
Regression, Classifiers 
and Correspondence

CS - 4(5)98 Signals AI



Regression 

• General idea
• predictive density of y from observation x
• ideal:  report P(y|x)

• but usually we don’t know this
• instead, build a model of P(y|x)

• Loss
• we need a model of the cost of mispredicting y
• we will minimize expected loss



Common cases

• Model y as f(x)+additive gaussian noise
• P(Y|X)  is N(f(x), Cov)

• Loss is 

• known as squared error loss

• f is a linear function
• we could put a 1 in x if we wanted

L(y → f(x)) = (y − f(x))2

f(x) = x′β



Linear Regression

• Stack y’s into vector, x’s into matrix
• expected loss over example points is then

• minimize this; minimum is at

• often problems with rank

1
N

(Y −X ′β)′(Y −X ′β)

(XX ′)−1(XY )



K-nearest neighbours

• This approximates E[Y|X=x] 
• assuming that y changes slowly compared with scatter of samples
• notice as N, k go to infinity, if k/N goes to zero, 

• then f(x) usually goes to E[Y|X=x]

•

f(x) =
1
K

∑

i∈k examples closest to x

yi



Locally weighted regression

• One can weight the errors in a linear regression

• solution at

• LWR:  weights chosen as a function of query x
• weight points higher if they’re closer
• cost: new linear system every time you want to predict
• advantage: locally smoothed predictions

(Y −X ′β)′W (Y −X ′β)

(XWX ′)−1(XWY )



(a) Input (b) A subset of the features (c) 3 top matches in PSH, left to right (d) Robust LWR

Figure 1. Pose estimation with parameter-sensitive hashing and local regression.

mulated in terms of a classification problem, and propose a
simple and efficient algorithm for evaluating this objective
and selecting parameter-sensitive hash functions. Finally,
the goal estimate is produced by robust LWR which uses the
approximate neighbors found by PSH to dynamically build
a simple model of the neighborhood of the input. Our ap-
proach is illustrated in Figure 1. To our knowledge, this is
the first use of an LSH-based technique with local regres-
sion.

The remainder of this paper is organized as follows. Pre-
vious work is reviewed in Section 2. The PSH algorithm is
presented in Section 3 (the algorithm for constructing effi-
cient hash functions is described in Section 3.1). We eval-
uate our framework on an articulated pose estimation prob-
lem: estimating the pose of a human upper body from a
single image. The details of the task and our experiments
are described in Section 4. We conclude and discuss some
open questions in Section 5.

2. Background and previous work

The body of literature on object parameter estimation
from a single image, and in particular on estimating the pose
of articulated bodies, is very large, and space constraints
force us to mention only work most related to our approach.

In [17] 3D pose is recovered from the 2D projections of
a number of known feature points on an articulated body.
Other efficient algorithms for matching articulated patterns
are given in [9, 15]. These approaches assume that detec-
tors are available for specific feature locations, and that a
global model of the articulation is available. In [14] a ‘shape
context’ feature vector is used to represent general contour
shape. In [16], the mapping of a silhouette to 3D pose is
learned using multi-view training data. These techniques
were successful, but they were restricted to contour features
and generally unable to use appearance within a silhouette.

Finally, in [1] a hand image is matched to a large
database of rendered forms, using a sophisticated similar-
ity measure on image features. This work is most similar
to ours and in part inspired our approach. However, the
complexity of nearest neighbor search makes this approach

difficult to apply to the very large numbers of examples
needed for general articulated pose estimation with image-
based distance metrics.

We approach pose estimation as a local learning task,
and exploit recent advances in locality- sensitive hashing to
make example-based learning feasible for pose estimation.
We review each of these topics in turn.

2.1. Example-based estimation

The task of example-based parameter estimation in vi-
sion can be formulated as follows. Input, which consists of
image features (e.g. edge map, vector of responses of a filter
set, or edge direction histograms) computed on the original
image, is assumed to be generated by an unknown paramet-
ric process x = f(θ) (e.g., θ is a vector of joint angles in
the articulated pose context. A training set of labeled exam-
ples (x1, θ1), . . . , (xN , θN ) is provided. One must estimate
θ0 as the inverse of f for a novel input x0. The objective is
to minimize the residual in terms of the distance (similarity
measure) dθ in the parameter space.

