Hidden Markov Models

- Elements
- hidden state X
- clock
- at each tick of the clock, the state updates using
- dynamical model

$$
X_{i+1} \sim P\left(X_{i+1} \mid X_{i}=x_{i}\right)
$$

- emission at each state, depending on the state alone Y - this is observed

$$
Y_{i} \sim P\left(Y_{i} \mid X_{i}=x_{i}\right)
$$

Problems

- Estimating a model
- given a set of data $\mathrm{Y} _\mathrm{i}=\mathrm{y}$ _i, what model produced the data?
- Inference
- given a string and a model, what set of hidden states produced the data?
- Typically X is discrete

Examples

- We observe audio, and wish to infer words
- much infrastructure required to link this problem to the model
- We observe ink, and wish to infer letters
- Or any substitution cypher
- We observe people in video, and wish to infer activities

Pragmatics

- X is usually a discrete space
- n -gram letter models
- n-gram word models
- It usually has many elements
- because if it doesn't, the model is not much help
- but this makes the dynamical model hard to learn (too many transitions)
- Strategies
- lots of zeros
- find a model elsewhere

Example

- Search scribal handwriting for strings
- observations are ink
- clock obtained by segmentation
- which can occur at the same time as inference
- hidden states are letters
- dynamical model learned by counting in transcribed text

Editorial translation Orator ad vos venio ornatu prologi:
unigram

bigram

trigram

Estimating Transition Probabilities

- Maximum likelihood estimates are given by counts

$$
\begin{aligned}
& P_{\mathrm{MLE}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\frac{C\left(w_{1}, w_{2}, \ldots, w_{n}\right)}{N} \\
& P_{\mathrm{MLE}}\left(w_{1} \mid w_{2}, \ldots, w_{n}\right)=\frac{C\left(w_{1}, w_{2}, \ldots, w_{n}\right)}{C\left(w_{2}, \ldots, w_{n}\right)}
\end{aligned}
$$

Counting and words

$\left.\begin{array}{|rrr|}\hline \text { Word } & \text { Frequency of } \\ \text { Frequency } \\ \text { Frequency }\end{array}\right]$

From Manning and Schutze; recall there are 8, 018 word types
This means many counts will be zero

1-gram	$P(\cdot)$											
1	the	0.034										
2	to	0.032										
3	and	0.030	and	0.030	and	0.030			and	0.030	and	0.030
4	of	0.029	of	0.029	of	0.029			of	0.029	of	0.029
8	was	0.015	was	0.015	was	0.015			was	0.015	was	0.015
13	she	0.011			she	0.011			she	0.011	she	0.011
254					both	0.0005			both	0.0005	both	0.0005
435					sisters	0.0003					sisters	0.0003
1701					inferior	0.00005						

MLE probabilities under a trigram model, from Manning and Schutze

In person	she		was		inferior		to		both		sisters	
2-gram	$P(\cdot \mid$ person $)$		$P(\cdot \mid$ she $)$		$P(\cdot \mid$ was $)$		$P(\cdot \mid$ inferior $)$		$P(\cdot \mid$ to $)$		$P(\cdot \mid$ both $)$	
1	and	0.099	had	0.141	not	0.065	to	0.212	be	0.111	of	0.066
2	who	0.099	was	0.122	a	0.052			the	0.057	to	0.041
3	to	0.076			the	0.033			her	0.048	in	0.038
4	in	0.045			to	0.031			have	0.027	and	0.025
23	she	0.009							Mrs	0.006	she	0.009
41									what	0.004	sisters	0.006
293									both	0.0004		
∞					infe	0						

MLE probabilities under a trigram model, from Manning and Schutze

3-gram	$P(\cdot \mid$ In,person $)$	$P(\cdot \mid$ person,she $)$		$P(\cdot \mid$ she, was $)$		$P(\cdot \mid$ was, inf. $)$	$P(\cdot \mid$ inferior,to $)$		$P(\cdot \mid$ to, both $)$	
1	UnSEEN	did	0.5	not	0.057	UnSEEN	the	0.286	to	0.222
2		was	0.5	very	0.038		Maria	0.143	Chapter	0.111
3				in	0.030		cherries	0.143	Hour	0.111
4				to	0.026		her	0.143	Twice	0.111
\cdots				inferior	0		both	0	sisters	0

