Radiosity estimates via
finite elements

D.A. Forsyth
after slides by John Hart

In a world of diffuse surfaces ...

® Recall

® radiosity is radiated power per unit area, independent of direction
® we obtained:

B(x) = E(x) + p(x) / cos b (3205 Gs Vis(x,u)B(u)dA,

g wr

® which we wrote as:

B(x) — E(x) — p(x) /K(X, u)B(u)dA, =0

Radiosity estimate via finite elements

® Divide domain into patches

e Radiosity will be constant on each patch
® patch basis function, or element

| 1 ifxin patchzs
di(x) = { 0 otherwise

® Now write
® B_i for radiosity at patch 1
® E_i for exitance at patch i
® Substitute into eqn:

B(x) — E(x) — p(x) /K(X, u)B(u)dAy =0

(Z Biﬁbi(x)) - (Z Ei¢i(x)> — (P(X)/K(Xa u) <Z Bz’%’(“)) dAu) = R(x)
1

This should be “like zero”

Obtaining an estimate: Finite elements

® But in what sense 1s it zero?
® (Galerkin method

/R(X)¢k (x)dA; = OVEk

e Apply to:
<Z Bi(bi(x)) - (Z Ei¢i(x)> - (P(X)/K(X= u) (Z Bi¢i(“)> dAu> = R(x)

® And get

BkAk — EkAk — Z / p(X) / . K(X, u)dudx Bj =0
- patch & patch 5

J

Finite Element Radiosity Equation

® Start with:

BrAg = E AL + Z / p(x)/ K (x,u)dudx | B,
: patch k patch

J

e Divide through by A_k, assume constant albedo patches,
get
By = B, + ZkajkBj
J

® Where geometric effects are concentrated in the form
factor

1
Fip = —/ / K (x,u)dudx
Ay, patch k£ Jpatch j

Finite Element Radiosity

This 1s a linear system By = L}, + Z Pk Fir B
J

fold in albedo, write B, = Ej, + Z T B;
J

or in terms of matrices and vectors B=E+TIB

BUT YOU SHOULD NEVER DO: B=(ZI-I)"'E

® B might have 1076 elements or more!

Form factors

| F = / / K (x,u)dudx
Recall: J A patch k Jpatch j

if patches are all flat, then: F; =0
if i can’t see j at all, then: Fij =0

reciprocity: A Fjp = AjFy;

Form Factors

Power leaving patch k: BeA,

Power leaving patch k for patch j:

/ / K (x,u)Bidudx
patch k Jpatch j
Interpretation:

® Fjk is percentage of power leaving k that arrives at |

Fir = / / K(x,u)dudx
’ Ay, patch k£ Jpatch j

Y Fipp=1
j

® this gives:

Computing form factors

® Nusselt’s analogy

g cos 0,(cos 0,/r?) 4,

F; = projp(projq(4;))/Area(D)

The Hemicube

® Render onto faces of cube on receiver

AF, dAiAj

Cos(, Coso,

-’ AA

Random samples

e with N uniform samples on patches j and k

1 cos; cos0;Vis(i,
AjAijk ~ N Z) ('])

T2

Finite Element Radiosity

This 1s a linear system By = L}, + Z Pk Fir B
J

fold in albedo, write B, = Ej, + Z T B;
J

or in terms of matrices and vectors B=E+TIB

BUT YOU SHOULD NEVER DO: B=(ZI-I)"'E

® B might have 1076 elements or more!

Solving the radiosity system: Gathering

e Neumann series (again!) B=E+TE+TI2E+TI°E+ ...

® FEasy iteration

B" = E

Bt — E + rB(™

Not a good idea in this form, because we must evaluate the whole of Gamma for EACH iteration;
Gamma might be millions by millions

Gathering with iterative methods

Linear system Ax=Db

Jacobi iteration
® reestimate each x

Gauss-Seidel

® reuse new estimates

From Cohen, SIGGRAPH 88

Southwell iteration: Progressive radiosity

® (Gauss-Seidel, Jacobi, Neumann require us to evaluate

whole kernel at each iteration
® this is vilely expensive 1076x 1076 matrix?
® it’s also irrational
® in G-S, Jacobi, for one pass through the variables,
® we gather at each patch, from each patch
® but some patches are not significant sources
® we should like to gather only from bright patches
® or rather, patches should “shoot”

® This 1s Southwell iteration

Southwell iteration: update x

® Define a residual: R = (b— Ax)

® whose elements are

® now choose the largest r_1
® and adjust the corresponding x component to make it zero

Southwell iteration: update r

e Update the residual by adding old x col, subtracting new
(n) _

rl(nH) = rl(n) + ay;(z,

® but this takes an easy form
r(n—|—1) _ ,rl(n) o %T(n)
1
2%

[

e Notice we can update variables in order of large residual,

using only one col of kernel to do so
® this converges (non-trivial) rather fast (non-trivial)

® (o get a solution, we need evaluate only a small proportion of the kernel
(non-trivial)

Applying Southwell iteration to radiosity

® QOur linear system 1is:

(I-T)B=E

® And so we can write the residual as:

F — B _ B™ 4 rB™

® Interpretation:
® update B at i’th entry
® at every other entry, we add energy shot from this update to that location
® therefore residual is energy received, but not yet shot
® which is zero, eventually

Applying Southwell iteration to radiosity

® Introduce a new variable:

N® — B® 4 p(

® Notice

® when iteration converges, N=B
® N is: current estimate of radiosity+unshot radiosity
® 50 N is a better rendering estimate than B

® N is easy to update

® need only a column of matrix
® use equations on following page
® small r=small N-B

Applying Southwell iteration to radiosity
(0

AB = 1-T,)

plntl) _ <(Bﬁ”) +AB ifj =1

| B, if 7 #£1
) _ 0 it =1
J o r§n) — szAB otherwise

Nt <(B§n> +AD ifj=1

J B§n> — 'r](-n) —I';;AB otherwise

\

Applying Southwell iteration to radiosity

N _ g

AB =

(1 —-T%)
B B%Zi +AB ifj =i
B, if 7 #£1
[p(n) oo
N§n+1):< Bj + AB if 9 =1
J \ N;n) —T';;AB otherwise

And check N-B rather than r to choose 1!