Methods based on nearest neighbors (NN) are among the
oldest techniques for such estimation. The k-NN estimate
[7] is obtained by averaging the values for the k training
examples most similar to the input:

θ̂NN =
1
k

∑

xi∈neighborhood

θi, (1)

i.e. the target function is approximated by a constant in
each neighborhood defined by k. This estimate is known to
be consistent, and to asymptotically achieve Bayes-optimal
risk under many loss functions [7]. Note that similarity
(neighborhood) is defined in terms of the distance dX in
the input space.

A natural extension to k-NN, in which the neighbors are
weighted according to their similarity to the query point,
leads to locally-weighted regression (LWR) [5, 2]: the target
function is approximated locally (within any small region)
by a function from a particular model class g(x; β). The
parameters β are chosen to optimize the weighted learning

2

!"#$%%&'()*+#,+-.%+/'(-.+0111+0(-%"(2-'#(23+4#(,%"%($%+#(+4#567-%"+8'*'#(+90448:;<=+
;>?@AB>CAB;>DE;<+F+C?G;;+H+I;;<+0111!

Shakhnarovich, Viola, Darrell, 03 



IN
PU

T
T

O
P

M
A

T
C

H
LW

R

Figure 4. Examples of upper body pose estimation (Section 4). Top row: input images. Middle row:
top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images
in the bottom row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.
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Figure 5. More examples, including typical “errors”. In the leftmost column, the gross error in the top
match is corrected by LWR. The rightmost two columns show various degrees of error in estimation.
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The curse of dimension

• In high dimensions, volume is on the “skin” of a body
• e.g. high dimensional cube

• Example:  uniform data in unit cube in dimension p
• want fraction r of data to be in subcube
• so subcube must have volume r
• so edge length must be r^(1/p)

• numbers: p=10, r=0.1 gives edge length of 0.794
• hardly local!



Bias and variance

• Consider some deterministic function y=f(x)
• draw a bunch of (x, y) samples using a sampling density T
• estimate value with 1-NN

BIAS VARIANCE

MSE(xo) = ET [(f(x0)− ŷ0)2]
= f(x0)2 − 2ET [y0]f(x0) + ET [y2

0 ]
= f(x0)2 − 2ET [y0]f(x0) + (ET [yo])2

+(ET [y0])2 − 2(ET [y0])2 + ET [y2
0 ]

= (f(x0)− ET [y0])2 + ET [(y0 − ET [y0])]2



Bias and Variance

• Bias
• what happens because your model cannot fit the data, however well the 

parameters

• Variance
• the result of not being able to estimate the parameters correctly, which 

occurs because different sets of samples of the same underlying density 
give different estimates



Regularizing linear regression

• Options
• throw out variables

• but which ones? search
• variance could go up, because different samples might result in 

different models
• penalize large coefficients

• rank interpretation 
• noise interpretation
• usually a really bad idea to penalize the constant offset!

• center data



Ridge regression

• Penalize large coefficients, so minimize

• This gives

• Notice this is equivalent to min

• subject to

(Y −X ′β)′(Y −X ′β) + λβ′β

βridge = (XX ′ + λI)−1XY

(Y −X ′β)′(Y −X ′β)

β′β ≤ s



Ridge regression

• Notice this isn’t covariant under scaling of inputs
• be careful about relative scaling of variables

• We can show that ridge regression scales directions of 
SVD of X by

• shrinkage is most pronounced in directions of x with low variance
• because we have poor estimates of the gradient of y in these directions

d2

d2 + λ



The Lasso

βlasso = arg min
i=N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)2

p∑

j=1

|βj |≤ t

Subject to: 



The Lasso

• No longer use linear algebra,  
• optimization problem is nasty

• Sufficiently small t forces components to be zero



3D from 2D for single views of humans

• Can one solve?
• yes

• How?
• rather naturally regression

• Is this problem ambiguous?
• a large literature says yes
• a large literature says no



Taylor, 00

Unambiguous



Barron +Kakadiaris, 00

Unambiguous



Sminchisescu+Triggs, 03

Ambiguous



Ambiguous

insensitive to irrelevant surface attributes like clothing color
and texture, and 3) they encode a great deal of useful
information about 3D pose without the need of any labeling
information.1

Two factors limit the performance attainable from
silhouettes: 1) Artifacts such as shadow attachment and
poor background segmentation tend to distort their local
form. This often causes problems when global descriptors
such as shape moments are used (as in [4], [8]), as every
local error pollutes each component of the descriptor. To be
robust, shape descriptors need to have good locality.
2) Silhouettes leave several discrete and continuous degrees
of freedom invisible or poorly visible (see Fig. 1). It is
difficult to tell frontal views from back ones, whether a
person seen from the side is stepping with the left leg or the
right one, and what the exact poses of arms or hands that
fall within (are “occluded” by) the torso’s silhouette are.
Including interior edge information within the silhouette
[22] is likely to provide a useful degree of disambiguation in
such cases, but is difficult to disambiguate from, e.g.,
markings on clothing.

