
Hidden Markov Models

• Elements
• hidden state X
• clock
• at each tick of the clock, the state updates using
• dynamical model 
•  

• emission at each state, depending on the state alone Y - this is observed

Xi+1 ∼ P (Xi+1|Xi = xi)

Yi ∼ P (Yi|Xi = xi)



Problems

• Estimating a model
• given a set of data Y_i=y_i, what model produced the data?

• Inference
• given a string and a model, what set of hidden states produced the data?

• Typically X is discrete



Examples

• We observe audio, and wish to infer words
• much infrastructure required to link this problem to the model

• We observe ink, and wish to infer letters
• Or any substitution cypher

• We observe people in video, and wish to infer activities



Pragmatics

• X is usually a discrete space
• n-gram letter models
• n-gram word models

• It usually has many elements
• because if it doesn’t, the model is not much help
• but this makes the dynamical model hard to learn (too many transitions)

• Strategies
• lots of zeros
• find a model elsewhere



Example 

• Search scribal handwriting for strings
• observations are ink
• clock obtained by segmentation 
• which can occur at the same time as inference
• hidden states are letters
• dynamical model learned by counting in transcribed text





Estimating Transition Probabilities

• Maximum likelihood estimates are given by counts

PMLE(w1, w2, . . . , wn) =
C(w1, w2, . . . , wn)

N

PMLE(w1|w2, . . . , wn) =
C(w1, w2, . . . , wn)

C(w2, . . . , wn)



Counting and words

From Manning and Schutze; recall there are 8, 018 word types
This means many counts will be zero



MLE probabilities under a trigram model, from Manning and Schutze



MLE probabilities under a trigram model, from Manning and Schutze



MLE probabilities under a trigram model, from Manning and Schutze



MLE probabilities under a 4-gram model, from Manning and Schutze



Smoothing 

• Estimating the probability of events that haven’t occurred

• Laplace’s law
• add one to each count then renormalize
• N=number of objects; B=vocabulary size

• Issues
• probabilities depend on vocabulary size
• much probability goes to unseen events
• e.g.  44e6 words, 4e5 word types, 1.6e11 bigram types, 

PLap(w1, w2, . . . , wn) =
C(w1, w2, . . . , wn) + 1

N + B



Comparison of observed frequencies of bigrams vs  very good estimates of what should have been 
observed vs Laplace smoothing estimates; from Manning and Schutze, after Church and Gale

• 44e6 words, 4e5 word types, 1.6e11 bigram types, 



Lidstone’s law; Jeffreys-Perks law

• Add some small number, rather than 1
• if this is 0.5 Jeffreys-Perks, otherwise Lidstone

• Gives

• Issues
• small number means less probability on unseen events but where does 

number come from?
• estimates are linear in MLE - doesn’t seem reasonable at low probabilities

PLid(w1, w2, . . . , wn) =
C(w1, w2, . . . , wn) + λ

N + Bλ



Held out estimates

• Assume
• we have two data sets
• counts will not in general be the same

• Strategy
• identify bigrams with the same frequency in the first
• estimate probability of each frequency in the second



Held out estimates

• Write
• C1 for count in data set 1
• C2 for count in data set 2
• Nr for the number of bigrams with frequency r in dataset 1

• if w_1, ... w_n has C1=r, then 

Tr =
∑

ngrams such that C1=r
C2(ngram)

Pho(w1, . . . , wn) =
Tr

NrN2



Deleted estimation or Cross-validation

• But why the asymmetry?
• Instead, we could form

T ab
r =

∑

ngrams such that Ca=r
Cb(ngram)

Na
r =

∑

ngrams such that Ca=r
1

Pdel(w1, . . . , wn) =
T 01

r + T 10
r

N(N0
r + N1

r )



Good - Turing smoothing

• Improved estimate of frequency for object that occurs r 
times
• fit (r, N_r) with some function S
• S(r) is smoothed estimate of frequency r

• Good-Turing estimate is

• Notice that this is poor for large r, so we use it for r<k

Pgt =
r∗

N
r∗ =

(r + 1)S(r + 1)
S(r)

