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Animation

• Persistence of vision:
• The visual system smoothes in time.  This means that images presented to 

the eye are perceived by the visual system for a short time after they are 
presented.  In turn, this means that if images are shown at the right rate 
(about 20-30 Hz will do it), the next image replaces the last one without 
any perceived blank space between them.

• Visual closure:
• a sequence of still images is seen as a motion sequence if they are shown 

quickly enough - i.e. smooth motion between positions is inferred



Keyframing

From “It’s a magical world”, Watterson, 1996



Result



Basic techniques

• Keyframing:
• generate frames by drawings, interpolate between drawings

• Stop motion:
• put model in position, photograph, move, photograph, etc.  

• Compositing:
• generate frames as mixtures of video sequences

• Morphing:
• mix video sequences while modifying shapes

• Procedural animation:
• use some form of procedural description to move object



Keyframing - issues

• Generating frames by hand is a 
huge burden  -- 1hr of film is 
3600x24 frames

• Skilled artists generate key 
frames, inbetweeners generate 
inbetween frames

• Changes are hideously 
expensive

• Natural interpolation problem -- 
interpolate various variables 
describing position, orientation, 
configuration of objects

From “The computer in the visual arts”, Spalter, 1999



Linear interpolation

From “The computer in the visual arts”, Spalter, 1999



More complex interpolation

From “The computer in the visual arts”, Spalter, 1999



Modify the parameter, too

From “The computer in the visual arts”, Spalter, 1999

A use for parameter continuous interpolates here.
Notice that we don’t necessarily need a physical ball.



A variety of variables can be interpolated

Position

Position and orientation

Position and scale

From “The computer in the visual arts”, 
Spalter, 1999



Grey-level

Shear

Shape

From “The computer in the visual arts”, Spalter, 1999



From “The computer in the visual arts”, Spalter, 1999

Position and
orientation:

note that the 
position travels
along a motion

path



From “The computer in the visual arts”, Spalter, 1999

Various path specifications:

perhaps by interactive process;
two issues: 

    building the path
    where are the keyframes?



From “The computer in the visual arts”, Spalter, 1999

Interpolating orientation 
gives greater realism. 

Notice that the tangent to
the motion path gives a

great cue to the orientation
of the object.



Stop motion

• Very important traditional animation technique
• Put model in position, photograph, move, photograph, 

etc.  e.g. “Seven voyages of Sinbad”, “Clash of the 
titans”, etc.
• Model could be 

• plastic
• linkage
• clay, etc.

• Model work is still very important e.g. “Men in Black”
• Computerizing model work is increasingly important

• issue: where does configuration of computer model come from?



From “The computer Image”,Watt and Policarpo, 1998



Motion capture

• Instrument a person or 
something else, perhaps by 
attaching sensors

• Measure their motion
• Link variables that give their 

configuration to variables that 
give configuration of a 
computer model









Compositing

• Overlay one image/film on 
another
– variety of types of overlay

Simple overlay  - spaceship
pixels replace background

pixels

From “The computer in the visual arts”, Spalter, 1999



Compositing

From “The computer in the visual arts”, Spalter, 1999

Spaceship pixels replace background pixels if
they are not white (white is “dropped out”)



Compositing

From “The computer in the visual arts”, Spalter, 1999

Spaceship pixels replace background pixels if they
are darker



Compositing

From “The computer in the visual arts”, Spalter, 1999

Light areas are more transparent - blending



Compositing

• Note that human intervention 
might be required to remove 
odd pixels, if the background 
doesn’t have a distinctive 
colour

• One can buy sets of images 
which have been segmented by 
hand.