2.1.2 Shape Context Distributions

To improve resistance to segmentation errors and occlu-
sions, we need a robust silhouette representation. The first
requirement for robustness is locality. Histogramming edge
information is a good way to encode local shape robustly
[16], [6], so we begin by computing local descriptors at
regularly spaced points on the edge of the silhouette. About
400-500 points are used, which corresponds to a one pixel
spacing on silhouettes of size 64! 128 pixels such as those
in our training set. We use shape contexts (histograms of
local edge pixels into log-polar bins [6]) to encode the local
silhouette shape at a range of scales quasilocally, over
regions of diameter similar to the length of a limb. The scale

of the shape contexts is calculated as a function of the
overall silhouette size, making the representation invariant
to the overall scale of a silhouette. See Fig. 2c. In our
application, we assume that the vertical is preserved, so, to
improve discrimination, we do not normalize contexts with
respect to their dominant local orientations as originally
proposed in [6]. Our shape contexts contain 12 angular !
five radial bins, giving rise to 60-dimensional histograms.
The silhouette shape is thus encoded as a 60D distribution
(in fact, as a noisy multibranched curve, but we treat it as a
distribution) in the shape context space.

Matching silhouettes is therefore reduced to matching
distributions in shape context space. To implement this, a
second level of histogramming is performed: We vector
quantize the shape context space and use this to reduce the
distribution of each silhouette to a 100D histogram.
Silhouette comparison is thus finally reduced to a compar-
ison of 100D histograms. The 100 center codebook is learned
once and for all by running k-means on the combined set of
context vectors of all of the training silhouettes. See Fig. 3.
Other center selection methods give similar results. For a
given silhouette, a 100D histogram z is built by allowing
each of its 60D context vectors to vote softly into the few
center-classes nearest to it and accumulating the scores of
all of the silhouette’s context vectors. The votes are
computed by placing a Gaussian at each center and
computing the posterior probability for each shape context
to belong to each center/bin. We empirically set the
common variance of the Gaussians such that each shape
context has significant votes into four to five centers. This
soft voting reduces the effects of spatial quantization,
allowing us to compare histograms using simple Euclidean
distance, rather than, say, Earth Movers Distance [21]. We
also tested the normalized cellwise distance k ffiffiffiffiffi

p1
p " ffiffiffiffiffi

p2
p k2

with very similar results. The histogram-of-shape-contexts
scheme gives us a reasonable degree of robustness to
occlusions and local silhouette segmentation failures and,
indeed, captures a significant amount of pose information
(see Fig. 4).

2.2 Body Pose as Joint Angles

We recover 3D body pose (including orientation with
respect to the camera) as a real 55D vector x, including
three joint angles for each of the 18 major body joints shown
in Fig. 2f. The subject’s overall azimuth (compass heading
angle) ! can wrap around through 360#. To maintain
continuity, we actually regress ða; bÞ ¼ ðcos !; sin !Þ rather
than !, using atan2ðb; aÞ to recover ! from the not-
necessarily-normalized vector returned by regression. So,
we have 3! 18þ 1 ¼ 55 parameters.

We stress that our framework is inherently “model-free”
and is independent of the choice of this pose representa-
tion. The method has also been tested on a different
parameterization of the body joint angles as a 44D vector.
The system itself has no explicit body model or rendering
model and no knowledge of the “meaning” of the motion
capture parameters that it is regressing—it simply learns to
predict these from silhouette data. Similarly, we have not
sought to learn a minimal representation of the true
human pose degrees of freedom, but simply to regress the
original motion capture-based training format in the form

46 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 1, JANUARY 2006

1. We believe that any representation (Fourier coefficients, etc.) based on
treating the silhouette shape as a continuous parametrized curve is
inappropriate for this application: Silhouettes frequently change topology
(e.g., when a hand’s silhouette touches the torso’s one), so parametric curve-
based encodings necessarily have discontinuities with respect to shape.

