CS-498 Signals AI

• Themes

- Much of AI occurs at the signal level
- Processing data and making inferences rather than logical reasoning
- Areas such as vision, speech, NLP, robotics
 - methods bleed into other areas (graphics, animation, ...)
- Linked by the use of statistical tools and ideas from machine learning
- Much domain knowledge is required to make progress in areas
 - However, they do share tools

Activities

• Mainly lecture

- but I will require that groups present research papers
- Evaluation
 - 4 projects, which will have a competitive component
 - build a part-of-speech tagger
 - build a face finder
 - build a word spotter
 - build a styleIK (we'll talk about what this means)
 - Final project
 - by choice
 - Participation

Natural Language - Applications

Machine Translation

- e.g. South Africa's official languages: English, Afrikaans, the <u>Nguni</u> languages, <u>isiZulu</u>, <u>isiXhosa</u>, <u>isiNdebele</u>, and <u>Siswati</u>, and the <u>Sotho</u> languages, which include <u>Setswana</u>, <u>Sesotho</u> and <u>Sesotho sa</u> <u>Leboa</u>. The remaining two languages are <u>Tshivenda</u> and <u>Xitsonga</u>.
- български (Bălgarski) BG Bulgarian; Čeština CS Czech; Dansk DA Danish; Deutsch DE German; Eesti ET Estonian; Elinika EL Greek; English EN; Español ES Spanish; Français FR French; Gaeilge GA Irish; Italiano IT Italian; Latviesu valoda LV Latvian; Lietuviu kalba LT Lithuanian; Magyar HU Hungarian; Malti MT Maltese; Nederlands NL Dutch; Polski PL Polish; Português PT Portuguese; Română RO Romanian; Slovenčina SK Slovak; Slovenščina SL Slovene; Suomi FI Finnish; Svenska SV Swedish

More NLP applications

- Question answering
- Information extraction
- Text summarisation
- Information retrieval
- Improved understanding of language, linguistics

Why is NLP hard?

- Meaning is a complex phenomenon
- Sentences are often radically ambiguous

Time flies like an arrow

Fruit flies like a banana

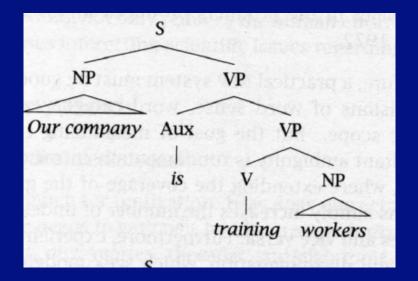
Is this grammatical?

- John I believe Sally said Bill believed Sue saw.
- What did Sally whisper that she had secretly read?
- John wants very much for himself to win.
- Those are the books you should read before it becomes difficult to talk about.
- Those are the books you should read before talking about becomes difficult.
- Who did Jo think said John saw him?
- That a serious discussion could arise here of this topic was quite unexpected.
- The boys read Mary's stories about each other.

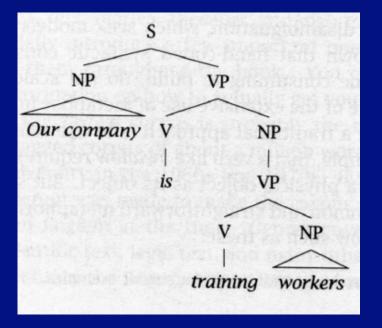
Is this grammatical? - Answers

- Y: John I believe Sally said Bill believed Sue saw.
- N: What did Sally whisper that she had secretly read?
- Y: John wants very much for himself to win.
- Y: Those are the books you should read before it becomes difficult to talk about.
- N: Those are the books you should read before talking about becomes difficult.
- Y: Who did Jo think said John saw him?
- Y: That a serious discussion could arise here of this topic was quite unexpected.
- N: The boys read Mary's stories about each other.

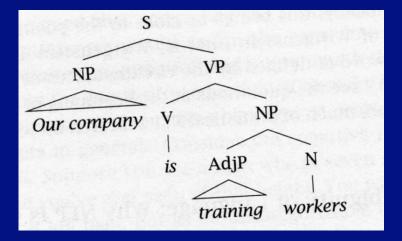
Answers due to van Riemsdijk and Williams, 1986, given in Manning and Schutze



- Note:
 - S= sentence
 - NP=noun phrase
 - VP=verb phrase
 - Aux=auxiliary
 - V=verb



- cf
 - Our problem is training workers



- cf
- Those are training wheels

Figure from Manning and Schutze

- a reasonably sophisticated system gives 455 parses for:
 - List the sales of the products produced in 1973 with the products produced in 1972

• Difficulty:

- There doesn't seem to be a single grammar that is right
- choice of grammar is not innocuous:
 - more complex grammars lead to more ambiguous parses
 - less complex grammars can't deal with some (possibly important) special cases

Counts, frequencies and probabilities

• Important phenomena

- Some things are very frequent
- Most are very rare

• This is a dominant phenomenon in natural language

• important in vision, too

What is a word?

