668=5.591e-7
• again, bernoulli trial, p, so variance is approx 5.591e-7

• Statistics:
• t=(5.591e-7-3.615e-7)/sqrt(5.591e-7/14307668)=0.999932
• critical value for significance of 0.05 is t=2.576
• can’t reject null hypothesis



Figure from Manning and Schutze



Another cute use of the t-test

• Which words best distinguish between two other words?
• e.g. which words best distinguish between strong and powerful?
• which words occur most significantly more often with strong than with 

powerful?

• Test: 
• are two sets of data from different normal distributions?
• form:

• which has a t- distribution

T =
x1 − x2√

s2
1

n1
+ s2

2
n2



Comparing collocates

• Example:
• We want words such that P(strong| word) is very different from                  

P(powerful|word)
• bernoulli distribution, variance from this, compute t, rank



Figure from Manning and Schutze



Chi-square testing

• T-test assumes normal distributions
• but data isn’t normal

• Chi-square tests difference between observed values and 
values expected under null hypothesis

• Statistic:

• has known distribution
• can look up probability that this statistic has this value under null 

hypothesis

X2 =
∑

i,j

(Oij − Eij)2

Eij



Chi-square and collocations

• Assume that the words are independent; then we can get 
probabilities from counts, table should look like:

w1=new w1 != new
w2=companies P (c)P (n)N P (c)(1− P (n))N
w2 !=companies (1− P (c))P (n)N (1− P (c))(1− P (n))N



Example:

• Here chi-squared is 1.55, and critical value is 3.841 for 
0.05 significance

Figure from Manning and Schutze



Chi-squared and translation

• Take aligned sentence pairs
• for one french, one english word, form table
• e.g. are vache and cow independent?

• No, chi-squared=456400

Figure from Manning and Schutze



Chi-square and corpus similarity

• Are two corpora drawn from same underlying source?
• do they have the same word frequencies?

Figure from Manning and Schutze



Likelihood ratio tests

• Two hypotheses
• H1:  P(w2|w1)=p=P(w2|~w1)
• H2:  P(w2|w1)=q  which is not r=P(w2|~w1)

• Estimate p, q, r by counts
• now compute

• P(counts|H1)/P(counts|H2)



Figure from Manning and Schutze



Computer Vision:  Example problems

• Obstacle avoidance
• A cricketer avoids being hit in the head (->) (<-)
• the gannet pulls its wings in in time, by measuring time to contact

• Reconstructing representations of the 3D world
• from multiple views
• from shading
• from structural models, etc

• Recognition
• draw distinctions between what is seen

• is it soggy?
• will it eat me?
• can I eat it?
• is it a cat?
• is it my cat?



Linear Filters

• Example: smoothing by averaging
• form the average of pixels in a neighbourhood

• Example: smoothing with a Gaussian
• form a weighted average of pixels in a neighbourhood

• Example:  finding a derivative
• form a weighted average of pixels in a neighbourhood



Smoothing by Averaging

Nij =
1
N

ΣuvOi+u,j+v

where u, v, is a window of N pixels in total centered at 0, 0



• A Gaussian gives a good 
model of a fuzzy blob

Smoothing with a Gaussian

• Notice “ringing” 
• apparently, a grid is 

superimposed

• Smoothing with an average 
actually doesn’t compare at 
all well with a defocussed 
lens
• what does a point of light 

produce?



Gaussian filter kernel

Kuv =
(

1
2πσ2

)
exp

(
−

[
u2 + v2

]

2σ2

)

We’re assuming the index can take negative values



Smoothing with a Gaussian

Nij =
∑

uv

Oi−u,j−vKuv Notice the curious looking form



Finding derivatives

Nij =
1

∆x
(Ii+1,j − Iij)



• Each of these involves a weighted sum of image pixels
• The set of weights is the same 

• we represent these weights as an image, H
• H is usually called the kernel

• Operation is called convolution
• it’s associative

• Any linear shift-invariant operation can be represented by 
convolution
• linear:  G(k f)=k G(f)
• shift invariant:  G(Shift(f))=Shift(G(f))
• Examples: 