Fig. 1. Different 3D poses can have very similar image observations,
causing the regression from image silhouettes to 3D pose to be
inherently multivalued. The legs and the arms are reversed in the first
two images, for example.

Agarwal and Triggs 05



Does ambiguity exist?

• Human tracking is multimodal
• popular opinion

• Not even in single frames
• Taylor 2000; Barron+Kakadiaris 00; Shakhnarovich ea 03;

• In single frames, but not over somewhat longer time scales
• Sminchicescu+Triggs 01, 03, 03; Agarwal+Triggs 05, 06

• Not if you lift from multiple frames
• Howe ea 00; Howe 04; Ramanan+Forsyth 03

• Some ambiguities persist over very long time scales
• left+right leg, for example



Ambiguity

• The literature is confused
• There are not reliable or compelling experiments
• There *may* be very little ambiguity or quite a lot
• It is crucial to clean this point up

• however, one must be careful --- frequency arguments are dangerous.



Basic ideas in classifiers

• Loss
• one can refuse to classify

• Total risk

• Expected loss of classifying a point gives
1 if

2 if



Known class-conditional densities

• Assume class-conditional densities are Gaussian

p(x|k) =
1

(2π)d/2 |Σk |1/2
exp

(
−1
2

(x− µ
k
)T Σ−1

k (x− µ
k
)
)

p(k|x) ∝ 1
(2π)d/2 |Σk |1/2

exp
(
−1
2

(x− µ
k
)T Σ−1

k (x− µ
k
)
)

πk

For some cases, you could evaluate this, perhaps by estimating each mean and 
covariance



Mahalonobis distance

• Pick class that minimizes

• Notice that if the covariance is the same for each class
• test boils down to a linear expression

(
(x− µ

k
)T Σ−1

k (x− µ
k
)
)
− 2 log πk



Classification by regression

• Regress a class label against data
• works well for k-NN
• not so well for linear regression with least squares

• problem with the loss - it overcharges for bad mistakes



Histogram based classifiers

• Represent class-conditional densities with histogram
• Advantage:  

• estimates become quite good 
• (with enough data!)

• Disadvantage:
•  Histogram becomes big with high dimension

• but maybe we can assume feature independence?



Finding skin

• Skin has a very small range of (intensity independent) 
colours, and little texture
• Compute an intensity-independent colour measure, check if colour is in 

this range, check if there is little texture (median filter)
• See this as a classifier - we can set up the tests by hand, or learn them.



Histogram classifier for skin

Figure from Jones+Rehg, 2002



Figure from Jones+Rehg, 2002



Curse of dimension - I

• This won’t work for many features
• try R, G, B, and some texture features
• too many histogram buckets



Finding faces

• Faces “look like” templates (at least when they’re frontal).
• General strategy:

• search image windows at a range of scales
• Correct for illumination
• Present corrected window to classifier

• Issues
• How corrected?
• What features?
• What classifier?
• what about lateral views?



The Thatcher Illusion
Figures by Henry Rowley, 

http://www.cs.cmu.edu/~har/puzzle.html



The Thatcher Illusion
Figures by Henry Rowley, 

http://www.cs.cmu.edu/~har/puzzle.html



Naive Bayes

• Previously, we detected with a likelihood ratio test

• Now assume that features are conditionally independent 
given event

P (features|event)
P (features|not event)

> threshold

P (f0, f1, f2, . . . , fn|event) = P (f0|event)P (f1|event)P (f2|event) . . . P (fn|event)



Naive Bayes

• (not necessarily perjorative)
• Histogram doesn’t work when there are too many features

• the curse of dimension, first version
• assume they’re independent conditioned on the class, cross fingers
• reduction in degrees of freedom
• very effective for face finders 

• relations may not be all that important
• very effective for high dimensional problems 

• bias vs. variance





Work by Schneiderman and Kanade,
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/hws.html



Work by Schneiderman and Kanade,
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/hws.html

Many more face finders on the face detection home page
http://home.t-online.de/home/Robert.Frischholz/face.htm



Face Recognition

• Whose face is this? (perhaps in a mugshot)
• Issue:

• What differences are important and what not?
• Reduce the dimension of the images, while maintaining the “important” 

differences.