• Word token

- each actual instance of the word
- There are two "the"s in "the cat sat on the mat"
- count with multiplicity
- e.g. 71, 370 in Tom Sawyer
- Word type
 - "the" occurs in "the cat sat on the mat"
 - count without multiplicity
 - e.g. 8, 018 in Tom Sawyer
- Are these two the same word?
 - "ate", "eat", "eating"
 - "stock", "stocking" (perhaps if they're both verbs, but...)

Word	Freq.	Use
the	3332	determiner (article)
and	2972	conjunction
a	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition
that	877	complementizer, demonstrative
he	877	(personal) pronoun
Ι	783	(personal) pronoun
his	772	(possessive) pronoun
you	686	(personal) pronoun
Tom	679	proper noun
with	642	preposition
	Table 1.1	Common words in Tom Sawyer.

From Manning and Schutze; recall there are 71, 370 word tokens in Tom Sawyer

Word Frequency	Frequency of Frequency
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
11-50	540
51-100	99
> 100	102
644 preportion	in a found times in Tom Schubler

Table 1.2 Frequency of frequencies of word types in Tom Sawyer.

From Manning and Schutze; recall there are 8, 018 word types

Zipf's law

- rank word types by frequency, highest first
- each word type then has:
 - a frequency, f
 - a rank, r
- Zipf's law:
 - f r = constant

Word	Freq.	Rank	$f \cdot r$	Word	Freq.	Rank	$f \cdot r$	
	(<i>f</i>)	(<i>r</i>)			(f)	(r)		
the	3332	1	3332	turned	51	200	10200	
and	2972	2	5944	you'll	30	300	9000	
a	1775	3	5235	name	21	400	8400	
he	877	10	8770	comes	16	500	8000	
but	410	20	8400	group	13	600	7800	
be	294	30	8820	lead	11	700	7700	
there	222	40	8880	friends	10	800	8000	
one	172	50	8600	begin	9	900	8100	
about	158	60	9480	family	8	1000	8000	
more	138	70	9660	brushed	4	2000	8000	
never	124	80	9920	sins	2	3000	6000	
Oh	116	90	10440	Could	2	4000	8000	
two	104	100	10400	Applausive	1	8000	8000	

Table 1.3 Empirical evaluation of Zipf's law on Tom Sawyer.

Figure from Manning and Schutze

Zipf's law

• Qualitatively, assuming there are many words

- few very common words
- moderate number of medium frequency words
- very many low frequency words

• Implication:

• we will spend a lot of effort modelling phenomena we hardly ever observe

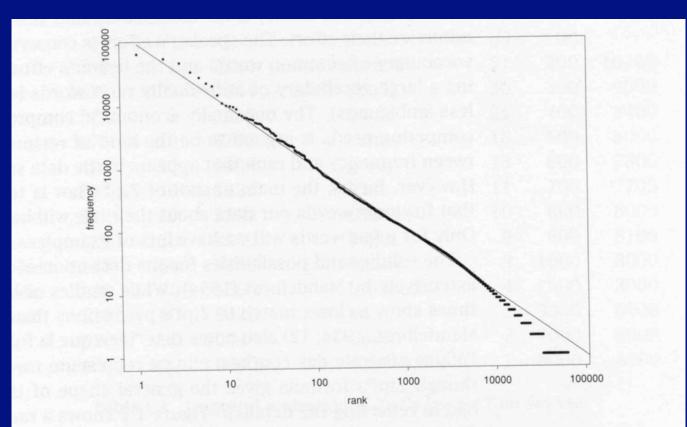


Figure 1.1 Zipf's law. The graph shows rank on the X-axis versus frequency on the Y-axis, using logarithmic scales. The points correspond to the ranks and frequencies of the words in one corpus (the Brown corpus). The line is the relationship between rank and frequency predicted by Zipf for k = 100,000, that is $f \times r = 100,000$.

Figure from Manning and Schutze

Collocations: an example

• Collocations are:

- turn of phrase or accepted usage where whole is perceived to have an existence beyond sum of parts
- compounds disk drive
- phrasal verbs make up
- stock phrases bacon and eggs; steak and kidney; egg and bacon; etc.

Finding possible collocations

 Strategy 1: find pairs of words with high frequency

$C(w^1 w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
 15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Table 5.1 Finding Collocations: Raw Frequency. $C(\cdot)$ is the frequency of something in the corpus.

Finding possible collocations

• Strategy 2: find high frequency pairs of words and then filter them, rejecting any pairs(triples) that do not correspond to part of speech patterns.

Tag Pattern	Example
AN	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
NAN	mean squared error
NNN	class probability function
NPN	degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns were used by Justeson and Katz to identify likely collocations among frequently occurring word sequences.

Figure from Manning and Schutze

Finding possible collocations - 3

$C(w^1 w^2)$	w^1	w^2	Tag Pattern
11487	New	York	AN
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

 Table 5.3 Finding Collocations: Justeson and Katz' part-of-speech filter.

