

Texture scandals

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many limes.

This section
shows a
sampling

of the
duplication
of soldiers.

Original photograph

What is Texture?

(LT~ § .-

Texture spectrum

caused by geometry or color

content,

scale,

)

Diversity: color

“,

\ A_

‘4

__.

.‘

*

_

‘'

*

)y
,,,._f

4

o P

ﬁ

(s

Nokutn

5 2
N ,.&‘nn..i
(ps527
_

pode R4

W-‘.v‘\l ol

Randomness

Regularity

How textures differ from objects

. Texture -

(a) (b)
| . —
N B

(al) (a2) (b1) (b2)

e Stationary: similar views as window moves around in (b), because the
statistical distribution is spatially invariant.

* Locality: each pixel in (b) is only related to a small set of neighbors.

[Wei & Levoy SIGGRAPHZ2000]

Texture synthesis

Input

Two crucial algorithmic points

* Nearest neighbor search

* Dynamic programming

Algorithm |: NN + sampling

* How to determine a unknown pixel value?
— Ask neighbors (locality)

* Find pixels with similar neighbors in the input, and then randomly take
one

[Efros & Leung ICCV99]

NN patch match

Find a few pixels with similar neighbors

: Seak

[Efros & Leung ICCV99]

Randomly Sample

* Find a few pixels with similar neighbors
 Randomly take one matched pixel

. [=
sampling -
p\

Input image

[Efros & Leung ICCV99]

The steps in a single iteration

An unknown pixel Ask neighbors

Nearest neighbor

Randomly take one
match

[Efros & Leung ICCV99]

Algorithm

1. Grow from the border of an input texture

2. For each unknown pixel p on the boundary

3 Gather the neighborhood centered at p: N(p)

4. Find patches N(p’) from input: d(N(p), N(p’)) < (14+€e)d(N{p),Npest)
5 Randomly take a p’ tofill inp

\epsilon =0.1

[Efros & Leung ICCV99]

Discussion

VAW N e

. Grow from the border of an input texture

. For each unknown pixel p on the boundary

Gather the neighborhood centered at p: N(p)

Find patches N(p’) from input: d(N(p), N(p’)) < (14+€e)d(N{p),Npest)
Randomly take a p’ tofill inp

\epsilon =0.1

How does the choice of \epsilon effect the result?
» Not much, some algorithm even set it to O.

Other than random sample?
» Use the distance to bias the sampling, favor better matches

[Efros & Leung ICCV99]

Discussion (2)

VAW N e

. Grow from the border of an input texture
. For each unknown pixel p on the boundary
Gather the neighborhood centered at p: N(p)

Randomly take a p’ tofill inp

Find patches N(p’) from input: d(N(p), N(p’)) < (1+e)d(N{p),Npest)

Distance metric
Window size

Order to synthesize

[Efros & Leung ICCV99]

\epsilon =0.1

Patch distance metric

* Normalized sum of squared difference r 1

e Further neighbors take less weight
— G@Gaussian mask
— Preserve local structure h ‘

[Efros & Leung ICCV99]

1ZE

indow Si

W

Effect of window size on the results

[Efros & Leung ICCV99]

Window Size

Control the degree of randomness

A

Increasing window size

>

” A Al
L
VIRV iy

7 "/"""'/.-—’.Z" 7

[Efros & Leung ICCV99]

The order matters

[Efros & Leung ICCV99]

Some results

[Efros & Leung ICCV99]

More results

ut it becornes harder to lau
wound itself, at “this daily
ving roorns,” as House Der
rscribed it last fall. He fail
athe lefta ringing questiol
wze years of Monica Lewic
inda Tripp?" That now seec
?olitical cornedian Al Frar
1t phase of the story will

LK AULLLAL LU TL L4 LULLDL T19KELL, 4L UL Ud LEW JLUE
1t nda trears coune Tring roorns,” as Heft he fastnd it
115 dat noears cortseas ribed it last ot hestbedian A1 1
econical Homd ith Al. Heft axs ¢ as da Lewindailf]
lian A1Ths " as Lewing questies last aticarsticall. He
is dian A1 last fal counda Lew, at "this dailyears d ily
wdianicall. Hoorewing roorns,” as House De fale f De
und itical couneestscribed it last fall. He fall. Hefft
15 oroheoned it nd it he left a vinging questica Lewin.
icars coecorns,” astore years of Monica Lewinow seee
a Thas Fring roorme stooniscat nowea xe left a roouse

bouestof Mie lelft a Lést fast ngine lavnesticars Hef
witrip? Trouself, a ringind itfonestid.it a xing que:
.astical cods oxe years of Moung fall. He ribof Mouse
yze years ofanda Tripp?” That hedian Al Lest fasee yea
ada Tripp? dolitical cornedian Alét he 29 5¢ 1ing que
olitical cons re years of the storears ofas 1 Fratnica L
ras Lew se lesta ricae 1 He fas quest nging of, at beou

[Efros & Leung ICCV99]

More results

french canvas rafia weave

[Efros & Leung ICCV99]

Some results

wood granite

[Efros & Leung ICCV99]

Some results

white bread brick wall

[Efros & Leung ICCV99]

Hole Filling

—>

[Efros & Leung ICCV99]

Hole Filling

[Efros & Leung ICCV99]

Extrapolation

A misleading result..