• One strategy:
• Principal components analysis, then nearest neighbours
• Many face recognition strategies at  http://www.cs.rug.nłusers/peterkr/

FACE/face.html



Curse of dimension-II

• General phenomenon of high dimensions
• volume is concentrated at the boundary

• Parameter estimation is hard for high dimensional 
distributions
• even Gaussians

• where probability is concentrated further and further from the mean
• and covariance has too many parameters

• dodge: assume covariance is diagonal

• Idea:  reduce the dimension of the feature set
• Principal components
• Linear discriminants



Principal components

• Find linear features that explain most of the variance of 
the data









Principal components for face images, from
http://vismod.www.media.mit.edu/vismod/demos/facerec/basic.html



Linear discriminant analysis

• Principal components do not preserve discrimination
• so we could have features that don’t distinguish, see picture

• Assume (pretend) class conditional densities are normal, 
with the same covariance
• Choose linear features so that

• between class variation is big compared to within class variation
• between class variation

• covariance of class means
• within class variation

• class covariance









First two canonical variates for well 
known image collection



ASL translation



ASL

• Notice:
• intra-class variation (timing, role of hands)
• carefully dressed narrator
• low resolution

• Would like to spot words in text

Grandma

Grandpa



Wordspotting allows translations



Wordspotting

• Difficulties
• building a discriminative word model for a large vocabulary is hard

• need lots of examples of each word
• building a generative word model is hard, too

• no widely available pronunciation dictionary
• very large number of features

• next slide

• Strategy
• build spotters for some words (base words)
• now use the output of those spotters as features for other words

• uses less training data
• because features are discriminative



Features



Logistic Regression

• Build a parametric model of the posterior, 
• p(class|information)

• For a 2-class problem, assume that
• log(P(1|data))-log(P(0|data))=linear expression in data

• Training
• maximum likelihood on examples
• problem is convex

• Classifier boundary
• linear



Multiclass classification

• Many strategies
• 1-vs-all

• for each class, construct a two class classifier comparing it to all other 
classes

• take the class with best output
• if output is greater than some value

• Multiclass
• log(P(i|features))-log(P(k|features))=(linear expression)
• many more parameters
• harder to train with maximum likelihood
• still convex





Forsyth Farhadi 06



Neural networks

• Logistic regression heavily generalized





• Choose parameters to minimize error on training set

• Stochastic gradient descent, computing gradient using 
trick (backpropagation, aka the chain rule)

• Stop when error is low, and hasn’t changed much

Training



Figure from “Rotation invariant neural-network based face detection,”
H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, c   1998, IEEE as shown in Forsyth and Ponce, p589

Rowley-Baluja-Kanade face finder (1)



Figure from “Rotation invariant neural-network based face detection,”
H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, c   1998, IEEE as shown in Forsyth and Ponce, p589



Decision boundaries

• The boundary matters
• but the details of the probability model may not

• Seek a boundary directly
• when we do so, many or most examples are irrelevant

• Support vector machine



Support Vector Machines, easy case

• Classify with                              sign(w.x+b)

• Linearly separable data means

• Choice of hyperplane means

• Hence distance



Support Vector Machines, separable case

By being clever about what x means, I can have much
more interesting boundaries.



Dual SVM problem

Lagrangian

Gradient with respect to w, b must vanish



Dual SVM problem - II

Substitute

Constraints

Solution



Data not linearly separable

Constraints become

Objective function becomes



Data not linearly separable

Constraints become

Objective function becomes



Data not linearly separable - II



Pedestrian detection with an SVM

Dalal+Triggs 05



Features

Dalal+Triggs 05



Performance

Dalal+Triggs 05



From “Gender Classication with
Support Vector Machines”

Baback Moghaddam
Ming-Hsuan Yang, MERL TR 











Corel Image Data 40,000 images

Fine Arts Museum of San Francisco 83,000 images online

Cal-flora 20,000 images, species information

News photos with captions
(yahoo.com)

1,500 images per day available from
yahoo.com

Hulton Archive 40,000,000 images (only 230,000 online)

internet.archive.org 1,000 movies with no copyright

TV news archives
(televisionarchive.org, informedia.cs.cmu.edu)

Several terabytes already available

Google Image Crawl >330,000,000 images (with nearby text)

Satellite images
(terrarserver.com, nasa.gov, usgs.gov)

(And associated demographic information)

Medial images (And associated with clinical information)

 LOTS of BIG collections of images

* and the BBC is releasing its video archive, too;
and we collected 500,000 captioned news images;

and it’s easy to get scanned mediaeval manuscripts;
etc., etc.,



• Iconic matching
• child abuse prosecution 
• managing copyright (BayTSP)

• Clustering
• Browsing for:

• web presence for museums (Barnard et al,  01)
• home picture, video collections
• selling pictures 

• Searching
• scanned writing (Manmatha, 02)
• collections of insects

• Building world knowledge
• a face gazetteer  (Miller et al, 04)

Imposing order

Current, practical applications

Maybe applications

Maybe applications



• Metadata indexing
• keywords, date of photo, place, etc.