MLE probabilities under a trigram model, from Manning and Schutze
In
person she
was
inferior
to
both

4-gram
$P(\cdot \mid u, I, p)$ UNSEEN

$P(\cdot \mid I, p, s)$ UNSEEN

$P(\cdot \mid p, s, w)$	
in	1.0

inferior 0

MLE probabilities under a 4-gram model, from Manning and Schutze

Smoothing

- Estimating the probability of events that haven't occurred
- Laplace's law
- add one to each count then renormalize
- $\mathrm{N}=$ =number of objects; $\mathrm{B}=$ =vocabulary size

$$
P_{\mathrm{Lap}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\frac{C\left(w_{1}, w_{2}, \ldots, w_{n}\right)+1}{N+B}
$$

- Issues
- probabilities depend on vocabulary size
- much probability goes to unseen events
- e.g. 44 e 6 words, 4 e 5 word types, 1.6e11 bigram types,

$r=\mathrm{f}_{\text {MLE }}$	$f_{\text {empirical }}$	$f_{\text {Lap }}$
0	0.000027	0.000137
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

Comparison of observed frequencies of bigrams vs very good estimates of what should have been observed vs Laplace smoothing estimates; from Manning and Schutze, after Church and Gale

- 44 e 6 words, 4 e 5 word types, 1.6 e 11 bigram types,

Lidstone's law; Jeffreys-Perks law

- Add some small number, rather than 1
- if this is 0.5 Jeffreys-Perks, otherwise Lidstone
- Gives

$$
P_{\mathrm{Lid}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\frac{C\left(w_{1}, w_{2}, \ldots, w_{n}\right)+\lambda}{N+B \lambda}
$$

- Issues
- small number means less probability on unseen events but where does number come from?
- estimates are linear in MLE - doesn't seem reasonable at low probabilities

Held out estimates

- Assume
- we have two data sets
- counts will not in general be the same
- Strategy
- identify bigrams with the same frequency in the first
- estimate probability of each frequency in the second

Held out estimates

- Write
- C1 for count in data set 1
- C2 for count in data set 2
- Nr for the number of bigrams with frequency r in dataset 1

$$
T_{r}=\sum_{\text {ngrams such that } C_{1}=\mathrm{r}} C_{2}(\text { ngram })
$$

- if w_1, ... w_n has $C 1=r$, then

$$
P_{\mathrm{ho}}\left(w_{1}, \ldots, w_{n}\right)=\frac{T_{r}}{N_{r} N_{2}}
$$

Deleted estimation or Cross-validation

- But why the asymmetry?
- Instead, we could form

$$
T_{r}^{a b}=\quad \sum_{b} \quad C_{b}(\text { ngram })
$$

ngrams such that $C_{a}=\mathrm{r}$

$$
N_{r}^{a}=\sum_{\text {ngrams such that } C_{a}=\mathrm{r}} 1
$$

$$
P_{\mathrm{del}}\left(w_{1}, \ldots, w_{n}\right)=\frac{T_{r}^{01}+T_{r}^{10}}{N\left(N_{r}^{0}+N_{r}^{1}\right)}
$$

Good - Turing smoothing

- Improved estimate of frequency for object that occurs r times
- fit (r, N_r) with some function S
- $S(r)$ is smoothed estimate of frequency r
- Good-Turing estimate is

$$
\begin{array}{rlr}
P_{g t} & =\frac{r^{*}}{N} \\
P_{g t}(0) & =\frac{N_{1}}{N_{0} N} & r^{*}=\frac{(r+1) S(r+1)}{S(r)} \\
\end{array}
$$

- Notice that this is poor for large r , so we use it for $\mathrm{r}<\mathrm{k}$