Y) R el ALy o
g ERRERARAL
| i e 1
AN Y

| !
- " ’t‘l‘

L PN M

W
rt_,‘

[Efros & Leung ICCV99]

Failure

Growing garbage Verbatim copying

[Efros & Leung ICCV99]

Pros and Cons

Very simple
Easy to implement: 32 lines of matlab code!
Works well for a variety of synthetic and real-world textures

VERY VERY slow!

(A nearly identical idea was proposed in 1981 by Barber but discarded due to computational
intractability)

Idea
— A patch a time, instead of a pixel

[Efros & Leung ICCV99]

Image Quilting: Patch-based method

Bl | B2 Bl: | B2 BIE<EB2
block I ' I :
random placement neighboring blocks minimum error
of blocks constrained by overlap boundary cut
input
texture

(a) random blocks concatenated together
(b) Blocks overlap, new block is chosen so that the overlap regions best agree
(c) A minimum cost (optimal) path is computed within the overlap

[Efros & Freeman SIGGRAPHO01]

Curved path VS vertical path

verlapping blocks vertical boundary

RE-&
¥

min. error boundary

[Efros & Freeman SIGGRAPHO01]

How to find the optimal path?

{1

e = (B1-B2)"2

e Brute force: exponential number of paths

* Greedy algorithm? No..

* Key observation: every optimal sub-path is
part of an optimal full path

=» Dynamic programming

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg
(A nice dynamic programming tutorial)

[Efros & Freeman SIGGRAPHO01]

Dynamic programming

{1

Initialize: e; ; = (Blij - Bzij)2
fori =2:h; forj = 1:w
Ei,j = €y + min (Ei—l,j—l'Ei—lJ’ Ei—l,j+1)
ki,j = argmin (Ei—l,j—l' Ei—l,j' Ei—l;i'*'l)
end; end

e_{i,j}: node cost at pixel (i,j)
E_{i, j}: optimal path cost up to node (i, j)
k_{i,j}: index to the optimal (next) sub-path

[Efros & Freeman SIGGRAPHO01]

Dynamic programming

1. Compute path costs: start from the
bottom, iteratively go up, end at the top

2. Get optimal path: compare the path cost of
nodes on the top row, find the minimum
cost node, and use k_{i,j} to trace back for
the optimal path down to the bottom

[Efros & Freeman SIGGRAPHO01]

Results

[Efros & Freeman SIGGRAPHO01]

More results

[Efros & Freeman SIGGRAPHO01]

[Efros & Freeman SIGGRAPHO01]

More results

hEee
i ufuty I_J"_
o o e

H!Ein thULnL.

dnl-dslghcdnichstal:
L! E |ll E) L! L L lll
IEE”m”UHhMF
ey R
@Eﬁiﬁﬁ@ﬁﬁgﬁﬁ L“ ‘“Ll" “f_“t.

[Efros & Freeman SIGGRAPHO01]

More results

[Efros & Freeman SIGGRAPHO01]

More results

[Efros & Freeman SIGGRAPHO01]

Failure cases

= g g; gl s [‘/X i

[Efros & Freeman SIGGRAPHO01]

Texture Transfer

[Efros & Freeman SIGGRAPHO01]

e

texture transfer result

source texture target image

ei']- = a(Bl,] — le])z 4 (1 — a)(SCuv — TCi‘j)z

(u,v): the coordinate of patch B2, ; in the source texture

Sc: source correspondence map
Tc: target correspondence map

correspondence maps

More results

source texture

target images texture transfer results

[Efros & Freeman SIGGRAPHO01]

More results

’,.,.',,, 2
6 “"'

;,),5'\"») S RSN
YRS 4 S suQ-;.\;,

5\\' P)‘., I..:’)-l~;.q) .

) » > P N v,' ".p\'.
. .1;\-,1,'\" -~
' V2020 A% -'
> AA'I") 2,

" V. . "\

) o'.‘-" Q,‘ 5 s W 5"

\ P R
), e o
et 21 A5)
’)

)

'n)) I}”

)’));,

[Efros & Freeman SIGGRAPHO01]

More results

parmesan

rice

[Efros & Freeman SIGGRAPHO01]

Pros and Cons

Very simple

Easy to implement
Work well

Fast!