• Content based retrieval
• query by example with 

• global features  
• (e.g. Flickner et al. 95, Carson et al. 99, Wang 00, various entire 

conferences)
• local features

• (e.g. Photobook - Pentland et al 96; Blobworld - Carson et al, 98)
• relevance feedback 

• (e.g. Cox et al 00; Santini 00; Schettini 02; etc.)
• query by class

• naughty pictures
• (eg  Forsyth et al. 96, 99; Wang et al. 98; Chan et al 99)

Search is well studied



• Work by Peter Enser and colleagues on the use of photø
movie collections                                                              
(Enser McGregor 92; Ornager 96; Armitage Enser 97; Markkula Sormunen 
00; Frost et al 00;   Enser 00)

• Typical queries:

What will users pay for?

“… smoking of kippers…”
“The depiction of vanity in painting, the 
depiction of the female figure looking in 

the mirror, etc.”
“Cheetahs running on a greyhound course 

in Haringey in 1932” W
ha

t i
s t

hi
s a

bo
ut

?



Query on

“Rose”

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 



Query on

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 



Query on

and

“Rose”

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 



Exploiting complementary information

• A probability model linking images and annotations
• exploit co-occurence
• better estimates of “meaning” for clustering and browsing
• soft search, auto illustration, auto annotation

• Predicting words from image regions
• explicitly encode and infer correspondence

• aligned bitext
• no alignment

• rather like recognition
• pinch techniques from statistical natural language processing

• Linking face images with names
• an important special case
• datasets of an epic scale available
• like face recognition, but easier
• breaking correspondence by clustering



 Browsing

• Searching big, unknown collections is hard for naive user
– skilled users don’t benefit from vision-based tools
– problem of overrated significance

• Browsing?
– seems to be preferred by naive users (Frost et al, `00)
– but browsing requires organization too
– generally underrated problem

*Notable exceptions ---Sclaroff, Taycher, and La Cascia, 98; Rubner, Tomasi, 
and Guibas, 00; Smith Kanade, 97.



Clustering words and pictures 

• Build a joint probability model linking words and pictures

• Use Hoffman’s hierarchical aspect model
• which is a form of clusterer

• Lay out and browse the clusters

[ Hofmann 98; Hofmann & Puzicha 98 ]



Input

“This is a picture of the 
sun setting over the sea 

with waves in the 
foreground”

sun sky waves sea

Language
processing

Each blob is a large 
vector of features

• Region size
•  Position
•  Colour

•  Oriented energy 
(12 filters)

•  Simple shape 
features

Image
 processing*

* Thanks to Blobworld team [Carson, Belongie, Greenspan, Malik], N-cuts team [Shi, Tal, Malik]



FAMSF Data 

83,000 images online, we clustered 8000





Searching

Compute P(document | query_items)

query_items can be words, features, or both

Natural way to express “soft queries”

Related retrieval work: Cascia, Sethi, and Sclaroff, 98; Berger and 
Lafferty, 98; Papadimitriou et al., 98 



Query: “river tiger” from 5,000 Corel images
(The words never occur together.)

Retrieved items: rank order P( document | query)



Query: “water  sky  cloud                ” 
Retrieved items: 

Search
Compute P(document | query_items)

Related retrieval work: Cascia, Sethi, and Sclaroff, 98; Berger and Lafferty, 98; Papadimitriou et al., 98 



Pictures from Words (Auto-illustration)
Text Passage (Moby Dick)

“The large importance attached to the 
harpooneer’s vocation is evinced by 

the fact, that originally in the old 
Dutch Fishery, two centuries and 

more ago, the command of a whale-
ship  …“

Extracted Query

Retrieved Images

large importance attached fact old 
dutch century more command 

whale ship was person was divided 
officer word means fat cutter time 

made days was general vessel 
whale hunting concern british title 

old  dutch ...