Pgt(0) =
N1

N0N



Comparison of observed frequencies of bigrams vs  very good estimates of what should have been 
observed vs Laplace, deleted, Good-Turing; from Manning and Schutze, after Church and Gale;

final columns number of bigrams with that frequency in training, further text

• 44e6 words, 4e5 word types, 1.6e11 bigram types, 



Mixture estimates

• Weights are non-negative, convex
• can estimate best set of weights using EM
• more than trigrams are possible

Pmix(wn|w2, wn − 1) = λ1P (wn) +
λ2P (wn|w1) +
λ3P (wn|w2, wn − 1)



Dynamical models - inference

• We know 

• We want to estimate a set of states to maximize

P (Xi+1|Xi) P (Yi|Xi)

P (X0, . . . , Xn|Y0, . . . , Yn, θ) =
P (X0, . . . , Xn, Y0, . . . , Yn|θ)

P (Y0, . . . , Yn|θ)



Inference - model assumptions

• Our model has the properties:

• So that

P (Xi+1|X0, . . . , Xn) = P (Xi+1|Xi)

P (Yi|X0, . . . , Xn) = P (Yi|Xi)

P (X0, . . . , Xn, Y0, . . . , Yn|θ) = (P (Y0|X0)P (X0))]×
(P (Y1|X1)P (X1|X0))×
. . .×
(P (Yn|Xn)P (Xn|Xn − 1))



Inference

• Which means

• Set up a trellis
• one column for each clock tick
• one node for each state
• one directed edge for each transition
• weight with logs

log P (X0, . . . , Xn, Y0, . . . , Yn|θ) = log P (Y0|X0) + log P (X0) +
log P (Y1|X1) + log P (X1|X0) +
. . . +
log P (Yn|Xn) + log P (Xn|Xn − 1)



Simple state 
transition model

Trellis for four ticks



Dynamic programming reveals the 
maximum likelihood path (set of states)



More inference

• Dynamic programming can compute expectations

• Notice

• So all we care about is:

P (Y0, . . . , Yn|θ) =
∑

x0,...,xn

P (X0 = x0, . . . , Xn = xn, Y0, . . . , Yn|θ)

E(f) =
∑

x0,...,xn
(f(X0 = x0) . . . , f(Xn = xn))P (X0 = x0, . . . , Xn = xn, Y0, . . . , Yn|θ)

P (Y0, . . . , Yn|θ)

N(f) =
∑

x0,...,xn

(f(X0 = x0) . . . , f(Xn = xn))P (X0 = x0, . . . , Xn = xn, Y0, . . . , Yn|θ)



But the sum decomposes

• is the same as

• notice that each bracket depends on only the previous

∑

x0

[
f(x0)P (Y0|X0)P (X0)

[
∑

x1

f(x1)P (Y1|X1)P (X1|X0)

[
∑

x2

f(x2)P (Y2|X2)P (X2|X1) [. . .]

]]]

N(f) =
∑

x0,...,xn

(f(x0) . . . f(xn))P (X0, . . . , Xn, Y0, . . . , Yn|θ)



Dynamic programming yields expectations



We can compute other things, too

• Consider P (Xi, Y0, . . . Yn) =
∑

x0,...,xi−1,xi+1,...,xn

P (X0, . . . , Xn, Y0, . . . , Yn|θ)

P(X_i, Y_0, ..., Y_i)
Compute this moving backward in time

P(Y_i+1, ..., Y_n|X_i)
Compute this moving forward in time




∑

x0,...,xi−1

P (X0, . . . , Xi, Y0, . . . , Yi)








∑

xi+1,...,xn

P (Xi+1, . . . , Xn, Yi+1, . . . , Yn|Xi)









Training a dynamical model

• For the moment, assume 
• that transition probabilities are known

• If hidden state were known at each tick, training the 
emission model would be easy
• parameter estimation for continuous emission model
• counting for discrete model

• Idea: 
• new variable to indicate which hidden state is occupied


