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $r=f_{\text {MLE }}$ | $f_{\text {empirical }}$ | $f_{\text {Lap }}$ | $f_{\text {del }}$ | $f_{\text {GT }}$ | N_{r} | T_{r} |
| 0 | 0.000027 | 0.000137 | 0.000037 | 0.000027 | 74671100000 | 2019187 |
| 1 | 0.448 | 0.000274 | 0.396 | 0.446 | 2018046 | 903206 |
| 2 | 1.25 | 0.000411 | 1.24 | 1.26 | 449721 | 564153 |
| 3 | 2.24 | 0.000548 | 2.23 | 2.24 | 188933 | 424015 |
| 4 | 3.23 | 0.000685 | 3.22 | 3.24 | 105668 | 341099 |
| 5 | 4.21 | 0.000822 | 4.22 | 4.22 | 68379 | 287776 |
| 6 | 5.23 | 0.000959 | 5.20 | 5.19 | 48190 | 251951 |
| 7 | 6.21 | 0.00109 | 6.21 | 6.21 | 35709 | 221693 |
| 8 | 7.21 | 0.00123 | 7.18 | 7.24 | 27710 | 199779 |
| 9 | 8.26 | 0.00137 | 8.18 | 8.25 | 22280 | 183971 |

Comparison of observed frequencies of bigrams vs very good estimates of what should have been observed vs Laplace, deleted, Good-Turing; from Manning and Schutze, after Church and Gale; final columns number of bigrams with that frequency in training, further text

- 44 e 6 words, 4 e 5 word types, 1.6e11 bigram types,

Mixture estimates

$$
\begin{aligned}
P_{\operatorname{mix}}\left(w_{n} \mid w_{2}, w_{n}-1\right)= & \lambda_{1} P\left(w_{n}\right)+ \\
& \lambda_{2} P\left(w_{n} \mid w_{1}\right)+ \\
& \lambda_{3} P\left(w_{n} \mid w_{2}, w_{n}-1\right)
\end{aligned}
$$

- Weights are non-negative, convex
- can estimate best set of weights using EM
- more than trigrams are possible

Dynamical models - inference

- We know $P\left(X_{i+1} \mid X_{i}\right) \quad P\left(Y_{i} \mid X_{i}\right)$
- We want to estimate a set of states to maximize

$$
P\left(X_{0}, \ldots, X_{n} \mid Y_{0}, \ldots, Y_{n}, \theta\right)=\frac{P\left(X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)}{P\left(Y_{0}, \ldots, Y_{n} \mid \theta\right)}
$$

Inference - model assumptions

- Our model has the properties:

$$
\begin{aligned}
& P\left(X_{i+1} \mid X_{0}, \ldots, X_{n}\right)=P\left(X_{i+1} \mid X_{i}\right) \\
& P\left(Y_{i} \mid X_{0}, \ldots, X_{n}\right)=P\left(Y_{i} \mid X_{i}\right)
\end{aligned}
$$

- So that

$$
\begin{aligned}
P\left(X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)= & \left.\left(P\left(Y_{0} \mid X_{0}\right) P\left(X_{0}\right)\right)\right] \times \\
& \left(P\left(Y_{1} \mid X_{1}\right) P\left(X_{1} \mid X_{0}\right)\right) \times \\
& \ldots \times \\
& \left(P\left(Y_{n} \mid X_{n}\right) P\left(X_{n} \mid X_{n}-1\right)\right)
\end{aligned}
$$

Inference

- Which means

$$
\begin{aligned}
\log P\left(X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)= & \log P\left(Y_{0} \mid X_{0}\right)+\log P\left(X_{0}\right)+ \\
& \log P\left(Y_{1} \mid X_{1}\right)+\log P\left(X_{1} \mid X_{0}\right)+ \\
& \ldots+ \\
& \log P\left(Y_{n} \mid X_{n}\right)+\log P\left(X_{n} \mid X_{n}-1\right)
\end{aligned}
$$