• smoothing, differentiation, camera with a reasonable, defocussed lens 
system

Convolution

Nij =
∑

uv

HuvOi−u,j−v



Filters are templates

• At one point
• output of convolution is a (strange) dot-product

• Filtering the image involves a dot product at each point
•  Insight 

• filters look like the effects they are intended to find
• filters find effects they look like

Nij =
∑

uv

HuvOi−u,j−v



Normalised correlation

• Think of filters of a dot product
• now measure the angle
• i.e normalised correlation output is filter output, divided by root sum of 

squares of values over which filter lies
• Tricks:

• ensure that filter has a zero response to a constant region 
• helps reduce response to irrelevant background

• subtract image average when computing the normalising constant
• absolute value deals with contrast reversal



normalised correlation
with non-zero mean filter



Positive responses
Zero mean image, -1:1 scale Zero mean image, -max:max scale





Finding hands

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer 
Graphics and Applications, 1998



Gradients and edges

• Points of sharp change in an image are interesting:
• change in reflectance
• change in object
• change in illumination
• noise

• Sometimes called edge points
• General strategy

• determine image gradient
• now mark points where gradient magnitude is particularly large wrt 

neighbours



Differentiation and noise

• Simple derivative filters respond strongly to noise
– obvious reason: noise is associated with strong changes, as above

• Generally, the larger the noise the stronger the response



Noise

• Simplest noise model
• independent stationary additive Gaussian noise
• the noise value at each pixel is given by an independent draw from the 

same normal probability distribution

•  Issues
• allows values greater than maximum camera output or less than zero

• for small standard deviations, this isn’t too much of a problem
• independence may not be justified (e.g. damage to lens)
• may not be stationary (e.g. thermal gradients in the ccd)



sigma=1



sigma=4



sigma=
16



sigma=1



sigma=16



The response of a linear filter to noise

• Do only stationary independent additive Gaussian noise
• get mean and variance of response by pattern matching

• Note that outputs are quite strongly correlated
•  useful trick for constructing simple textures



Filter responses are correlated

• (Fairly obviously) over scales similar to the scale of the filter



Smoothing reduces noise

• Generally expect pixels to “be like” their neighbours
• surfaces turn slowly
• relatively few reflectance changes

• Expect noise to be independent from pixel to pixel
• Implies that smoothing suppresses noise, for appropriate noise models

• Scale
• the parameter in the symmetric Gaussian
• as this parameter goes up, more pixels are involved in the average
• and the image gets more blurred
• and noise is more effectively suppressed

Kuv =
(

1
2πσ2

)
exp

(
−

[
u2 + v2

]

2σ2

)







More complex template matching

• Encode an object as a set of patches
• centered on interest points
• match by

• voting
• spatially censored voting
• inference on a spatial model

• Patches are small
• even if they’re on a curved surface, we can think of them as being plane



Correspondence

• Local representation of image properties make things 
easier
• identify points which are easily localised 

• corners
• which lie on edges

• compare with points in next image
• points which “look similar” may well match

• search radius is constrained by geometry
• in ways we will not discuss



Local Representations

• What do edge responses look like nearby?
• SIFT features

• What is the “general pattern” of grey levels?
• statistics of filters



Edge detection

• Find points where image value changes sharply
• Strategy:

• Estimate gradient magnitude using appropriate smoothing
• Mark points where gradient magnitude is

• Locally biggest and
• big



Smoothing and Differentiation

• Issue:  noise
• smooth before differentiation
• two convolutions to smooth, then differentiate?
• actually, no - we can use a derivative of Gaussian filter



1 pixel 3 pixels 7 pixels

Scale affects derivatives



Scale affects gradient magnitude



Marking the points



Non-maximum suppression



Predicting the next edge point



Remaining issues

• Check maximum value of gradient value is sufficiently large
• drop-outs?  