Auto-annotation

• Predict words from pictures
• Obstacle:

• Hoffman’s model uses document specific level probabilities
• Dodge

• smooth these empirically

• Attractions:
• easy to score
• large scale performance measures (how good is the segmenter?)
• possibly simplify retrieval (Li+Wang, 03)



Keywords
GRASS TIGER CAT FOREST

Predicted Words (rank order)

Keywords
HIPPO BULL mouth walk

Predicted Words (rank order)

Keywords
FLOWER coralberry LEAVES 

PLANT

tiger cat grass people water bengal 
buildings ocean forest reef

water hippos rhino river grass 
reflection one-horned head 

plain sand

fish reef church wall people water 
landscape coral sand trees

Predicted Words (rank order)



Blobworld segmentations

N-cuts segmentations



KL divergence
based word 
prediction 
measure 

(compared with 
prior, bigger is 

better)  

Barnard et al. ‘03



Exploiting complementary information

• A probability model linking images and annotations
• exploit co-occurence
• better estimates of “meaning” for clustering and browsing
• soft search, auto illustration, auto annotation

• Predicting words from image regions
• explicitly encode and infer correspondence

• aligned bitext
• no alignment

• rather like recognition
• pinch techniques from statistical natural language processing

• Linking face images with names
• an important special case
• datasets of an epic scale available
• like face recognition, but easier
• breaking correspondence by clustering



Annotation vs Recognition

tiger  cat  grass

?



• In its simplest form, missing variable problem
• Pile in with EM

• given correspondences, conditional probability table is easy (count)
• given cpt, expected correspondences could be easy

• Caveats
• might take a lot of data; symmetries, biases in data create issues

Lexicon building

“the beautiful sun”

“le soleil beau” “sun   sea   sky”
Brown, Della Pietra, Della Pietra & Mercer 93; Melamed 01



city mountain sky sun jet plane sky

jet plane sky

cat forest grass tiger

cat grass tiger waterbeach people sun water



“Lexicon” of “meaning”

sun

sky

cat

horse

This could be either a conditional probability table or a joint probability table; each has significant 
attractions for different applications







Performance measurement

By hand By proxy

Grass Cat Buildings 
Horses Tiger Mare







Exploiting complementary information

• A probability model linking images and annotations
• exploit co-occurence
• better estimates of “meaning” for clustering and browsing
• soft search, auto illustration, auto annotation

• Predicting words from image regions
• explicitly encode and infer correspondence

• aligned bitext
• no alignment

• rather like recognition
• pinch techniques from statistical natural language processing

• Linking face images with names
• an important special case
• datasets of an epic scale available
• like face recognition, but easier
• breaking correspondence by clustering



News dataset

• Approx 5e5 news images, with 
captions
• Easily collected by script from Yahoo 

over the last 18 months or so

• Mainly people
• politicians, actors, sportsplayers
• long, long tails distribution

• Face pictures captured “in the 
wild”

• Correspondence problem
• some images have many (resp. few) 

faces, few (resp. many) names (cf. 
Srihari 95)

President George W. Bush makes a statement in the 
Rose Garden while Secretary of Defense Donald 
Rumsfeld looks on, July 23, 2003. Rumsfeld said the 
United States would release graphic photographs of the 
dead sons of Saddam Hussein to prove they were killed 
by American troops. Photo by Larry Downing/Reuters 



Data examples

Doctor Nikola shows a fork that was 
removed from an Israeli woman who 
swallowed it while trying to catch a bug 
that flew in to her mouth, in Poriah 
Hospital northern Israel July 10, 2003. 
Doctors performed emergency surgery 
and removed the fork. (Reuters) 

President George W. Bush waves as he 
leaves the White House for a day trip to 
North Carolina, July 25, 2002. A White 
House spokesman said that Bush would 
be compelled to veto Senate legislation 
creating a new department of homeland 
security unless changes are made. (Kevin 
Lamarque/Reuters) 



Process

• Extract proper names
• rather crudely, at present

• Detect faces
• with Cordelia Schmid’s face detector, (Vogelhuber Schmid 

00)

• Rectify faces
• by finding eye, nose, mouth patches, affine transformation

• Kernel PCA rectified faces
• Estimate linear discriminants
• Now have (face vector; name_1,...., name_k)

