
Some Potential/Force 
Fields for Particle 

Systems

D.A. Forsyth, largely lifted from Steve Rotenberg



Independent particles

• Force on particle does not depend on other particles
• Attractive for obvious reasons

• Simple gravity
• Drag
• Attractors/repellors



Uniform Gravity

 A very simple, useful force is the uniform gravity field:

 It assumes that we are near the surface of a planet with a 
huge enough mass that we can treat it as infinite

 As we don’t apply any equal and opposite forces to 
anything, it appears that we are breaking Newton’s third 
law, however we can assume that we are exchanging 
forces with the infinite mass, but having no relevant affect 
on it



Aerodynamic Drag
 Aerodynamic interactions are actually very complex and 

difficult to model accurately
 A reasonable simplification it to describe the total 

aerodynamic drag force on an object using:

 Where ρ is the density of the air (or water…), cd is the 
coefficient of drag for the object, a is the cross sectional 
area of the object, and e is a unit vector in the opposite 
direction of the velocity



Aerodynamic Drag
 Like gravity, the aerodynamic drag force appears to 

violate Newton’s Third Law, as we are applying a 
force to a particle but no equal and opposite force 
to anything else

 We can justify this by saying that the particle is 
actually applying a force onto the surrounding air, 
but we will assume that the resulting motion is just 
damped out by the viscosity of the air



Force Fields
 We can also define any arbitrary force field that we want. 

For example, we might choose a force field where the 
force is some function of the position within the field

 We can also do things like defining the velocity of the air 
by some similar field equation and then using the 
aerodynamic drag force to compute a final force

 Using this approach, one can define useful turbulence 
fields, vortices, and other flow patterns



Dependent particles

• Force on particle DOES depend on other particles
• computation is nasty
• many improvements to simulation

• Gravity
• Spring Mass



Gravity
 If we are far away enough from the objects such 

that the inverse square law of gravity is noticeable, 
we can use Newton’s Law of Gravitation:



Gravity
 The law describes an equal and opposite force 

exchanged between two bodies, where the force is 
proportional to the product of the two masses and 
inversely proportional to their distance squared. The 
force acts in a direction e along a line from one 
particle to the other (in an attractive direction)



Gravity

The equation describes the gravitational 
force between two particles

To compute the forces in a large system of 
particles, every pair must be considered

This gives us an N2 loop over the particles
Actually, there are some tricks to speed this 

up, but we won’t look at those



Springs

A simple spring force can be described as:

Where k is a ‘spring constant’ describing the 
stiffness of the spring and x is a vector 
describing the displacement



Springs
 In practice, it’s nice to define a spring as connecting 

two particles and having some rest length l where 
the force is 0

 This gives us:



Springs
 As springs apply equal and opposite forces to two 

particles, they should obey conservation of momentum
 As it happens, the springs will also conserve energy, as 

the kinetic energy of motion can be stored in the 
deformation energy of the spring and later restored

 In practice, our simple implementation of the particle 
system will guarantee conservation of momentum, due to 
the way we formulated it

 It will not, however guarantee the conservation of energy, 
and in practice, we might see a gradual increase or 
decrease in system energy over time

 A gradual decrease of energy implies that the system 
damps out and might eventually come to rest. A gradual 
increase, however, it not so nice… (more on this later)



Dampers
 We can also use damping forces between particles:

 Dampers will oppose any difference in velocity between 
particles

 The damping forces are equal and opposite, so they 
conserve momentum, but they will remove energy from 
the system

 In real dampers, kinetic energy of motion is converted into 
complex fluid motion within the damper and then diffused 
into random molecular motion causing an increase in 
temperature. The kinetic energy is effectively lost.



Dampers
 To compute the damping force, we need to know 

the closing velocity of the two particles, or the 
speed at which they are approaching each other

 This gives us the instantaneous closing velocity of 
the two particles



Dampers
 Another way we could compute the closing velocity 

is to compare the distance between the two 
particles to their distance from last frame

 The difference is that this is a numerical 
computation of the approximate derivative, while 
the first approach was an exact analytical 
computation



Dampers
 The analytical approach is better for several 

reasons:
 Doesn’t require any extra storage
 Easier to ‘start’ the simulation (doesn’t need any data 

from last frame)
 Gives an exact result instead of an approximation

 This issue will show up periodically in physics 
simulation, but it’s not always as clear cut



This gives us a spring-mass model

• Set of masses
• Springs between them
• Dampers
• Apply forces
• Gravity
• Rest length of springs changes with time
• Pull, push, etc.
• Now integrate

• Cases
• Cloth (-ish)
• Jelly (-ish)
• Wobbly stuff



Spring mass fish

Due to Xiaoyuan Tu, http://www.dgp.toronto.edu/people/tu



Spring Mass fish 
swimming



Force Fields
 We can also define any arbitrary force field that we want. 

For example, we might choose a force field where the 
force is some function of the position within the field

 We can also do things like defining the velocity of the air 
by some similar field equation and then using the 
aerodynamic drag force to compute a final force

 Using this approach, one can define useful turbulence 
fields, vortices, and other flow patterns



Conservation of Energy

• Particles conserve energy
• in principle; our integrator might not



Collisions with potential fields

• A potential “barrier” repels
• so particles bounce off it
• ideally, without energy gain,
• BUT...