Memoryless

— Cannot keep track of old solutions: A general problem for DP

Better algorithm
— Graph cut [Graphcut texture, Kwatra SIGGRAPHO3]

Image Analogy

[Hertzman et al. SIGGRAPHO1]

Image Analogy

[Hertzman et al. SIGGRAPHO1]

Image Analogy

AI

Problem(“IMAGE ANALOGY”): Given a pair of images A

(unfiltered source) and filtered image A’ (filtered source),

Along with some additional unfiltered target image B,

Synthesize a new filtered target image B’ such that:
A:A" :: B:B

[Hertzman et al. SIGGRAPHO1]

Basic idea

Unfiltered source image Filtered source image
B A H A
P
\ P

Unfiltered target\image Filtered target\image
B NRE \

d I

_H¥ (a simplified version)

For g in B/, find index p in source images such that
A’(p) ~ B'(q) and
A(p) ~ B(a)

Concatenate the windows of p in source pair, and that of g in the target pair, then match

[Hertzman et al. SIGGRAPHO01]

Applications

Learning a complicated filter from data
Super-resolution

Exemplar-based NPR

Texture synthesis!

[Hertzman et al. SIGGRAPHO1]

Training

Unfiltered source (A)

[Hertzman et al. SIGGRAPHO1]

Unfiltered target (B) Learned filtered target (B’)

[Hertzman et al. SIGGRAPHO1]

Unfiltered target (B) Learned filtered target (B’)

[Hertzman et al. SIGGRAPHO1]

Learn to Blur

‘Unﬁltered target (3)

Filtered target (13')

[Hertzman et al. SIGGRAPHO1]

Texture by Numbers
ﬁ

Unfiltered source (A) Filtered source (A")

Unfiltered (13) Filtered (2')
[Hertzman et al. SIGGRAPHO01]

Colorization

Unfiltered target (B) Filtered target (B')

[Hertzman et al. SIGGRAPHO1]

Super-resolution

Unfiltered source Filtered source

[Hertzman et al. SIGGRAPHO1]

™ e

Unfiltered target Filtered target
[Hertzman et al. SIGGRAPHO1]

Unfiltered source Filtered source

[Hertzman et al. SIGGRAPHO01]

A~~~
=
-]
P
)
e
—"
C
O
-
=
O
7))
)
| -
<
O
O
)
7P

[Hertzman et al. SIGGRAPHO01]

Wrap-up: The two steps of texture synthesis

* Modeling = Visual fidelity

— How to estimate the stochastic process from a given finite
texture sample

— Both used MRF model (locality and stationary)

* Sampling = Computational cost

— How to develop an efficient sampling procedure based on
the model

— Pixel by pixel VS patch-based

— Sampling under guidance: texture transfer, image analogy

Two problems remains

* Preserving scene structure
— Prioritize synthesize order [Criminisi et al. CVPRO3]

e Efficient patch matching
— Fast approximate NN search [Barnes et al. SIGGRAPHO9]

Inpainting

[Criminisi et al. CVPRO3]

Synthesize Order Matters

Onionskin order

N ' ' .

Boundary edges

[Criminisi et al. CVPRO3]

Choose the order

 Confidence

— Favor unknown pixels with more (reliable) neighbor information

qulppncb C(CI)
||

C(p) =

l[Jp: Neighborhood of p

[Criminisi et al. CVPRO3]

Choose the order

* Data term

— Favor starting from strong edges (indication of high saliency for structures)

_ v,

a

D(p)

[Criminisi et al. CVPRO3]

Choose the order

* Priority
— Balance between confidence and data term
Pp)=Cp) D(p)
* Algorithm

e Extract the manually selected initial front 6Q°.

e Repeat until done:

1a. Identify the fill front §Qt. If Qf = (), exit.
1b. Compute priorities P(p) Vp € 60Q2°.

2a. Find the patch W5 with the maximum priority,
ie, Vg | p=argmax,cs0: P(p)
2b. Find the exemplar ¥4 € ® that minimizes d(V 4, Vg).