From “The computer in the visual arts”, Spalter, 1999



Compositing

• Recall image relighting notes
• we want to insert an object into a scene
• we have

• background scene                                  image is:  B
• model of background scene                   image is:  Mn
• model of object in background scene    image is:  Mo

• Composite by:
• at model pixels

• B+(Mo-Mn)
• at object pixels

• Mo
• at background pixels

• B



Compositing

Background image  B

Background model  Mn

Background model,
rendered with objects  Mo,

superimposed on B

Mo-Mn
in non-object, non-
background pixels

Figures from Debevec, 
Rendering Synthetic Objects 

into Real Scenes:
Bridging Traditional and 

Image-based Graphics with 
Global Illumination

and High Dynamic Range 
Photography1998



Compositing

Object mask Final composite

Figures from Debevec, Rendering Synthetic Objects into Real Scenes:
Bridging Traditional and Image-based Graphics with Global Illumination

and High Dynamic Range Photography1998



More interesting compositing problems

Figure from Shadow matting and compositing, Chuang et al 2002



Morphing

• Simple blending doesn’t work terribly well for distinct shapes
• Idea: map the one shape to the other, while blending

From “The computer Image”,
Watt and Policarpo, 1998



Morphing

•  

From “On growth
and Form”, D’Arcy

Thompson



Morphing

• Another use for the 
deformation encoding 
shown earlier

• From “The computer Image”,
• Watt and Policarpo, 1998



Morphing

From “The computer Image”,
Watt and Policarpo, 1998



Procedural Animation

• Key idea:  
• Algorithms yield motion

• Inspirations:
• insight
• physics
• simplified physics

• Easily guessed algorithm gives good results
• waves
• terrain
• l-systems (for plants)
• finite state machines (for character control)

• And the winners are particles
• because they’re easy to model
• and they don’t interact, as we shall see



A single particle under gravity

• State:
• position x, velocity v
• gravitational acceleration is a

• (all vectors)

• Motion is governed by two differential equations:

• subject to initial conditions
• x(0)=x0; v(0)=v0

dx

dt
= v

dv

dt
= a



Particle in a potential field

• Imagine there is some potential energy 
• usually depends on position only
• gravity can be represented like this (remember gravitational potential?)
• write potential as:

• Now:
• the particle has mass m
• experiences force:
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Particle in a potential field

• We get equations:

• subject to the same i.c.’s

dx

dt
= v

dv

dt
=

�r�(x)

m



Particle in a potential field

• Assume 
• we know position, velocity at time:  t

• want position, velocity at time:  

• Have:

t+�t

xt,vt

xt+�t,vt+�t

xt+�t ⇡ xt +�tvt

vt+�t ⇡ vt ��t
r�(xt)

m



Particle in a potential field

• Previous slide is forward Euler method
• Any other method for solving ODE’s applies

• and there are lots of better methods
• which you learned in numerical analysis



Procedural Dynamics - Particle systems

• There is a source of particles 
• move under gravity, sometimes collisions
• control with potential fields

• notice it is pretty straightforward to do time-varying potentials

• Example: fireworks
• particles chosen with random colour, originating randomly within a 

region, fired out with random direction and lasting for a random period of 
time before they expire
• or explode, generating another collection of particles,etc

• Example: water
• very large stream of particles, large enough that one doesn’t see the gap

• Example: grass
• fire particles up within a tapered cylinder, let them fall under gravity, keep 

a record of the particle’s trail.



Particle Torch

Now replace particle centers with small blobs of colour in the image plane

http://www.arch.columbia.edu/manuals/Softimage/3d_learn/GUIDED/PARTICLES/p_first.htm



By John Tsiombikas from Wikipedia



By John Tsiombikas from Wikipedia



Commercial particle systems (wondertouch)



Commercial particle systems (wondertouch explosions)



Commercial particle systems (wondertouch water)



Commercial particle systems (wondertouch distortions)



Ballistic + Collision

• Objects move freely under gravity 
until they collide.

• For accurate physical models, 
order in which collisions occur is 
important.