Figure from Manning and Schutze

Probability and models

- I assume very basic knowledge of probability and conditional probability.
- Build and investigate procedures to
 - predict words given words
 - e.g. english given french
 - evaluate interpretations of words

Modelling strings of letters

- Alphabet: 27 tokens (each letter, space; no cases)
- Simplest models:
 - M1: tokens are independent, identically distributed, have uniform probability
 - M2: tokens are independent, identically distributed, have different probs.
- Which is better? and why?
- compare P(M1IS) with P(M2IS)
 - using Bayes' rule

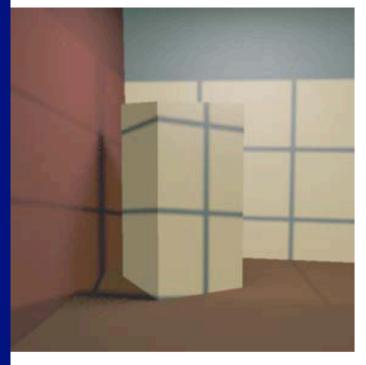
Conditional probability models

- M1 and M2 give quite poor results, M2 much better than M1
- Now consider conditional models
 - we condition a letter on some previous letters
 - 1, 2,
 - sometimes known as Markov models
 - these are significantly better in practice
 - we need tools to understand how much better; coming
 - divergence: application of markov models in computer vision

The Importance of Surface Texture

Objects in the real world have rich, detailed surface textures

- to produce believable scenes, we must replicate this detail
- uniformly colored surfaces only get us so far



Generated with Blue Moon Rendering Tools — www.bmrt.org

How Do We Model Intricate Surface Detail?

Approach #1: Explicit geometric representation

- actual polygons that model all the surface variations
- up to some finest level of detail
- may generate a *lot* of polygons

Macroscopic model

Approach #2: Geometry + texture images

- geometry only describes the general shape of the object
- paste an image onto the wall to give the appearance of brick

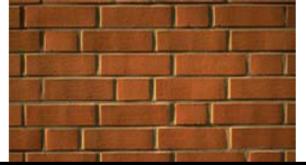
Microscopic model

Often We Use Simple Patterns

Generally useful for skin, bricks, stucco, granite, ...

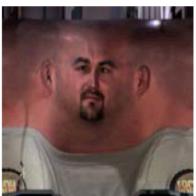
Typically need to repeat texture over the object

· must make sure there are no seams when texture is tiled



Or Given a Model and a Single Texture

Wrap the Texture onto the Model



Sample model from <u>www.cyberware.com</u>

Framework for Texture Mapping

The texture itself is just a 2-D raster image

acquired from reality, hand-painted, or procedurally generated

Establish a correspondence between surface points & texture

When shading a particular surface point

- · look up the corresponding pixel in the texture image
- final color of point will be a function of this pixel

Texture mapping

• Getting enough texture

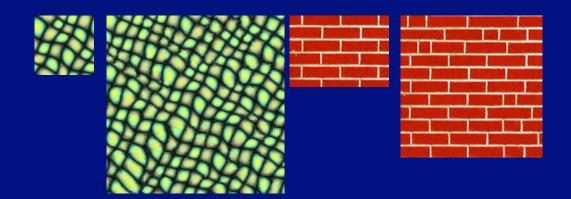
- observations
- buy it
- tile it
- synthesize it

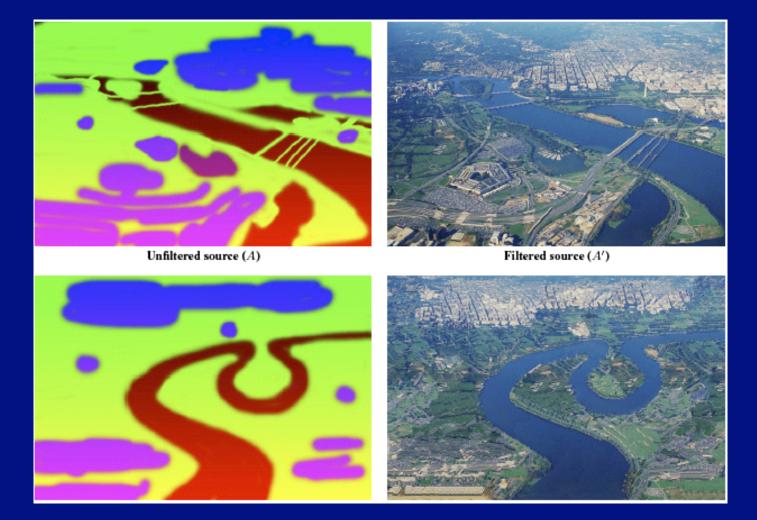
• Putting the texture in the right place

- applying texture to surfaces artists, parametrization, etc.
- rendering ray trace, interpolation

Texture synthesis

- Use image as a source of probability model
- Choose pixel values by matching neighbourhood, then filling in
- Matching process
 - look at pixel differences
 - count only synthesized pixels





From "Image analogies", Herzmann et al, SIGGRAPH 2001