
Animation
D.A. Forsyth

Animation

• Persistence of vision:
• The visual system smoothes in time. This means that images presented to

the eye are perceived by the visual system for a short time after they are
presented. In turn, this means that if images are shown at the right rate
(about 20-30 Hz will do it), the next image replaces the last one without
any perceived blank space between them.

• Visual closure:
• a sequence of still images is seen as a motion sequence if they are shown

quickly enough - i.e. smooth motion between positions is inferred

Keyframing

From “It’s a magical world”, Watterson, 1996

Result

Basic techniques

• Keyframing:
• generate frames by drawings, interpolate between drawings

• Stop motion:
• put model in position, photograph, move, photograph, etc.

• Compositing:
• generate frames as mixtures of video sequences

• Morphing:
• mix video sequences while modifying shapes

• Procedural animation:
• use some form of procedural description to move object

Keyframing - issues

• Generating frames by hand is a
huge burden -- 1hr of film is
3600x24 frames

• Skilled artists generate key
frames, inbetweeners generate
inbetween frames

• Changes are hideously
expensive

• Natural interpolation problem --
interpolate various variables
describing position, orientation,
configuration of objects

From “The computer in the visual arts”, Spalter, 1999

Linear interpolation

From “The computer in the visual arts”, Spalter, 1999

More complex interpolation

From “The computer in the visual arts”, Spalter, 1999

Modify the parameter, too

From “The computer in the visual arts”, Spalter, 1999

A use for parameter continuous interpolates here.
Notice that we don’t necessarily need a physical ball.

A variety of variables can be interpolated

Position

Position and orientation

Position and scale

From “The computer in the visual arts”,
Spalter, 1999

Grey-level

Shear

Shape

From “The computer in the visual arts”, Spalter, 1999

From “The computer in the visual arts”, Spalter, 1999

Position and
orientation:

note that the
position travels
along a motion

path

From “The computer in the visual arts”, Spalter, 1999

Various path specifications:

perhaps by interactive process;
two issues:

 building the path
 where are the keyframes?

From “The computer in the visual arts”, Spalter, 1999

Interpolating orientation
gives greater realism.

Notice that the tangent to
the motion path gives a

great cue to the orientation
of the object.

Stop motion

• Very important traditional animation technique
• Put model in position, photograph, move, photograph,

etc. e.g. “Seven voyages of Sinbad”, “Clash of the
titans”, etc.
• Model could be

• plastic
• linkage
• clay, etc.

• Model work is still very important e.g. “Men in Black”
• Computerizing model work is increasingly important

• issue: where does configuration of computer model come from?

From “The computer Image”,Watt and Policarpo, 1998

Motion capture

• Instrument a person or
something else, perhaps by
attaching sensors

• Measure their motion
• Link variables that give their

configuration to variables that
give configuration of a
computer model

Compositing

• Overlay one image/film on
another
– variety of types of overlay

Simple overlay - spaceship
pixels replace background

pixels

From “The computer in the visual arts”, Spalter, 1999

Compositing

From “The computer in the visual arts”, Spalter, 1999

Spaceship pixels replace background pixels if
they are not white (white is “dropped out”)

Compositing

From “The computer in the visual arts”, Spalter, 1999

Spaceship pixels replace background pixels if they
are darker

Compositing

From “The computer in the visual arts”, Spalter, 1999

Light areas are more transparent - blending

Compositing

• Note that human intervention
might be required to remove
odd pixels, if the background
doesn’t have a distinctive
colour

• One can buy sets of images
which have been segmented by
hand.

From “The computer in the visual arts”, Spalter, 1999

Compositing

• Recall image relighting notes
• we want to insert an object into a scene
• we have

• background scene image is: B
• model of background scene image is: Mn
• model of object in background scene image is: Mo

• Composite by:
• at model pixels

• B+(Mo-Mn)
• at object pixels

• Mo
• at background pixels

• B

Compositing

Background image B

Background model Mn

Background model,
rendered with objects Mo,

superimposed on B

Mo-Mn
in non-object, non-
background pixels

Figures from Debevec,
Rendering Synthetic Objects

into Real Scenes:
Bridging Traditional and

Image-based Graphics with
Global Illumination

and High Dynamic Range
Photography1998

Compositing

Object mask Final composite

Figures from Debevec, Rendering Synthetic Objects into Real Scenes:
Bridging Traditional and Image-based Graphics with Global Illumination

and High Dynamic Range Photography1998

More interesting compositing problems

Figure from Shadow matting and compositing, Chuang et al 2002

Morphing

• Simple blending doesn’t work terribly well for distinct shapes
• Idea: map the one shape to the other, while blending

From “The computer Image”,
Watt and Policarpo, 1998

Morphing

•

From “On growth
and Form”, D’Arcy

Thompson

Morphing

• Another use for the
deformation encoding
shown earlier

• From “The computer Image”,
• Watt and Policarpo, 1998

Morphing

From “The computer Image”,
Watt and Policarpo, 1998

Procedural Animation

• Key idea:
• Algorithms yield motion

• Inspirations:
• insight
• physics
• simplified physics

• Easily guessed algorithm gives good results
• waves
• terrain
• l-systems (for plants)
• finite state machines (for character control)