Collision detection

• Particles are straightforward
• -ish (geometry is easy)
• issues: undetected collisions

• strategies: 
• take fixed time steps, fixup collision

• but we may not be able to tell a collision has occurred!
• potential barrier

• but this may force quite small time steps; stiffness
• backward Euler helps, but only within limits

• identify safe bounds within which to advance time, search
• use priority queue
• but this may force quite small time steps



Collision detection

• Rigid objects
• (safe bounds strategy)
• We decide that objects closer than some small distance have collided
• Problem: 

• we have a geometric representation
• which faces/vertices are closer than epsilon?

• Strategy:
• prune with spatial data structures

• axis aligned bounding boxes, BSP trees, etc.
• test results exhaustively

• triangle test is easiest case



Collision detection

• Two non-intersecting triangles can be separated by a 
plane
• assume they’re not coplanar

• then can look at 6 choose 3 = 20  planes obtained by choosing 3 
verts

• extra work if they’re coplanar
• separating plane is normal to triangle plane

• appropriate choice of plane yields distance between triangles
• Improvement

• Gilbert-Johnson-Keerthi algorithm, using support functions
• open source version due to Stephen Cameron

• http://www.comlab.ox.ac.uk/stephen.cameron/distances/



Collision:  SOA12,201 chairs;  
218,568,714 triangles

Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models, ACM 
Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), 2004. 



Collisions - resolution

• Strategies:
• potential field
• explicit collision model

• state_out=F(state_in, physical parameters)
• typical physical parameters:

• friction, coefficient of restitution
• data driven

• match inputs to data, read off outputs

• Collisions
• produce randomness in motion
• are a mechanism to control the motion



Control via collisions

• Collisions are an important source of 
randomness
• particularly in the case of sharp edges, rotation -> dice
• physical parameters typically vary over space

• Idea: modify physical parameters at collisions to 
produce desired outcome
• Issues: 

• extremely complex search
• requires very fast simulation

• Notice: each object can be 
advanced different timesteps

Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Stephen Chenney and D.A.Forsyth, "Sampling Plausible Solutions to Multi-Body Constraint Problems". 
SIGGRAPH 2000 Conference Proceedings, pages 219-228, July 2000.



Making collisions more “cartoony”

• Good cartoon animators anticipate and follow through
• eg a ball hesitates and stretches before it starts moving
• squashes and overshoots when it finishes

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.jpg



Making collisions more “cartoony”

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.svg



Making collisions more “cartoony”

• and you can apply this to characters, too...

http://en.wikipedia.org/wiki/File:Squash_and_Stretch.jpg



Automatic anticipation

• Subtract a small amount of second derivative from 
motion
• works well for lots of cases
• Wang ea 2006

http://vis.berkeley.edu/papers/animfilter/



Automated anticipation



Deforming the mesh

• Apply slightly time-shifted version of the filter to 
different points

• leading edge starts before trailing edge







12 principles of cartoon animation
1. Squash and stretch

  2. Anticipation

  3. Staging

  4. Straight Ahead Action and Pose to Pose

  5. Follow Through and Overlapping Action

  6. Slow In and Slow Out

  7. Arcs

  8. Secondary Action

  9. Timing

  10. Exaggeration

  11. Solid Drawing

  12. Appeal

Due originally to Frank Thomas and
Ollie Johnston, famous book “The Illusion of Life”

useful discussion at
http://www.animationtoolworks.com/library/article9.html



Secondary motion 



Secondary motion



Flocking - Boids

• We’d like things to move in schools
• and not hit each other, objects
• abstraction: particle with rocket with maximum force

• 3 goals
• How to accelerate?

• each goal gives an acceleration; weighted sum
• accumulate in priority order until acceleration exceeds threshold, 

• then cut back last
Alignment CohesionSeparation



http://www.red.com/cwr/boids.html



http://www.red.com/cwr/boids.html



Procedural ideas

• Easily guessed algorithm gives good results
• waves
• terrain
• l-systems (for plants)
• finite state machines (for character control)



Procedural animation

• Kinematics
• the configuration of a chain 

given its state variables
• e.g. where is the end of the 

arm if angles are given?
• Inverse kinematics

• the state variables that 
yield the configuration

• e.g. what angles put the 
end of the arm here?