- Set up a trellis
- one column for each clock tick
- one node for each state
- one directed edge for each transition
- weight with logs

Simple state transition model

Dynamic programming reveals the maximum likelihood path (set of states)

More inference

- Dynamic programming can compute expectations

$$
E(f)=\frac{\sum_{x_{0}, \ldots, x_{n}}\left(f\left(X_{0}=x_{0}\right) \ldots, f\left(X_{n}=x_{n}\right)\right) P\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)}{P\left(Y_{0}, \ldots, Y_{n} \mid \theta\right)}
$$

- Notice

$$
P\left(Y_{0}, \ldots, Y_{n} \mid \theta\right)=\sum_{x_{0}, \ldots, x_{n}} P\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)
$$

- So all we care about is:

$$
N(f)=\sum_{x_{0}, \ldots, x_{n}}\left(f\left(X_{0}=x_{0}\right) \ldots, f\left(X_{n}=x_{n}\right)\right) P\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)
$$

But the sum decomposes

$$
N(f)=\sum_{x_{0}, \ldots, x_{n}}\left(f\left(x_{0}\right) \ldots f\left(x_{n}\right)\right) P\left(X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)
$$

- is the same as

$$
\sum_{x_{0}}\left[f\left(x_{0}\right) P\left(Y_{0} \mid X_{0}\right) P\left(X_{0}\right)\left[\sum_{x_{1}} f\left(x_{1}\right) P\left(Y_{1} \mid X_{1}\right) P\left(X_{1} \mid X_{0}\right)\left[\sum_{x_{2}} f\left(x_{2}\right) P\left(Y_{2} \mid X_{2}\right) P\left(X_{2} \mid X_{1}\right)[\ldots]\right]\right]\right]
$$

- notice that each bracket depends on only the previous

Dynamic programming yields expectations

We can compute other things, too

- Consider

$$
P\left(X_{i}, Y_{0}, \ldots Y_{n}\right)=\sum_{x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} P\left(X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n} \mid \theta\right)
$$

$$
\left[\sum_{x_{0}, \ldots, x_{i-1}} P\left(X_{0}, \ldots, X_{i}, Y_{0}, \ldots, Y_{i}\right)\right]\left[\sum_{x_{i+1}, \ldots, x_{n}} P\left(X_{i+1}, \ldots, X_{n}, Y_{i+1}, \ldots, Y_{n} \mid X_{i}\right)\right]
$$

P(X_i, Y_0, ..., Y_i)

Compute this moving backward in time
P(Y_i+1, ..., Y_n|X_i)

Compute this moving forward in time

Training a dynamical model

- For the moment, assume
- that transition probabilities are known
- If hidden state were known at each tick, training the emission model would be easy
- parameter estimation for continuous emission model
- counting for discrete model
- Idea:
- new variable to indicate which hidden state is occupied

Simplest Case.

- no Jynamics
- emissiór is Nomal, leith a
mean that Lepends on
Sfate; frxed covariance. Si
- there ane k states
- Y is continuors
- $P(x)$ is known $=\pi$
- usrite μ_{1}. μ_{k} for means,
- we hane N observations

$$
y^{(1)} \cdot y^{(a)}
$$

- we need do estimate $\mu_{1} \cdot \mu_{k}$

$$
\begin{aligned}
& P\left(y \mid \mu_{1} \cdot \mu_{k}, \pi\right) \\
& =\frac{1}{k}\left[\sum_{i} e^{-\left(y-\mu_{i}\right)^{\top} \sum_{2}^{1}\left(y-\mu_{i}\right)} \cdot \pi_{i}\right]
\end{aligned}
$$

- normalifing consfant for Enusscacs
- this is e revtinre of Gaussiois.

Maximising log-Cikelikood of this is hot a good ilea.
$\sum_{j \in \text { data }} \log P\left(Y=y_{j} \mid \mu_{1} \cdots \mu_{k}, \pi\right)$

$$
=\sum_{j \in \partial_{a+a}}\left[\log \left[\sum_{i \in s \operatorname{tates}}^{-1} e^{\left(y_{j}-\mu_{i}\right)^{\top} \sum_{2}^{-1}\left(y_{j}-\mu_{i}\right)} \cdot \pi_{i}\right]\right]
$$

But this is very Difficult to work with; in particular, multiple local nearing, etc.