• use hysteresis



Notice

• Something nasty is happening at corners
• Scale affects contrast
• Edges aren’t bounding contours



The Laplacian of Gaussian

• Another way to detect an extremal first derivative is to 
look for a zero second derivative

• Appropriate 2D analogy is rotation invariant
• Zero crossings of Laplacian

• Bad idea to apply a Laplacian without smoothing
• smooth with Gaussian, apply Laplacian
• this is the same as filtering with a Laplacian of Gaussian filter
• Now mark the zero points where 

• there is a sufficiently large derivative, 
• and enough contrast



Orientation representations

• Gradient magnitude is affected by illumination changes
• but it’s direction isn’t

• Describe image patches by gradient direction
• Important types:

• constant window
• small gradient mags

• edge window
• few large gradient mags in one direction

• flow window
• many large gradient mags in one direction

• corner window
• large gradient mags that swing



Representing Windows

• Types
• constant

• small eigenvalues
• Edge 

• one medium, one small
• Flow

• one large, one small
• corner

• two large eigenvalues

H =
∑

window
(∇I)(∇I)T





Plots of  xH−1x = 0



Scaled representations

• Represent one image with many different resolutions
• Why?

• Search for correspondence
• look at coarse scales, then refine with finer scales

• Edge tracking
• a “good” edge at a fine scale has parents at a coarser scale

• Control of detail and computational cost in matching
• e.g. finding stripes
• terribly important in texture representation



Carelessness causes aliasing

Obtained pyramid of images by subsampling



Aliasing

from Watt and Policarpo, The Computer Image



Aliasing - smoothing helps



The Gaussian pyramid

• Smooth with gaussians, because
• a gaussian*gaussian=another gaussian 

• Synthesis 
• (making a pyramid from an image)
• smooth and sample

• Analysis 
• (making an image from a pyramid)
• take the top image

• Gaussians are low pass filters, so repn is redundant









Texture

• Key issue: representing texture
• Texture based matching

• little is known, key issue seems to be representing texture
• Texture segmentation

• key issue: representing texture
• Texture synthesis

• useful; also gives some insight into quality of representation
• Shape from texture

• cover superficially















The Laplacian Pyramid

• Synthesis
• preserve difference between upsampled Gaussian pyramid level and 

Gaussian pyramid level
• band pass filter - each level represents spatial frequencies (largely) 

unrepresented at other levels

• Analysis
• reconstruct Gaussian pyramid, take top layer







Oriented pyramids

• Laplacian pyramid is orientation independent
• Apply an oriented filter to determine orientations at each 

layer
• by clever filter design, we can simplify synthesis
• this represents image information at a particular scale and orientation



Analysis



synthesis





View variation for a plane patch

• Plane patches look different in different views



Pinhole camera  (F+P, p31)

Orthographic camera  (F+P, p33)



Views of plane patches in perspective 
cameras induce homographies



Views of plane patches in orthographic 
cameras induce a special subset of  

homographies



Interest points and local descriptions

• Find localizable points in the image
• e.g. corners - established technology, 

• eg find image windows where there tend to be strong edges going in 
several different directions

• Build at each point
• a local, canonical coordinate frame

• Euclidean+scale
• Affine

• Do this by searching for a coordinate frame within which some predicate 
applies
• E.g. Rotation frame from orientation of gradients
• E.g. Rotation + scale orientation of gradients, maximum filter response

• a representation of the image within that coordinate frame
• this representation is invariant because frame is covariant



Example: Lowe, 99

• Find localizable points in the image
• find maxima, minima of response to difference of gaussians

• over space
• over scale
• using pyramid

• Build at each point
• a Euclidean + scale coordinate frame

• scale from scale of strongest response
• rotation from peak of orientation histogram within window

• Representation
• SIFT features



Lowe’s SIFT features

Fig 7 from:
Distinctive image features from scale-invariant keypoints 
David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110. 



From Lowe, 99, Object Recognition from Local Scale-Invariant Features



Mikolaczyk/Schmid coordinate frames



Matching objects with point features

Figure from “Local grayvalue invariants for image retrieval,” by
C. Schmid and R. Mohr, IEEE  Trans. Pattern Analysis and 

Machine Intelligence, 1997 c 1997, IEEE as used in Forsyth + 
Ponce, p 609

• Voting
• each point feature votes for every object that contains it
• object with most votes wins
• Startlingly effective (see figures)