From “The computer Image”,
Watt and Policarpo, 1998



Inverse Kinematics

From “The computer Image”,
Watt and Policarpo, 1998



Inverse Kinematics

From “The computer in the visual arts”, Spalter, 1999



Inverse kinematics

• Endpoint position and orientation is:

• Central Question:  how do I modify the configuration variables 
to move the endpoint in a particular direction?
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Inverse kinematics

• J is the Jacobian
• If rank(J) < 6, then

•  some movements aren’t possible
• or more than one movement results in the same effect

• If k>6 then the chain is redundant
• more than one set of variables will lead to the same configuration
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Procedural animation

• Generate animations using procedural approach
• e.g. “Slice and dice” existing animations to produce a more 

complex animation
• e.g. use forward kinematics and a hierarchical model (doors 

swinging in our original hierarchical model)
• e.g. construct a set of forces, etc. and allow objects to move under 

their effects.
• particle models
• waves
• collision and ballistic models
• spring mass models
• control - flocking, etc.



Procedural waves

• Sum weighted sinusoids
• weights change by frequency
• weights go down as 

frequency goes up



Turbulence/Perlin noise

• Many natural textures look like noise or “smoothed” 
noise
• (marble, flames, clouds, terrain, etc.)

• Issue: 
• obtain the right kind of smoothing

• Strategy:
• construct noise functions at a variety of scales 

• do this by drawing samples from a random number generator at 
different spacings

• form a weighted sum



Turbulence/Perlin noise

• Typically, 
• spacing is in octaves 

• number of samples at i’th level is 2^i
• weights 

• w(i)=p^i
• p is persistence

• 1D turbulence yields natural head motions
• 2D turbulence yields marble, natural textures, terrains
• 3D turbulence yields animations for clouds, fog, flames













Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/   -- tool is called Terragen



Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/   -- tool is called Terragen



Terrain, clouds generated using procedural textures and Perlin noise
http://www.planetside.co.uk/   -- tool is called Terragen



Procedural Animation: L-systems

• Formal grammar, originally due to Lindenmayer
• {Variables, Constants, Initial state, Rules}
• Plants by:

• Constants are bits of geometry,
• rules appropriately chosen Figure from wikipedia entry



L-Systems

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



L-Systems

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



L-System plant growing

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



Flowers at side branches

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



Flowers at the apex

Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



Prusinkiewicz, Hammel, Mech http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html



Finite state machines

• FSM
• set of states

• special start, end state
• input vocabulary
• transition function

• state change on receiving input

Slides after slides by Jarret Raim, LeHigh



Map to character

• AI modelled as a set of 
mental states

• State=desired behaviour 
mode

• Events trigger transition
• Input to the FSM continues 

as long as the game 
continues.

Gather 
Treasure Flee

Fight

Monster In Sight

No Monster
Monster Dead Cornered



FSM Authoring



FSM Authoring

• Original FSM doesn’t
• remember previous state
• so attack doesn’t know if 

it was triggered from 
patrol or inspect (sound 
heard?)

• Could add a state
• but this gets messy



Hierarchy

• Each state is an FSM
• Some events move within a level, some trigger a 

transition at higher levels
• When we enter a state, we need an initial state for that 

FSM
• Default
• Random
• Depends on behaviour, etc.

• This is all just a (much bigger) FSM, but easier to author



Hierarchy



Non-determinism

• Randomness easy to add, 
makes behaviour richer



Programming issues

• Typically work in a scripting language
• Game engine, environment deal with details
• e.g. events by polling? register/dispatch?

• Debugging
• hard in rich environments
• hard with multiple interacting state machines