Scale

44773  big face responses

34623  properly rectified

27742   for k<=4



Building a face dictionary

• Compute linear discriminants
• using single name, single face data items
• we now have a set of clusters

• Now break correspondence with modified k-means
• assign face to cluster with closest center, 

• chosen from associated names
• recompute centers, iterate
• using distance in LD space

• Now recompute discriminants, recluster with modified k-
means



US President George W. Bush (L) 
makes remarks while Secretary of 
State Colin Powell (R) listens before 
signing the US Leadership Against 
HIV /AIDS , Tuberculosis and Malaria 
Act of 2003 at the Department of State 
in Washington, DC. The five-year plan 
is designed to help prevent and treat 
AIDS, especially in more than a dozen 
African and Caribbean nations(AFP/
Luke Frazza)

German supermodel Claudia Schiffer 
gave birth to a baby boy by Caesarian 
section January 30, 2003, her 
spokeswoman said. The baby is the first 
child for both Schiffer, 32, and her 
husband, British film producer Matthew 
Vaughn, who was at her side for the birth. 
Schiffer is seen on the German television 
show 'Bet It...?!' ('Wetten Dass...?!') in 
Braunschweig, on January 26, 2002. 
(Alexandra Winkler/Reuters) 

British director Sam Mendes and 
his partner actress Kate Winslet 
arrive at the London premiere of 
'The Road to Perdition', 
September 18, 2002. The films 
stars Tom Hanks as a Chicago 
hit man who has a separate 
family life and co-stars Paul 
Newman and Jude Law. 
REUTERS/Dan Chung 



Pruning

• Using a likelihood model
• Tradeoff:  size vs accuracy



Merging

Venezuelan 
President Chavez

Hugo Chavez



Ryan’s clean demo   http://www.eecs.berkeley.edu/~ryanw/clustersFulłtheta15/index.html

Tamara’s demo http://www.cs.berkeley.edu/~millert/faces/faceDict/starClust/



How well does it work?

• Draw a cluster from the list, and an image from that 
cluster
• frequency that that image is of someone else

• How many bits are required to fix result?



Works - but 

• We are missing language cues

Sahar Aziz, left, a law student at the University of Texas, hands 
the business card identifying Department of the Army special 
agent Jason D. Treesh to one of her attorneys, Bill Allison,
right, during a news conference on Friday, Feb. 13, 2004, 
in Austin, Texas. In the background is Jim Harrington, director 
of the Texas Civil Rights Project. (AP Photo Harry Cabluck)



Training a language module

• Idea:
• a set of named faces is supervised training data for a “who’s in the picture” module
• actually, do EM (or maximize?) over missing correspondences



Language improves naming,



Clusters,



and yields a useful little NLP module, too



Faces - To do

• Better image features

• More sophisticated probability model, EM

• Estimate P (no pic | name) using EM

• Better named entity recognition

• Co-reference resolution (across languages?) using faces

• Use non-parametric face model (animation?)

• Start looking at face recognition



Partially supervised data  
== Missing correspondence

• Supervised data, but with a little bit missing
• There’s not all that much unsupervised data but lots of semi-supervised 

• Linking and association
• picture is labelled, but object not segmented

• Faces (Leung, Burl, Perona,  95); Faces and cars (Weber Perona 01); 
Faces,cars,motorbikes,planes,tigers (Fergus Zisserman Perona 03); Animal pix (Schmid 01); 
Clustering (Barnard et al, 01, 01); word prediction (Barnard et al 03;  Wang et al, 02; Lia et al, 
03;); album cover-music (Brochu et al; 02); objects (Duygulu et al, 02; Barnard et al 03); names 
and faces (Miller et al 04); speech and pictures (Fleck et al, 04 patent).

• Words, metadata should be linked to picture
• Face pix (Srihari, 95); Corel (Barnard et al 01; Li+Wang 03); Art (Barnard et al. 01); 

• Coherence
• Objects of interest look coherent from frame to frame in video

• People tracking (Ramanan+Forsyth ‘03); Animals (Ramanan+Forsyth ‘03)

• Picture posesses noisy label; which labels are right?
• Image search results (Fergus et al 04)

• missing data tends to be correspondence



Conclusions

• There’s more data out there about the visual world than 
immediately meets the eye

• Visual information should be linked with other forms of 
information
• so one can work where it’s easiest

• Doing so may yield useful artifacts and insights