2¢. Copy image data from Vg to Wps.
3. Update C'(p) Vp |p € YN

[Criminisi et al. CVPR0O3]

Results

[Criminisi et al. CVPRO3]

More results

< 00

Input Result

[Criminisi et al. CVPRO3]

More results

Input Masked target region Result

[Criminisi et al. CVPRO3]

[Criminisi et al. CVPRO3]

Fast Approximate NN search

* Brute force search
— Sliding window
— Exact answer, but too slow

e Betteridea

— Local coherence: nearby windows have high probability to match
nearby windows in the source image

[Barnes et al. SIGGRAPHO09]

Fast ANN search

4 A |
- .
J
/ | /
B & (\ y B Q‘ 4 'B &(
(a) Initialization (b) Propagation (c) Search

(a) Random initialization,
(b) Propagate good matches E=mE) 20-100x speedup
(c) Search nearby

[Barnes et al. SIGGRAPHO09]

Add User Constraints

Mark an hole to fill in (standard process)
Add extra label, partly inside the hole, partly outside

Limit the search space for labeled pixels inside the hole to outside regions
with the same label

[Barnes et al. SIGGRAPHO09]

Add User Constraints

(g) same input (h) hole and guides (i) guided (close up)

[Barnes et al. SIGGRAPHO09]

More results

(a) input (b) hole and guides (c) completion result

[Barnes et al. SIGGRAPHO09]

More results

(d) constraints (e) constrained retarget (f) reshuffle

[Barnes et al. SIGGRAPHO09]

Retargeting

 Make an image bigger or smaller in one direction
— e.g. Change aspect ratio

« Traditional
— Interpolation: content distortion
— Cut off pixels: lose important content

« Seam Carving
— Cut out a curve of pixels that “does not matter much”

scaling cropping
[Avidan&Shamir. SIGGRAPHO7]

FiInd a seam

* Define an optimal seam
— \Vertical seam, horizontal seam
— Energy
* Gradient

« Entropy, HOG, Segmentation,
Saliency, Corner detector, eye gaze

d d
er(D) = |21 + 5= |

* Optimal seam: A seam with minimum energy = dynamic programming

[Avidan&Shamir. SIGGRAPHO7]

Find a seam

initialize: e;; = |=1;;| + |%’ij

fori =2:h; forj = L:w
Ei,j = ey + min (Ei_1'j_1rEi—1,j' Ei—1,j+1)
ki,j = argmin (E,-_1,j_1;Ei—1,j' Ei—1J+1)

end; end

Exactly the same DP, different energy term
(Compare with the algorithm of image quilting (P33)!)

[Avidan&Shamir. SIGGRAPHO7]

Visualization of seams

———

Image Horizontal seams Vertical seams

Blue: low cost seams
Red: high cost seams

Results

(a) Original

[Avidan&Shamir. SIGGRAPHO7]

More results

[Avidan&Shamir. SIGGRAPHO7]

Difference Energies make a difference

egmentation and

C eEitop_v |
[Avidan&Shamir. SIGGRAPHO7]

Seam insertion

* Finding and inserting the optimum seam will most likely insert the same seam again and again, resulting in (b)

* Instead, inserting the seams in order of removal (c), achieves better result (d)

[Avidan&Shamir. SIGGRAPHO7]

More results

input widening by seam insertion

[Avidan&Shamir. SIGGRAPHO7]

Seam carving and insertion

Rescaling by interpolation

[Avidan&Shamir. SIGGRAPHO7]

Faillure case: need extra constraints

— —— > N — ._A

Figure 14: Retargeting the left image with e alone (middle), and
with a face detector (right).

[Avidan&Shamir. SIGGRAPHO7]

Constrained Retargeting

Main idea: user supplied constraints (mask), high cost for seam crossing the masked region

Retarget Retarget
without constraints with constraints

Input + constraints

[Barnes et al. SIGGRAPHO09]

More results

Retarget
without constraints with constraints

Input + constraints

[Barnes et al. SIGGRAPHO09]

More results

Retarget Retarget
without constraints with constraints

Input + constraints

[Barnes et al. SIGGRAPHO09]

More results

i \L f_*“.-‘: i

WE W

Retarget Retarget

+ i
Input + constraints without constraints with constraints

[Barnes et al. SIGGRAPHO09]

Local scale editing

T T T L

(a) building marked by user

(c) bush marked by user (d) scaled up, preserving texture.

[Barnes et al. SIGGRAPHO09]

Reshuffling

input Reshuffled
[Barnes et al. SIGGRAPHO09]

More Reshuffling

[Barnes et al. SIGGRAPH09]

[Barnes et al. SIGGRAPHO09]

http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php

Summary

* Texture
— Stationary
— Locality

* Scene
— Texture
— Structure (edges, object contours, etc)

* Two crucial algorithmic points

— Nearest neighbor search
— Dynamic programming

Summary (2)

Patch representation

RGB, luminance, CIELAB...
Gradient, HOG, Harris corner detector, steerable filter

Saliency
Entropy

Patch distance

L1 norm, L2 norm, sum of square
Gaussian weighted sum of square

Patch match algorithm

Brute force NN

Approximate NN: local coherence

Tree structure: kd-tree (used in the image analogy method)
Dimension reduction: PCA, vector quantization

Multi-scale representation

Gaussian pyramid (used in the image analogy method)