Probabilistic interpretation

• Write

• Assume

• Likelihood of image given pattern



Employ spatial relations

Figure from “Local grayvalue invariants for 
image retrieval,” by

C. Schmid and R. Mohr, IEEE  Trans. Pattern 
Analysis and Machine Intelligence, 1997 c 

1997, IEEE as used in Forsyth + Ponce, p 609



Possible alternative strategies

• Notice:
• different patterns may yield different templates with different probabilities
• different templates may be found in noise with different probabilities



Pose consistency

• A match between an image structure and an object 
structure implies a pose
• we can vote on poses, objects



From Lowe, 99, Object Recognition from Local Scale-Invariant Features



From Lowe, 99, Object Recognition from Local Scale-Invariant Features



Kinematic grouping 

• Assemble a set of features to present to a classifier
• which tests

• appearance
• configuration
• whatever

• Classifier could be 
• handwritten rules (e.g. Fleck-Forsyth-Bregler 96)
• learned classifier (e.g. Ioffe-Forsyth 99)
• likelihood (e.g. Felzenszwalb-Huttenlocher 00)
• likelihood ratio test (e.g. Leung-Burl-Perona 95; Fergus-Perona-Zisserman 

03)



Pictorial structures

• For models with the right form, one can test “everything”
• model is a set of cylindrical segments linked into a tree structure

• model should be thought of as a 2D template
• segments are cylinders, so no aspect issue there
• 3D segment kinematics implicitly encoded in 2D relations
• easy to build in occlusion

• putative image segments are quantized
• => dynamic programming to search all matches
• What to add next? (DP deals with this)
• Pruning? (Irrelevant)
• Can one stop? 

• (Use a mixture of tree models, with missing segments marginalized 
out)

• Known segment colour -  Felzenszwalb-Huttenlocher 00
• Learned models of colour, layout, texture  - Ramanan Forsyth 03, 04



Figure from “Efficient Matching of Pictorial Structures,”
P. Felzenszwalb and D.P. Huttenlocher, Proc. Computer Vision and Pattern Recognition
2000, c   2000, IEEE as used in Forsyth+Ponce, pp 636, 640



Finding faces using relations

• Strategy: compare



Detection

This means we compare







Constellations of parts

Fischler & Elschlager 1973

Yuille ‘91
Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95

Amit & Geman ‘95, ‘99 
Perona et al.  ‘95, ‘96, ’98, ’00

Agarwal & Roth ‘02



Generative model for plane templates
(Constellation model)

Foreground model

Gaussian shape pdf

Poission pdf on # 
detections

Uniform shape pdf

Clutter model

Gaussian part appearance pdf

Gaussian background 
appearance pdf

Prob. of detection

0.8 0.75 0.9

Gaussian 
relative scale pdf

log(scale)

Uniform
relative scale pdf

log(scale)

based on Burl, Weber et al. [ECCV ’98, ’00]

Figure after Fergus et al, 03; see also Fergus et al, 04



Star-shaped models

• Features generated at parts
• at image points that are conditionally independent given part location
• with appearance that is conditionally independent given part type

• Part locations are conditioned on root
• Easy to deal with

• very like a pictorial structure
• inference is dynamic programming
• localization easy

•



Other types of model

• We’ve already seen a tree-structured model! 
• (pictorial structure)

• Complete models are much more difficult to work with
• because there is no conditional independence
• means fewer features



Constellation models

• Learning model
• on data set consisting of instances, not manually segmented
• choose number of features in model
• run point feature detector
• each response is from either one “slot” in the model, or bg

• this known, easy to estimate parameters
• parameters known, this is easy to estimate

• missing variable problem -> EM

• Detecting instance
• search for allocation of feature instances to slots that maximizes likelihood 

ratio
• detect with likelihood ratio test



Typical models

Spotted catsMotorbikes

Figure after Fergus et al, 03; see also Fergus et al, 04



Summary of results

Dataset Fixed scale 
experiment

Scale invariant 
experiment

Motorbikes 7.5 6.7
Faces 4.6 4.6

Airplanes 9.8 7.0
Cars 

(Rear)
15.2 9.7

Spotted 
cats

10.0 10.0
% equal error rate

Note: Within each series, same settings used for all datasets

Summary of results

Figure after Fergus et al, 03; see also Fergus et al, 04

Caution: dataset is known to have some quirky features