• As a consequence, “soft” barriers are great, “hard” are a 
problem
•



Collision detection

• Particles are straightforward
• -ish (geometry is easy)
• issues: undetected collisions
• strategies: 
• take fixed time steps, fixup collision
• but we may not be able to tell a collision has occurred!
• potential barrier
• but this may force quite small time steps; stiffness
• backward Euler helps, but only within limits
• identify safe bounds within which to advance time, search
• use priority queue
• but this may force quite small time steps



Explicit collisions

• Advance particles in time
• Find collisions
• Resolve using Impulse



Impulses



Collisions & Impulse
 A collision is assumed to be instantaneous
 However, for a force to change an object’s 

momentum, it must operate over some time interval
 Therefore, we can’t use actual forces to do 

collisions
 Instead, we introduce the concept of an impulse, 

which can be though of as a large force acting over 
a small time



Impulse
 An impulse can be thought of as the integral of a force 

over some time range, which results in a finite change in 
momentum:

 An impulse behaves a lot like a force, except instead of 
affecting an object’s acceleration, it directly affects the 
velocity

 Impulses also obey Newton’s Third Law, and so objects 
can exchange equal and opposite impulses

 Also, like forces, we can compute a total impulse as the 
sum of several individual impulses



Impulse
 The addition of impulses makes a slight modification to 

our particle simulation:



Collisions

Today, we will just consider the simple case 
of a particle colliding with a static object

The particle has a velocity of v before the 
collision and collides with the surface with a 
unit normal n

We want to find the collision impulse j 
applied to the particle during the collision



Elasticity
 There are a lot of physical theories behind collisions
 We will stick to some simplifications
 We will define a quantity called elasticity that will 

range from 0 to 1, that describes the energy 
restored in the collision

 An elasticity of 0 indicates that the closing velocity 
after the collision is 0

 An elasticity of 1 indicates that the closing velocity 
after the collision is the exact opposite of the 
closing velocity before the collision



Collisions
 Let’s first consider a collision with no friction
 The collision impulse will be perpendicular to the 

collision plane (i.e., along the normal)

 That’s actually enough for collisions today. We will 
spend a whole lecture on them next week.



Combining Forces
 All of the forces we’ve examined can be combined 

by simply adding their contributions
 Remember that the total force on a particle is just 

the sum of all of the individual forces
 Each frame, we compute all of the forces in the 

system at the current instant, based on 
instantaneous information (or numerical 
approximations if necessary)

 We then integrate things forward by some finite time 
step



Systems



Particle Systems
 In computer animation, particle systems can be 

used for a wide variety of purposes, and so the 
rules governing their behavior may vary

 A good understanding of physics is a great place to 
start, but we shouldn’t always limit ourselves to 
following them strictly

 In addition to the physics of particle motion, several 
other issues should be considered when one uses 
particle systems in computer animation



Particles

 In physics, a basic particle is defined by it’s 
position, velocity, and mass

 In computer animation, we may want to add 
various other properties:
Color
Size
Life span
Anything else we want…



Creation & Destruction
 The example system we showed at the beginning 

had a fixed number of particles
 In practice, we want to be able to create and 

destroy particles on the fly
 Often times, we have a particle system that 

generates new particles at some rate
 The new particles are given initial properties 

according to some creation rule
 Particles then exist for a finite length of time until 

they are destroyed (based on some other rule)



Creation & Destruction
 This means that we need an efficient way of handling a 

variable number of particles
 For a realtime system, it’s usually a good idea to allocate 

a fixed maximum number of particles in an array, and then 
use a subset of those as active particles

 When a new particle is created, it uses a slot at the end of 
the array (cost: 1 integer increment)

 When a particle is destroyed, the last particle in the array 
is copied into its place (cost: 1 integer decrement & 1 
particle copy)

 For a high quality animation system where we’re not as 
concerned about performance, we could just use a big list 
or variable sized array



Creation Rules
 It’s convenient to have a ‘CreationRule’ as an 

explicit class that contains information about how 
new particles are initialized

 This way, different creation rules can be used within 
the same particle system

 The creation rule would normally contain 
information about initial positions, velocities, colors, 
sizes, etc., and the variance on those properties

 A simple way to do creation rules is to store two 
particles: mean & variance (or min & max)



Creation Rules
 In addition to mean and variance properties, there 

may be a need to specify some geometry about the 
particle source

 For example, we could create particles at various 
points (defined by an array of points), or along lines, 
or even off of triangles

 One useful effect is to create particles at a random 
location on a triangle and give them an initial 
velocity in the direction of the normal. With this 
technique, we can emit particles off of geometric 
objects



Destruction
 Particles can be destroyed according to various rules
 A simple rule is to assign a limited life span to each 

particle (usually, the life span is assigned when the 
particle is created)

 Each frame, it’s life span decreases until it gets to 0, then 
the particle is destroyed

 One can add any other rules as well
 Sometimes, we can create new particles where an old 

one is destroyed. The new particles can start with the 
position & velocity of the old one, but then can add some 
variance to the velocity. This is useful for doing fireworks 
effects…



Randomness

An important part of making particle systems 
look good is the use of randomness

Giving particle properties a good initial 
random distribution can be very effective

Properties can be initialized using uniform 
distributions, Gaussian distributions, or any 
other function desired



Particle Rendering
 Particles can be rendered using various techniques

 Points
 Lines (from last position to current position)
 Sprites (textured quad’s facing the camera)
 Geometry (small objects…)
 Or other approaches…

 For the particle physics, we are assuming that a 
particle has position but no orientation. However, for 
rendering purposes, we could keep track of a 
simple orientation and even add some rotating 
motion, etc…