• And the winners are particles
• because they’re easy to model
• and they don’t interact, as we shall see

A single particle under gravity

• State:
• position x, velocity v
• gravitational acceleration is a

• (all vectors)

• Motion is governed by two differential equations:

• subject to initial conditions
• x(0)=x0; v(0)=v0

dx

dt
= v

dv

dt
= a

Particle in a potential field

• Imagine there is some potential energy
• usually depends on position only
• gravity can be represented like this (remember gravitational potential?)
• write potential as:

• Now:
• the particle has mass m
• experiences force:

�(x)

�r�(x) = �

0

B@

@�

@x

@�

@y

@�

@z

1

CA

Particle in a potential field

• We get equations:

• subject to the same i.c.’s

dx

dt
= v

dv

dt
=

�r�(x)

m

Particle in a potential field

• Assume
• we know position, velocity at time: t

• want position, velocity at time:

• Have:

t+�t

xt,vt

xt+�t,vt+�t

xt+�t ⇡ xt +�tvt

vt+�t ⇡ vt ��t
r�(xt)

m

Particle in a potential field

• Previous slide is forward Euler method
• Any other method for solving ODE’s applies

• and there are lots of better methods
• which you learned in numerical analysis

Procedural Dynamics - Particle systems

• There is a source of particles
• move under gravity, sometimes collisions
• control with potential fields

• notice it is pretty straightforward to do time-varying potentials

• Example: fireworks
• particles chosen with random colour, originating randomly within a

region, fired out with random direction and lasting for a random period of
time before they expire
• or explode, generating another collection of particles,etc

• Example: water
• very large stream of particles, large enough that one doesn’t see the gap

• Example: grass
• fire particles up within a tapered cylinder, let them fall under gravity, keep

a record of the particle’s trail.

Particle Torch

Now replace particle centers with small blobs of colour in the image plane

http://www.arch.columbia.edu/manuals/Softimage/3d_learn/GUIDED/PARTICLES/p_first.htm

By John Tsiombikas from Wikipedia

By John Tsiombikas from Wikipedia

Commercial particle systems (wondertouch)

Commercial particle systems (wondertouch explosions)

Commercial particle systems (wondertouch water)

Commercial particle systems (wondertouch distortions)

Ballistic + Collision

• Objects move freely under gravity
until they collide.

• For accurate physical models,
order in which collisions occur is
important.

Collision detection

• Particles are straightforward
• -ish (geometry is easy)
• issues: undetected collisions

• strategies:
• take fixed time steps, fixup collision

• but we may not be able to tell a collision has occurred!
• potential barrier

• but this may force quite small time steps; stiffness
• backward Euler helps, but only within limits

• identify safe bounds within which to advance time, search
• use priority queue
• but this may force quite small time steps

Collision detection

• Rigid objects
• (safe bounds strategy)
• We decide that objects closer than some small distance have collided
• Problem:

• we have a geometric representation
• which faces/vertices are closer than epsilon?

• Strategy:
• prune with spatial data structures

• axis aligned bounding boxes, BSP trees, etc.
• test results exhaustively

• triangle test is easiest case

Collision detection

• Two non-intersecting triangles can be separated by a
plane
• assume they’re not coplanar

• then can look at 6 choose 3 = 20 planes obtained by choosing 3
verts

• extra work if they’re coplanar
• separating plane is normal to triangle plane

• appropriate choice of plane yields distance between triangles
• Improvement

• Gilbert-Johnson-Keerthi algorithm, using support functions
• open source version due to Stephen Cameron

• http://www.comlab.ox.ac.uk/stephen.cameron/distances/

Collision: SOA12,201 chairs;
218,568,714 triangles

Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models, ACM
Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), 2004.

Collisions - resolution

• Strategies:
• potential field
• explicit collision model

• state_out=F(state_in, physical parameters)
• typical physical parameters:

• friction, coefficient of restitution
• data driven

• match inputs to data, read off outputs

• Collisions
• produce randomness in motion
• are a mechanism to control the motion

Control via collisions

• Collisions are an important source of
randomness
• particularly in the case of sharp edges, rotation -> dice
• physical parameters typically vary over space

• Idea: modify physical parameters at collisions to
produce desired outcome
• Issues:

• extremely complex search
• requires very fast simulation

• Notice: each object can be
advanced different timesteps

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems".
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.

Making collisions more “cartoony”

• Good cartoon animators anticipate and follow through
• eg a ball hesitates and stretches before it starts moving
• squashes and overshoots when it finishes

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.jpg

Making collisions more “cartoony”

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.svg

Making collisions more “cartoony”

• and you can apply this to characters, too...

