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In a world of diffuse surfaces ...

• Recall
• radiosity is radiated power per unit area, independent of direction
• we obtained:

• which we wrote as:

B(x) = E(x) + ρ(x)
�
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πr2
V is(x,u)B(u)dAs

B(x)− E(x)− ρ(x)
�

K(x,u)B(u)dAu = 0



Radiosity estimate via finite elements

• Divide domain into patches
• Radiosity will be constant on each patch
• patch basis function, or element 

• Now write 
• B_i for radiosity at patch i
• E_i for exitance at patch i
• Substitute into eqn:

φi(x) =
�

1 if x in patch i
0 otherwise



B(x)− E(x)− ρ(x)
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K(x,u)B(u)dAu = 0

Becomes
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�
�

i

Biφi(x)

�
−

�
�

i

Eiφi(x)

�
−

�
ρ(x)

�
K(x,u)

�
�

i

Biφi(u)

�
dAu

�
= R(x)



Obtaining an estimate:  Finite elements

• But in what sense is it zero?
• Galerkin method 

• Apply to:

• And get
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Finite Element Radiosity Equation

• Start with:

• Divide through by A_k, assume constant albedo patches, 
get

• Where geometric effects are concentrated in the form 
factor
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Finite Element Radiosity

• This is a linear system

• fold in albedo, write

• or in terms of matrices and vectors

• BUT YOU SHOULD NEVER DO:
• B might have 10^6 elements or more!

Bk = Ek +
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ΓkjBj

B = E + ΓB

B = (I − Γ)−1E



• Recall:

• if patches are all flat, then:

• if i can’t see j at all, then:

• reciprocity:

Form factors

Fii = 0

Fij = 0

AkFjk = AjFkj
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Form Factors

• Power leaving patch k:  

• Power leaving patch k for patch j: 

• Interpretation:
• Fjk is percentage of power leaving k that arrives at j

• this gives: 
�
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Computing form factors

• Nusselt’s analogy

Ai

Aj
(cos θj/r2) Aj

cos θi(cos θj/r2) Aj
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D

Ω

Fij = projD(projΩ(Aj))/Area(D)



The Hemicube

• Render onto faces of cube on receiver

A



Random samples

• with N uniform samples on patches j and k
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Finite Element Radiosity

• This is a linear system

• fold in albedo, write

• or in terms of matrices and vectors

• BUT YOU SHOULD NEVER DO:
• B might have 10^6 elements or more!

Bk = Ek +
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j

ρkFjkBj
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j

ΓkjBj

B = E + ΓB

B = (I − Γ)−1E



• Neumann series (again!)

• Easy iteration

Solving the radiosity system: Gathering

B = E + ΓE + Γ2E + Γ3E + ....

B(0) = E

B(n+1) = E + ΓB(n)

Not a good idea in this form, because we must evaluate the whole of Gamma for EACH iteration;
Gamma might be millions by millions



Gathering with iterative methods

• Linear system    Ax=b

• Jacobi iteration
• reestimate each x

• Gauss-Seidel
• reuse new estimates
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Southwell iteration:  Progressive radiosity

• Gauss-Seidel, Jacobi, Neumann require us to evaluate 
whole kernel at each iteration
• this is vilely expensive  10^6x 10^6 matrix?
• it’s also irrational  
• in G-S, Jacobi, for one pass through the variables, 
• we gather at each patch, from each patch
• but some patches are not significant sources

• we should like to gather only from bright patches
• or rather, patches should “shoot”

• This is Southwell iteration



• Define a residual:

• whose elements are

• now choose the largest r_i
• and adjust the corresponding x component to make it zero

Southwell iteration: update x

R = (b−Ax)
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• Update the residual by adding old x col, subtracting new

• but this takes an easy form

• Notice we can update variables in order of large residual, 
using only one col of kernel to do so
• this converges (non-trivial) rather fast (non-trivial)
• to get a solution, we need evaluate only a small proportion of the kernel 

(non-trivial)

Southwell iteration:  update r
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Applying Southwell iteration to radiosity

• Our linear system is:

• And so we can write the residual as:

• Interpretation:
• update B at i’th entry
• at every other entry, we add energy shot from this update to that location
• therefore residual is energy received, but not yet shot
• which is zero, eventually

(I − Γ)B = E

r(n) = E−B(n) + ΓB(n)



Applying Southwell iteration to radiosity

• Introduce a new variable:

• Notice
• when iteration converges, N=B
• N is:  current estimate of radiosity+unshot radiosity
• so N is a better rendering estimate than B

• N is easy to update
• need only a column of matrix
• use equations on following page
• small r=small N-B

N(n) = B(n) + r(n)



Applying Southwell iteration to radiosity
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Applying Southwell iteration to radiosity
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And check N-B rather than r to choose i!
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Hierachical radiosity

• Radiosity similar to n-body problems
• gathering can be grouped

• Recall iteration

• Can we make matrix multiplication more efficient?
• Gamma “gathers” old radiosity solution to each patch
• But distant patches contribute a near constant value
• so when we gather from distant patches, we should use a big receiver

B(0) = E

B(n+1) = E + ΓB(n)



Alternative meshes

Gathering from 
distant patch in a corner

Gathering from 
nearby patch in a corner



• Represent patch with big AND small elements
• big elements gather from distant
• small elements gather from nearby
• how do we know element is small enough
• check size
• check FF
• check radiosity*FF

• Rendering
• we need to know the radiosity at a point
• walk the point down hierarchy
• radiosity is radiosity of smallest element containing point

A mesh hierarchy 



A mesh hierarchy 

• Recall
• radiosity is power /unit area

• Procedure
• build initial mesh
• until (no fixing)
• until (converged)
• compute a term in neumann series by
• elements gather radiosity
• distribute across the hierarchy

• check whether mesh is fine enough



This is radiosity we have
gathered, but haven’t accounted for 

yet

This is the radiosity of the element



Root code for solving; assume all surfaces are polygons

Make the mesh hierarchy

Solve using mesh hierarchy

If there is evidence this hierarchy is not fine enough
somewhere, refine and go again



Check which side should be split
for example, split larger area

Compute the form factor for p, q by casting 
random rays (as above) then put it in the 

appropriate spot in datastructures



Gather radiosity across links

Adjust values in hierarchy so they’re
consistent



Gathering radiosity



Gathering radiosity



Gathering radiosity



Notice that we gather from B_s into B_g



Radiosity is power/unit area
so parent adds to children,

children add area weighted sum to parent









BIF links, from Hanrahan et al, 91