This is $\quad \underbrace{P\left(y_{1} \cdot y_{N}\right.}_{D_{0}^{l}}) \underbrace{\left(\mu_{i} \cdots \mu_{k}, \pi\right)}_{l_{\theta}}$

- Sometunes known as Incornplete data log-likelihood
- This is because if we knew the state for each ${ }^{\text {g }}$, estimating
M's would be easy.

Algorithmic recipe
EM = expectation-maxuifation

- write for hider Data
- write $P(D, W / \theta)$
- CDC
= complete Data
log-likelihood
- assume ne have nh estimate $\theta^{(a)}$
- we want a better estia ale

$$
Q\left(\theta ; \theta^{(u)}\right)=E_{x \mid \theta^{(n)}}[\log P(D, x| | \theta)]
$$

i.e compute an expected Voy-likelinood

- this incorporates all we know about *1 to Date

$$
\theta^{(n+1)}=\arg \max Q\left(\theta ; \theta^{(a)}\right)
$$

Easy way to encode hidden state is with characteristic functions

$$
\delta_{i j}= \begin{cases}1 & \text { if state }=i \text { on } j \text { lith data } \\ 0 & \text { otherwise }\end{cases}
$$

In this case

$$
\begin{aligned}
& \log P(D, *(1 \theta)= \\
& \sum_{j \in \partial a t a}\left[\sum_{i \in \text { States }}^{-1}\left\{-\left(y_{j}-\mu_{i}\right)^{\prime} \sum_{\tilde{2}}^{-1}\left(y_{j}-\mu_{i}\right)\right\} \cdot \delta_{i j}\right] \\
& \quad+K+\log P(H 1 / \theta)
\end{aligned}
$$

And

$$
\log P(X \mid / \theta)=\sum_{j \in \partial a t a}^{1}\left[\sum_{i \in \text { States }} \pi_{i}, \delta_{i j}\right]
$$

Yow should think of $\delta_{i j}$ as scotches

Now consider $Q\left(\theta ; \theta^{\mu}\right)$

1) $\log P\left(D_{1} H / \theta\right)$ is linear in $H\left(\delta_{i j}\right)$
2) So we can get Q by replacing $\delta_{j} \quad$ with $\quad E_{\left.\delta_{j} \mid \theta, d\right]}\left[\delta_{i j}\right]$
3) $\sum_{\delta_{j} \mid \theta_{1}^{\omega i} D}\left[\delta_{i j}\right]=1 \cdot P\left(\delta_{i j}^{=} \mid D, \theta^{(n)}+0 \ldots\right.$

$$
\begin{aligned}
& P\left(\delta_{i j}=1 \mid D, \theta\right)=P\left(\delta_{i j}=1 \mid y_{j}, \theta^{(u)}\right. \\
&=P\left(y_{j} \mid \delta_{i j}=1, \theta^{(n)}\right) \cdot P\left(\delta_{i j}=1 \mid \theta^{(u)}\right) \\
& \longrightarrow\left[\sum_{u} P\left(y_{j} \mid \delta_{u j}=1, \theta^{(u)}\right) P\left(\delta_{u j}=1 \mid \theta^{(u)}\right)\right]
\end{aligned}
$$

this is $p\left(y_{j} / \theta^{(n)}\right)$
now this is

$$
\frac{e^{-\left(y_{j}-\mu_{i}\right)^{\prime} \sum_{2}^{-1}\left(y_{j}-\mu_{i}\right)} \cdot \pi_{i}}{\sum_{u}\left[e^{-\left(y_{j}-\mu_{u}\right)^{\prime} \sum_{2}^{-1}\left(y_{j}-\mu_{u}\right)} \pi_{u}\right]}
$$