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.jpg

Automatic anticipation

• Subtract a small amount of second derivative from
motion
• works well for lots of cases
• Wang ea 2006

http://vis.berkeley.edu/papers/animfilter/

Automated anticipation

Deforming the mesh

• Apply slightly time-shifted version of the filter to
different points

• leading edge starts before trailing edge

12 principles of cartoon animation
1. Squash and stretch

 2. Anticipation

 3. Staging

 4. Straight Ahead Action and Pose to Pose

 5. Follow Through and Overlapping Action

 6. Slow In and Slow Out

 7. Arcs

 8. Secondary Action

 9. Timing

 10. Exaggeration

 11. Solid Drawing

 12. Appeal

Due originally to Frank Thomas and
Ollie Johnston, famous book “The Illusion of Life”

useful discussion at
http://www.animationtoolworks.com/library/article9.html

Secondary motion

Secondary motion

Flocking - Boids

• We’d like things to move in schools
• and not hit each other, objects
• abstraction: particle with rocket with maximum force

• 3 goals
• How to accelerate?

• each goal gives an acceleration; weighted sum
• accumulate in priority order until acceleration exceeds threshold,

• then cut back last
Alignment CohesionSeparation

http://www.red.com/cwr/boids.html

http://www.red.com/cwr/boids.html

Procedural ideas

• Easily guessed algorithm gives good results
• waves
• terrain
• l-systems (for plants)
• finite state machines (for character control)

Procedural animation

• Kinematics
• the configuration of a chain

given its state variables
• e.g. where is the end of the

arm if angles are given?
• Inverse kinematics

• the state variables that
yield the configuration

• e.g. what angles put the
end of the arm here?

From “The computer Image”,
Watt and Policarpo, 1998

Inverse Kinematics

From “The computer Image”,
Watt and Policarpo, 1998

Inverse Kinematics

From “The computer in the visual arts”, Spalter, 1999

Inverse kinematics

• Endpoint position and orientation is:

• Central Question: how do I modify the configuration variables
to move the endpoint in a particular direction?

e θ()

δe =

∂e1
∂θ1

.. ∂e1
∂θ k

..
∂e6
∂θ1

.. ∂e6
∂θ k

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

δθ = Jδθ

Inverse kinematics

• J is the Jacobian
• If rank(J) < 6, then

• some movements aren’t possible
• or more than one movement results in the same effect

• If k>6 then the chain is redundant
• more than one set of variables will lead to the same configuration

δe =

∂e1
∂θ1

.. ∂e1
∂θ k

..
∂e6
∂θ1

.. ∂e6
∂θ k

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

δθ = Jδθ

Procedural animation

• Generate animations using procedural approach
• e.g. “Slice and dice” existing animations to produce a more

complex animation
• e.g. use forward kinematics and a hierarchical model (doors

swinging in our original hierarchical model)
• e.g. construct a set of forces, etc. and allow objects to move under

their effects.
• particle models
• waves
• collision and ballistic models
• spring mass models
• control - flocking, etc.

Procedural waves

• Sum weighted sinusoids
• weights change by frequency
• weights go down as

frequency goes up

Turbulence/Perlin noise

• Many natural textures look like noise or “smoothed”
noise
• (marble, flames, clouds, terrain, etc.)

• Issue:
• obtain the right kind of smoothing

• Strategy:
• construct noise functions at a variety of scales

• do this by drawing samples from a random number generator at
different spacings

• form a weighted sum

Turbulence/Perlin noise

• Typically,
• spacing is in octaves

• number of samples at i’th level is 2^i
• weights

• w(i)=p^i
• p is persistence

• 1D turbulence yields natural head motions
• 2D turbulence yields marble, natural textures, terrains
• 3D turbulence yields animations for clouds, fog, flames

Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/ -- tool is called Terragen

Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/ -- tool is called Terragen

Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/ -- tool is called Terragen

Procedural Animation: L-systems

• Formal grammar, originally due to Lindenmayer
• {Variables, Constants, Initial state, Rules}
• Plants by:

• Constants are bits of geometry,
• rules appropriately chosen Figure from wikipedia entry

L-Systems

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

L-Systems

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

L-System plant growing

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

Flowers at side branches

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

Flowers at the apex

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html

Finite state machines

• FSM
• set of states

• special start, end state
• input vocabulary
• transition function

• state change on receiving input

Slides after slides by Jarret Raim, LeHigh

Map to character

• AI modelled as a set of
mental states

• State=desired behaviour
mode

• Events trigger transition
• Input to the FSM continues

as long as the game
continues.

Gather
Treasure Flee

Fight

Monster In Sight

No Monster
Monster Dead Cornered

FSM Authoring

FSM Authoring

• Original FSM doesn’t
• remember previous state
• so attack doesn’t know if

it was triggered from
patrol or inspect (sound
heard?)

• Could add a state
• but this gets messy

Hierarchy

• Each state is an FSM
• Some events move within a level, some trigger a

transition at higher levels
• When we enter a state, we need an initial state for that

FSM
• Default
• Random
• Depends on behaviour, etc.

• This is all just a (much bigger) FSM, but easier to author

Hierarchy

Non-determinism

• Randomness easy to add,
makes behaviour richer

Programming issues

• Typically work in a scripting language
• Game engine, environment deal with details
• e.g. events by polling? register/dispatch?

• Debugging
• hard in rich environments
• hard with multiple interacting state machines

