Hidden Markov Models

• Elements

- hidden state X
- clock

- at each tick of the clock, the state updates using
- dynamical model

$$X_{i+1} \sim P(X_{i+1}|X_i = x_i)$$

• emission at each state, depending on the state alone Y - this is observed

$$Y_i \sim P(Y_i | X_i = x_i)$$

Problems

- Estimating a model
 - given a set of data Y_i=y_i, what model produced the data?
- Inference
 - given a string and a model, what set of hidden states produced the data?
- Typically X is discrete

Examples

- We observe audio, and wish to infer words
 - much infrastructure required to link this problem to the model
- We observe ink, and wish to infer letters
 - Or any substitution cypher
- We observe people in video, and wish to infer activities

Pragmatics

• X is usually a discrete space

- n-gram letter models
- n-gram word models
- It usually has many elements
 - because if it doesn't, the model is not much help
 - but this makes the dynamical model hard to learn (too many transitions)

• Strategies

- lots of zeros
- find a model elsewhere

Example

• Search scribal handwriting for strings

- observations are ink
- clock obtained by segmentation
 - which can occur at the same time as inference
- hidden states are letters
- dynamical model learned by counting in transcribed text

Estimating Transition Probabilities

• Maximum likelihood estimates are given by counts

$$P_{\text{MLE}}(w_1, w_2, \dots, w_n) = \frac{C(w_1, w_2, \dots, w_n)}{N}$$

$$P_{\text{MLE}}(w_1|w_2,\ldots,w_n) = \frac{C(w_1,w_2,\ldots,w_n)}{C(w_2,\ldots,w_n)}$$

Counting and words

neses bite sonndalliti	Word Frequency	Frequency of Frequency	re is stopy overhal is was both & i T
	1	3993	
	2	1292	
	3	664	
	4	410	
	5	243	
	6	199	
	7	172	de filos can our
	8	131	
	9	82	
	10	91	
	11-50	540	
	51-100	99	
	> 100	102	
Table 1.2	Frequency of freque	encies of word type	es in Tom Sawyer.

From Manning and Schutze; recall there are 8, 018 word types This means many counts will be zero

In person	she		was		inferior		to		both		sisters	
1-gram	$P(\cdot)$		$P(\cdot)$		$P(\cdot)$		$P(\cdot)$		$P(\cdot)$		$P(\cdot)$	
1 2 3 4 8 	the to and of was	0.034 0.032 0.030 0.029 0.015 0.011	the to and of was	0.034 0.032 0.030 0.029 0.015	the to and of was she	0.034 0.032 0.030 0.029 0.015 0.011	the to	0.034 0.032	the to and of was she	0.034 0.032 0.030 0.029 0.015 0.011	the to and of was she	0.034 0.032 0.030 0.029 0.015 0.011
 254					both	0.0005			both	0.0005	both	0.0005
435 					sisters	0.0003					sisters	0.0003
1701					inferior	0.00005						

MLE probabilities under a trigram model, from Manning and Schutze

In person	she		was		inferior		to		both		sisters	
2-gram	$P(\cdot pe$	erson)	$P(\cdot sh$	ne)	$P(\cdot was)$		$P(\cdot i)$	nferior)	$P(\cdot to)$		$P(\cdot both)$	
1	and	0.099	had	0.141	not	0.065	to	0.212	be	0.111	of	0.066
2.4	who	0.099	was	0.122	a	0.052			the	0.057	to	0.041
3	to	0.076			the	0.033			her	0.048	in	0.038
4	in	0.045			to	0.031			have	0.027	and	0.025
											_	
23	she	0.009							Mrs	0.006	she	0.009
41									what	0.004	sisters	0.006
293									both	0.0004		
						0						
∞ .					interior	0						

MLE probabilities under a trigram model, from Manning and Schutze

In perso	n she	was	inferior		to	both		sisters	
3-gram	$P(\cdot In, person)$	$P(\cdot person$	n,she) P(· she,w	vas)	$P(\cdot was, inf.)$	$P(\cdot inferior)$	or,to)	$P(\cdot to,bot$	th)
1 2 3 4	Unseen	did 0.5 was 0.5	5 not 5 very in to	0.057 0.038 0.030 0.026	Unseen	the Maria cherries her	0.286 0.143 0.143 0.143	to Chapter Hour Twice	0.222 0.111 0.111 0.111
			inferior	0		both	0	sisters	0

MLE probabilities under a trigram model, from Manning and Schutze

In person	she	was	inferior	to	both	sisters
4-gram 1 ∞	P(· <i>u,I,p</i>) Unseen	P(· I,p,s) Unseen	$P(\cdot p,s,w)$ in 1.0 inferior 0	P(· s,w,i) Unseen	P(· w,i,t) Unseen	P(· <i>i,t,b</i>) Unseen

