
Ray Tracing in Earnest
D.A. Forsyth

(using material from John Hart and others)

Issues

• Intersection with complicated models
• Accurate intersection
• Efficient intersection
• Improved rendering
• anti aliasing (= more rays)
• motion blur (= more rays)
• more complex illumination phenomena (= more rays, caching)

Reminder: Scene Graphs

• Hierarchical representation of all
objects in scene
• familiar from raster graphics, etc

Scale 2,2,2
Xlate 2,0,0

Xlate 2,2,0
Scale .5,1,.5

Xlate -2,0,0 Xlate 2,0,0

Geometric Primitives

• Primitives we can deal with
• half-space (because we can do plane intersection)
• sphere (because we can do sphere intersection)
• cylinder (easy generalization of sphere)
• convex polyhedron (easy generalization of half-space)

• Others will come as we learn more intersection techniques

Reminder: Scene Graphs

• Hierarchical representation of all
objects in scene
• familiar from raster graphics, etc

• Transformation nodes now:
• Intersect children with ray
• transform ray to child’s frame
• i.e. inverted from usual
• Returned normal must be in world frame
• i.e. transpose(inverse(T))
• Maintain inverse(T)

Scale 2,2,2
Xlate 2,0,0

Xlate 2,2,0
Scale .5,1,.5

Xlate -2,0,0 Xlate 2,0,0

Reminder: Instancing

• Scene graph is a hierarchy
• Not necessarily a tree
• Directed acyclic graph (DAG)
• Nodes may have multiple

parents
• Instance
• Appearance of each node’s geometry

in scene

Scale 2,2,2
Xlate 2,0,0

Xlate -1,0,0 Xlate 1,0,0

Scale .5,1,.5

Xlate 2,2,0

Fun with instancing

Image
courtesy
John
Amanatides

CSG

• Constructive Solid Geometry
• objects are boolean combinations of

primitive volumes
• union, intersection, difference
• usually regularized

A

B

A∪B A∩B A–B

B–A

Geometric Primitives

• Primitives we can deal with
• half-space (because we can do plane intersection)
• sphere (because we can do sphere intersection)
• cylinder (easy generalization of sphere)
• convex polyhedron (easy generalization of half-space)

• Others will come as we learn more intersection techniques

Raytracing CSG

• Represent all intersections in a
hit record
• list

• If we know where focal point
is (in/out), parity classifies all
others

in

out

in

out

in
out

in

out

Raytracing CSG

• List of t-values for A, B w/in-out
classification
• A.t_list = {0.9, 3.1} = {0.9in, 3.1out}
• B.t_list = {2.5, 4.5} = {2.5in, 4.5out}
• Use dot(r.d,n) to determine in,out

• Merge both lists into a single t-
ordered list
• 	

 	

 	

 {	

 0.9	

Ain	

 Bout,
	

 	

 	

 2.5	

Ain	

 Bin,
	

 	

 	

 3.1	

Aout	

 Bin,
	

 	

 	

 4.5	

Aout	

 Bout }
• Keep track of A and B in/out

classification

• Use Roth table to classify t-values

Roth Table

Op A B Res
+ in in in
 in out in
 out in in
 out out out
* in in in
 in out out
 out in out
 out out out
– in in out
 in out in
 out in out
 out out out

A B
A.t0 A.t1B.t0 B.t1

0.9 2.5 3.1 4.5

• Primitives can produce non-volumes
• e.g. A intersect B in pic gives line

Regularizing CSG

A B

A �� B = closure (interior(A) � interior(B))

There’s a general phenomenon here

• Points that lie on top of one another
• but we may not be able to tell

• Our t-values aren’t precisely correct
• numerical representations aren’t precise
• could be for polynomial surfaces, but this is not worth the effort

• This means
• intersections aren’t precisely where we think they are
• eg shadow ray eczema

• Tolerable solution
• regard points that are “very close” as the same point
• cures shadow ray eczema by ignoring surface as blocker
• can be used to cure previous problem

• Primitives can produce non-volumes
• e.g. A intersect B in pic gives line

• Regularize
• eg

• equivalently
• require Bin to occur some small distance before Aout to get hit

Regularizing CSG
A B

This makes the line go away. (ex: how do you regularize union, difference?)

A \⇤ B = closure (interior(A) \ interior(B))

• Surface is:

• points in vector form:

• ray is:

• intersections are:
• and are obtained by root finding

Implicit Surfaces

f(x, y, z) = 0

f(x) = 0

a + tv

f(a + tv) = 0

Accurate Intersection: Computing roots

• Options: numerical root finding
• Interval halving
• Newton’s method with deflation
• Bracketing with Sturm sequence

Interval halving

• Assume we have two points on ray
• perhaps generated by some form of spatial subdivision scheme
• one on positive side, one on negative side of intersection

• Split the interval in half
• One half has the root (+-)
• Other doesn’t (++, --)

• Keep the one that does, and go again if it is too big

Newton’s method

• Estimate is:

• Observe that:

• so update is:

•

tn

f(tn + �t) = f(tn) + �t
df

dt
= 0

�t = �f(tn)�
df
dt

⇥

Practicalities

• Deflation: if you have found a root, divide the polynomial
by (t-root) to reduce degree
• Newton’s method can behave badly
• start in a good place
• e.g. root from previous ray with this object

• Newton’s method not efficient for shadow rays
• Newton’s method doesn’t guarantee closest root

Sturm sequences

• Build a sequence of polynomials

• (where rem stands for remainder; f should not have repeated roots)

p0(t) = f(t)
p1(t) = df

dt
. . .

pk(t) = �rem(pk�2, pk�1)
. . .
pm

0

• write for the number of sign changes in

• then for a<b, number of real roots in (a, b] is

Sturm sequences

⇥(�)

(p0(�), p1(�), p2(�), ..., pm(�))

�(a)� �(b)

Can bracket root using interval halving, use for shadow rays

Sturm sequences: example

p0 = t3 + 3t2 � 1
p1 = 3t2 + 6t so p0 = (t/3)p1 + (1/3)p1 � 2t� 1
p2 = 2t + 1

p3 = constant

Ex: how many roots in 0-1 interval?
 how many roots in 0 - infinity interval?

find root in 0-1 interval

-9/4

Making Ray Tracing Faster

• Coherence
• Image coherence: rays through

nearby pixels go through nearby
things
• Spatial coherence: similar rays go

through similar things
• Temporal coherence: the same ray

at the next time goes through
similar things

Stanford Bunny
~70K triangles

Do we need 70K ray-triangle
intersections for each ray?

Item buffer

• Use conventional z-buffer renderer to render surfaces
• shade with pointer, not illumination
• this gives pointer to closest surface
• not much used now (ex: why?)

Shadow Caching

• Any interloper between surface
point x and the light source s will
cast a shadow
• Doesn’t matter how many
• Doesn’t matter which is closest
• Stop ray intersections once any

intersection found

• Neighboring shadowed surface
points x and x’ probably
shadowed by the same object
• Start shadow ray intersection search with

object intersected in last shadow search

x x’

A

B

C

s

Bounding Volume

• Ray-bunny intersection takes 70K
ray-triangle intersections even if
ray misses the bunny
• Place a sphere around bunny
• Ray A misses sphere so ray A misses

bunny without checking 70K ray-triangle
intersections
• Ray B intersects sphere but still misses

bunny after checking 70K intersections
• Ray C intersects sphere and intersects

bunny

• Can also use axis-aligned
bounding box
• Easier to create for triangle mesh

A

B
C

Bounding Volume Hierarchy

• Associate bounding volume with each node of scene graph
• If ray misses a node’s bounding volume, then no need to

check any node beneath it
• If ray hits a node’s BV, then replace it with its children’s

BV’s (or geometry)
• Breadth first search of tree
• Maintain heap ordered by ray-BV intersection t-values
• Explore children of node

w/least pos. ray-BV t-value

A

B
C

Bunny BV

Body BVHead BV

L.EarFace R.EarBV BV BV

Grids

• Encase object in a 3-D grid of cubes
• each has list of all triangles it intersects

• Rasterize ray to find which cells it
intersects
• 3D Bresenham algorithm
• All cells that contain any part of ray

• Working from first ray-cell to last…
• Find least positive intersect of ray with triangles in

cell’s list
• If no intersection, move on to next cell

• Ray-object intersection test
valid for ray with entire object
• not just portion of object

inside current cell
• Need only intersect object

once for each ray
• Tags

• does not intersect
• intersection at ...

Tagging

#1

#2A

C

B

r
D

K-D trees

• Put bounding box around all objects
• split with coordinate plane (x, y, or z) into two boxes
• distribute objects into boxes
• split each child box recursively until stop

• Questions:
• how do we compute intersections?
• easy
• pass ray into children it intersects
• intersect with objects in leaf nodes

• what is a good split?
• how should we stop splitting?

K-D trees - what is a good split?

• Keep track of intersection costs
• cheap to intersect with nearly empty boxes
• expensive to intersect with a box with lots of stuff
• expensive to look at many small boxes

• Cost of split=
• Cost of traversal+Cost Left Intersect +Cost Right Intersect

• Need a model for intersect costs

• Intersect cost model:
• Each box contains voxels on some fine grid
• Filled voxels might be convex
• If they were, probability of intersection would be ratio of surface areas

K-D trees - what is a good split?

Expected cost of ray entering box =
Sy

Sx
Base cost of intersection

K-D trees - what is a good split?

• Expected cost of split =
• expected cost of LHS box+
• expected cost of RHS box+
• cost of traversal

• Notice expression does not depend on probability ray
visits parent

K-D trees

• Splits occur only on planes that bound filled voxels
• Search all splits for lowest cost, using model
• Stopping
• fixed depth
• threshold number of objects per voxel
• both
• adaptive (i.e. make cost estimate for each leaf, split of each leaf)

http://www.flipcode.com/archives/Raytracing_Topics_Techniques-Part_7_Kd-
Trees_and_More_Speed.shtml