Procedure:

- start with $\theta^{(0)}$
- form $\hbar_{\delta_{i j} / \theta^{(0)}, D}\left[\delta_{i j}\right]$
- plug into CDLLH
- max wort θ

Soft counts miterpretatioz
y_{j} counts toward $\mu_{i}^{(n+1)}$ by $E\left[\delta_{i j}\right]$
this glues

$$
\mu_{i}^{(n+1)}=\frac{\sum_{j} E\left[\delta_{i j}\right] \cdot y_{j}}{\sum_{j} E\left[\delta_{i j}\right]}
$$

You can get this result w/ differecticition. foo.

HMM with Dynamics, discrete
measurements inn

- assume $P\left(x_{i+1}\left(X_{i}=x\right)\right.$ known $P\left(x_{0}\right)$ known
- assume Discrete states
- emission : $P\left(Y=y_{u} \mid X=v\right)=P_{u v}$
- His is a fable
- in dep. of flume
- Missing variable $S_{i j}^{k}=\left\{\begin{array}{c}1 \text { if } j^{\prime} \text { th elem } \\ \text { of } \text { auth } \\ \text { segnos } \\ 0 \text { otherwise }\end{array}\right.$

CDLLH:

$$
P(D, H \mid \theta)=P(D \mid H, \theta) P(H \mid \theta)
$$

Now $\log P(D / H, \theta)=$

$$
\sum_{u \in \text { segs }}\left[\sum_{j \in \text { elems }}\left\{\sum_{i \in \text { states }} \log P\left(Y_{j}^{(u)}=y_{.} \mid X_{j}^{(u)}=x_{i}\right) \delta_{i j}^{u}\right\}\right]
$$

$$
\begin{aligned}
\log P(H \mid \theta) \\
=\sum_{u \in \text { serss }}\left[\sum_{j \in \text { elems }}^{1}\left\{\sum_{i \in \text { states }}\left(\sum_{K \in \text { states }} \log P\left(x_{i} \mid x_{k}\right) \cdot \delta_{k j-1}^{(n)} \delta_{i j}^{u}\right)\right\}\right]
\end{aligned}
$$

All this looks hairy.
Notice that if $P\left(x_{i} \mid x_{j}\right)$ is known, then the second term is not mivolved in estimation

$$
E_{\delta \mid \theta^{(n)}}\left[\delta_{i j}^{u}\right]=P\left(X_{i}^{(n)}=x_{j} \mid D, \theta^{(n)}\right)
$$

But we know how to estrinite this?

M-Step:

- notice that $\log P(H \mid \theta)$ Doesat 20 anything
- notice that CDLCH is linear un biden vars
- so we can use soft counts luterp (or set grad to Zero, etc.)
and we get

$$
\begin{aligned}
& P\left(Y=y_{e} / X=x_{m}, \theta^{(n)}\right) \\
& =\frac{\left\{\text { soff count of in } x_{m} \text {, earitled } y_{e}\right\}}{\left\{\text { sott comet of in } x_{m}\right\}} \\
& =\frac{\sum_{u \in s e p j} \sum_{j \in e l s} 1\left\{\left\{Y_{j}^{u}=y_{l}\right\} \cdot P\left(X_{j}^{u}=x_{m} \mid D, \theta^{(u)}\right)\right.}{\sum_{u \in \text { seas }} \sum_{j \in e l s} P\left(x_{j}^{u}=x_{m} \mid D, \theta^{(u)}\right)}
\end{aligned}
$$

rewrning the Jynamics:

- notice that if transction probs we not known, maxinnising the second term ylelds then wol coft counts

$$
\begin{aligned}
P\left(X_{j+1}\right. & \left.=x_{e} / X_{j}=x_{m}, D, \theta^{(u)}\right) \\
& =\frac{\left\{\text { sott comut of } x_{e} \rightarrow x_{m} \text { transitions }\right\}}{\left\{\text { sott comut of all transisions } x_{e} \rightarrow\right\}}
\end{aligned}
$$