MLE probabilities under a 4-gram model, from Manning and Schutze

Smoothing

- Estimating the probability of events that haven't occurred
- Laplace's law
 - add one to each count then renormalize
 - N=number of objects; B=vocabulary size

$$P_{\text{Lap}}(w_1, w_2, \dots, w_n) = \frac{C(w_1, w_2, \dots, w_n) + 1}{N + B}$$

- Issues
 - probabilities depend on vocabulary size
 - much probability goes to unseen events
 - e.g. 44e6 words, 4e5 word types, 1.6e11 bigram types,

$P = I_{MLE} \qquad P \text{ empirica} \\ 0 \qquad 0.00002 \\ 1 \qquad 0.448 \\ 2 \qquad 1.25 \\ 3 \qquad 2.24 \\ 4 \qquad 3.23 \\ 5 \qquad 4.21 \\ 6 \qquad 5.23 \\ 7 \qquad 6.21 \\ 8 \qquad 7.21 \\ 9 \qquad 8.26 \\ \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--	--

Comparison of observed frequencies of bigrams vs very good estimates of what should have been observed vs Laplace smoothing estimates; from Manning and Schutze, after Church and Gale

• 44e6 words, 4e5 word types, 1.6e11 bigram types,

Lidstone's law; Jeffreys-Perks law

- Add some small number, rather than 1
 - if this is 0.5 Jeffreys-Perks, otherwise Lidstone
- Gives

$$P_{\text{Lid}}(w_1, w_2, \dots, w_n) = \frac{C(w_1, w_2, \dots, w_n) + \lambda}{N + B\lambda}$$

- Issues
 - small number means less probability on unseen events but where does number come from?
 - estimates are linear in MLE doesn't seem reasonable at low probabilities

Held out estimates

• Assume

- we have two data sets
 - counts will not in general be the same

• Strategy

- identify bigrams with the same frequency in the first
- estimate probability of each frequency in the second

Held out estimates

• Write

- C1 for count in data set 1
- C2 for count in data set 2
- Nr for the number of bigrams with frequency r in dataset 1

$$C_r = \sum_{\text{ngrams such that } C_1 = r} C_2(\text{ngram})$$

• if w_1, ... w_n has C1=r, then

$$P_{\text{ho}}(w_1,\ldots,w_n) = \frac{T_r}{N_r N_2}$$

Deleted estimation or Cross-validation

- But why the asymmetry?
- Instead, we could form

 $T_r^{ab} = \sum_{\text{ngrams such that } C_a = r} C_b(\text{ngram})$ $N_r^a = \sum_{\text{ngrams such that } C_a = r} 1$

$$P_{\text{del}}(w_1, \dots, w_n) = \frac{T_r^{01} + T_r^{10}}{N(N_r^0 + N_r^1)}$$

Good - Turing smoothing

- Improved estimate of frequency for object that occurs r times
 - fit (r, N_r) with some function S
 - S(r) is smoothed estimate of frequency r
- Good-Turing estimate is

$$P_{gt} = \frac{r^*}{N}$$
$$P_{gt}(0) = \frac{N_1}{N_0 N}$$

$$r^* = \frac{(r+1)S(r+1)}{S(r)}$$

• Notice that this is poor for large r, so we use it for r<k

187
3 206
£153
4 015
099
7 776
1 051
1 602
1 693
9779
3 971

Comparison of observed frequencies of bigrams vs very good estimates of what should have been observed vs Laplace, deleted, Good-Turing; from Manning and Schutze, after Church and Gale; final columns number of bigrams with that frequency in training, further text

• 44e6 words, 4e5 word types, 1.6e11 bigram types,

Mixture estimates

$$P_{mix}(w_n|w_2, w_n - 1) = \lambda_1 P(w_n) + \\\lambda_2 P(w_n|w_1) + \\\lambda_3 P(w_n|w_2, w_n - 1)$$

- Weights are non-negative, convex
 - can estimate best set of weights using EM
 - more than trigrams are possible

Dynamical models - inference

• We know $P(X_{i+1}|X_i) = P(\overline{Y_i|X_i})$

• We want to estimate a set of states to maximize

$$P(X_0,\ldots,X_n|Y_0,\ldots,Y_n,\theta) = \frac{P(X_0,\ldots,X_n,Y_0,\ldots,Y_n|\theta)}{P(Y_0,\ldots,Y_n|\theta)}$$

Inference - model assumptions

• Our model has the properties:

 $P(X_{i+1}|X_0,\ldots,X_n) = P(X_{i+1}|X_i)$

 $P(Y_i|X_0,\ldots,X_n) = P(Y_i|X_i)$

• So that

 $P(X_0, \dots, X_n, Y_0, \dots, Y_n | \theta) = (P(Y_0 | X_0) P(X_0))] \times$ $(P(Y_1 | X_1) P(X_1 | X_0)) \times$ $\dots \times$ $(P(Y_n | X_n) P(X_n | X_n - 1))$

Inference

• Which means

 $\log P(X_0, ..., X_n, Y_0, ..., Y_n | \theta) = \log P(Y_0 | X_0) + \log P(X_0) + \log P(X_1 | X_0) + \log P(Y_1 | X_1) + \log P(X_1 | X_0) + \dots + \log P(Y_n | X_n) + \log P(X_n | X_n - 1)$

• Set up a trellis

- one column for each clock tick
- one node for each state
- one directed edge for each transition
- weight with logs

Simple state transition model

Trellis for four ticks

Dynamic programming reveals the maximum likelihood path (set of states)

More inference

• Dynamic programming can compute expectations

$$E(f) = \frac{\sum_{x_0,\dots,x_n} \left(f(X_0 = x_0) \dots, f(X_n = x_n) \right) P(X_0 = x_0,\dots,X_n = x_n, Y_0,\dots,Y_n | \theta)}{P(Y_0,\dots,Y_n | \theta)}$$

• Notice

$$P(Y_0, \dots, Y_n | \theta) = \sum_{x_0, \dots, x_n} P(X_0 = x_0, \dots, X_n = x_n, Y_0, \dots, Y_n | \theta)$$

• So all we care about is:

$$N(f) = \sum_{x_0, \dots, x_n} \left(f(X_0 = x_0) \dots, f(X_n = x_n) \right) P(X_0 = x_0, \dots, X_n = x_n, Y_0, \dots, Y_n | \theta)$$

But the sum decomposes

$$N(f) = \sum_{x_0, \dots, x_n} (f(x_0) \dots f(x_n)) P(X_0, \dots, X_n, Y_0, \dots, Y_n | \theta)$$

• is the same as

$$\sum_{x_0} \left[f(x_0) P(Y_0|X_0) P(X_0) \left[\sum_{x_1} f(x_1) P(Y_1|X_1) P(X_1|X_0) \left[\sum_{x_2} f(x_2) P(Y_2|X_2) P(X_2|X_1) \left[\dots \right] \right] \right] \right]$$

• notice that each bracket depends on only the previous

Dynamic programming yields expectations

We can compute other things, too

• Consider $P(X_i, Y_0, \dots, Y_n) = \sum_{x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n} P(X_0, \dots, X_n, Y_0, \dots, Y_n | \theta)$

$$x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$$

$$\left[\sum_{x_0,\dots,x_{i-1}} P(X_0,\dots,X_i,Y_0,\dots,Y_i)\right] \left[\sum_{x_{i+1},\dots,x_n} P(X_{i+1},\dots,X_n,Y_{i+1},\dots,Y_n|X_i)\right]$$

P(X_i, Y_0, ..., Y_i) Compute this moving backward in time

 $P(Y_i+1, ..., Y_n|X_i)$ Compute this moving forward in time

Training a dynamical model

- For the moment, assume
 - that transition probabilities are known
- If hidden state were known at each tick, training the emission model would be easy
 - parameter estimation for continuous emission model
 - counting for discrete model
- Idea:
 - new variable to indicate which hidden state is occupied

Simplest Case: - no dynamics - emission is Normal, Letth a mean that Lepends on State; Hxed covariance. E. - there are k states - Y is continuous - P(X) is Known = IT - write M, Mx for means - we have N observations - we held to estimate M. . Mr $P(Y \mid \mu, \cdots, \mu_{K}, \pi) = \frac{1}{2} \left[\sum_{i=1}^{\infty} (y - \mu_i) \sum_{i=1}$. normalipping constant for Gaussiais " This is a number of Gaussians.

Maximising 109-likelihold of this is hot a good izea. $\sum_{j \in data} \log P(Y=y, [M, \dots, M_K, \overline{n}))$ $= \sum_{i=1}^{n} \log \left[\sum_{i=1}^{n} e^{-\mu_{i}} \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}$ But this is very deficility to look with; in particular, mattiple local hearing, etc. log-likelihood This is because if we knew the state for each 9 testimating m's would be easy,

3 Algorithmic recipe EM = expectation - maxui gation · write #H for hiddle data. · hrite P(D, H/O) -- CDLLH = complete Data log-likelihood · assume he have no estimate O(a) · ne want a betler estimate $Q(\Theta; \Theta^{(n)}) = E \left[\log P(D, H|\Theta) \right]$ ie compute an expected koy-likelihood - this incorporates all we know about * to date $O^{(n+1)} = \arg \max Q(0;0^{(n)})$

hasy way to encode hedden state is ioth characteristic functions $S_{i} = \begin{cases} 1 & if state = i & on j'th data item \\ 0 & otherwise \end{cases}$ In this case $\log P(D, HIO) =$ $\sum_{j \in Jata} \sum_{i \in States} \sum_{j \in Jata} \sum_{i \in States} \sum_{j \in Jata} \sum_{i \in States} \sum_{j \in Jata} \sum_{i \in States} \sum_{i \in States} \sum_{j \in Jata} \sum_{i \in States} \sum_{i \in States}$ $+K+\log P(K|10)$ And $log P(H|\Theta) = \sum_{j \in Jata} \left[\sum_{i \in States} TT_i \cdot S_i \right]$ You should think of Si as switches

Now Consider $Q(\Theta;\Theta^{h})$ 15 Unear in Al (Sij) 1) logP(D, H/O) 15 Unear in H(2) So we can get Q by replacing Sig with E Sij $= 1 \cdot P(S_{ij} \mid D, \Theta) + O \cdot \cdots$ 3) $\mathcal{E} \left[S_{ij} \right]$ $S_{ij} \left[\Theta_{ij}^{(\alpha)} \right]$ $P(S_{ij} = 1 | D, \Theta) = P(S_{ij} = 1 | y, \Theta)$ $= P(y, | S_{ij} = 1, 6), P(S_{ij} = 1 | 6^{(u)})$ $\longrightarrow \begin{bmatrix} \sum P(y, | S_{uj} = 1, \Theta^{(u)}) P(S_{uj} = 1 | \Theta^{(u)}) \end{bmatrix}$ this is P(y. 10 m)

(6) NOW His is $\sum_{n} \frac{-(y, -\mu_n)' \Sigma^{-1}(y, -\mu_n)}{\Sigma} \overline{\pi}_{u}$ Procedure: - Start With OCO) - form E. [Sij] - plug hito CDLLH - max wit A Soft counts interpretation y counts toward M: by E[Sij]

 $\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & &$ You can get this result w/ Hifferenticition *foo*, HMM with Ignamics, discrete measurements. cessume P(X_{it}, =x) Known
P(X₀) Known
assume Hischete states • emilision: $P(Y = y_u | X = v) = p_{uv}$ - this is a table - indep. of the $K = \begin{cases} it j'th elem \\ of u'th \\ seg has \\ seg has \\ ij \end{cases} = \begin{cases} X = \chi_i \\ of u'th \\ seg has \\ Seg has \\ cherwise \end{cases}$

CDLLH : $P(D, H|\theta) = P(D|H, \theta)P(H|\theta)$ 109 D|H, G)Now = $\sum_{\substack{X \in Seqs \\ j \in elems}} \sum_{\substack{X \in Sfates}} \sum_{\substack{(w) \\ Y = y \\ i \in Sfates}} \sum_{\substack{(w) \\ Y = y \\ Y =$ E E States States LESUS log Z Z Z Z (Z log P(zi) c K), S S. KESFates KESFates KESFates KESFates

All this looks hairy. Notice that if P(x; [x;) is known, then the second term is not involved in estimation $E_{S|\Theta^{(n)}} \begin{bmatrix} u \\ S \end{bmatrix} = P\begin{pmatrix} u \\ X = x \\ i \end{bmatrix} D, \Theta^{(n)} \end{pmatrix}$ But we know how to estimate this! M-Slep; log P(H(0) Joesat 20 - notice that anything & CDLCH is linear in - notice that hidden veus - so we can use soft counts interp (or set grad to zero, etc.)

and we get $P(Y = g_e | X = \chi_m, O)$ = { soft count of in xm, lantled yes J Soft count of in xm ly $= \sum_{\substack{i \in Seqs \ j \in els}} \underbrace{1}_{i} \underbrace{1}_{i} \underbrace{1}_{j} \underbrace{1}_{i} \underbrace{1}_{j} \underbrace{1}_{i} \underbrace{1}_{j} \underbrace{1}_{i} \underbrace{1}_{i}$ $\sum_{u \in Seqs} \sum_{j \in els} P(X_j^u = x_m | D, \Theta^{(u)})$ bearing the typamics: - notice that, if transition probs we not kiowing the second term yreds them is soft counts

 $P(X_{i} = \chi_{e} \mid X_{i} = \chi_{m}, D, \Theta^{(u)})$ = { Soft count of xe -> Xm transitions } \$ soft count of all transitions xe -> 2