O il e RS

From Cohen, SIGGRAPH 88

Cornell Program of Computer Graphics

Hierachical radiosity

Radiosity similar to n-body problems
® gathering can be grouped

Recall iteration
B = E

Bt — E + TB™

Can we make matrix multiplication more efficient?
® Gamma “gathers” old radiosity solution to each patch
® But distant patches contribute a near constant value
® so when we gather from distant patches, we should use a big receiver

Alternative meshes

Gathering from
distant patch in a corner

Gathering from
nearby patch in a corner

A mesh hierarchy

® Represent patch with big AND small elements
® big elements gather from distant
® small elements gather from nearby
® how do we know element is small enough
® check size
® check FF
® check radiosity*FF

® Rendering

® we need to know the radiosity at a point
® walk the point down hierarchy
® radiosity is radiosity of smallest element containing point

~ AN

A mesh hierarchy

® Recall
® radiosity is power /unit area

® Procedure
® build initial mesh
® until (no fixing)
® until (converged)
® compute a term in neumann series by
® clements gather radiosity
® distribute across the hierarchy
® check whether mesh is fine enough

struct Quadnode {

float

float

float

float

float

struct Quadnode**
struct Linknode*

I

struct Linknode {
struct Quadnode*
struct Quadnode*
float
struct Linknode*

area,
p;

children;/* pointer to list of four children */

B

q,

p;
Fops
next;

This is radiosity we have
gathered, but haven’t accounted for

/* gathering radiosity */ Yet

/* shooting radiosity */
e This 1s the radiosity of the elemer,
/* emission */

/* first gathering link of node */

/* gathering node */

/* shooting node */

/* form factor from ¢ to p */

/* next gathering link of node g */

1t

Root code for solving; assume all surfaces are polygons

HierarchicalRad(float BFY)

{

Quadnode *xp, *q;
Link *L;
int Done = FALSE;

for (all surfaces p) p—Bs = p—FE;
for (each pair of surfaces p,q)
Refine(p, q, BF,); Make the mesh hierarchy

while (not Done) {
Done = TRUE;

SolveSystem();
for (all links L)

/* as in Figure 7.9 */ Solve using mesh hierarchy

/* RefineLink returns FALSE if any subdivision occurs */
if(RefineLink(L, BF,) == FALSE)
Done = FALSE,;

If there is evidence this hierarchy is not fine enough
somewhere, refine and go again

Refine(Quadnode *p, Quadnode *q, float F.)

{

Quadnode which, r;

if (Oraclel(p, q, F.))
Link(p, q);

else {
which = Subdiv(p, q);
if(which == q)

Check which side should be spli
for example, split larger area

for(each child node r of ¢) Refine(p, r, F.);

else if (which == p)

for(each child node r of p) Refine(7, q, F.);

else
Link(p, q);

Compute the form factor for p, q by casting
random rays (as above) then put it in the
appropriate spot in datastructures

et

Figure 7.8: Refine pseudocode.

SolveSystem()
{

Until Converged {

for (all surfaces p) GatherRad(p): Gather radiosity across link

: for (all surfaces p) PushPullRad(p, 0.0): }

Adjust values in hierarchy so they’re
consistent

Figure 7.9: SolveSystem pseudocode.

Gathering radiosity

Gathering radiosity

AN
v oW

Gathering radiosity

GatherRad(Quadnode *p)

Quadnode *q; Link xL;

p_>Bg = 0;

for (each gathering link L of p) /* gather energy across link */
p—By +=p—p * L—Fy, * L—q—B; ;

for each child node 7 of p
GatherRad(r);

Notice that we gather from B_s into B_g

N/ im0 R e ey

Figure 7.10: GatherRad pseudocode.

PushPullRad(Quadnode *p, float Bgown)

{

| float B,p, Bimp;

2 if (p—children == NULL) #opis.aleal */

3 Byp = p—FE + p—By + Biowns

4 else

> { Radiosity is power/unit area
6 Bup = 0; so parent adds to children,
7 for (each child node r of p) children add area weighted sum to parent
8 {

9 Bimp = PushPullRad(r, p— B, + B i)

10 Bup += Bimp * ;:Z:EZ

11 }

2 =

13 .. .p—B; = Byy:;

14 return B,;

——

Figure 7.11: PushPullRad pseudocode.

float Oraclel(Quadnode *p, Quadnode *q, float F'e)
{
if (p—area < A and g—area < A,)
return(FALSE);
if (EstimateFormFactor(p, q) < Fe)
return(FALSE);
else
return(TRUE);

Figure 7.12: Oraclel pseudocode.

int RefineLink(Linknode L, float BF))
{
int no_subdivision = TRUE;
Quadnode* p = L—p ; /* shooter */
Quadnode* ¢ = L—q ; /* receiver */

if (Oracle2(L, BF.,) {
no_subdivision = FALSE :
which = Subdiv(p, q);
DeleteLink(L);
if (which == q)
for (each child node r of q) Link(p, r);
else
for (each child node r of p) Link(r, q);

}

return(no_subdivision);

Figure 7.15: RefineLink pseudocode.

float Oracle2(Linknode L, float BE.)

Quadnode* p = L—p ; /* shooter */

Quadnode* ¢ = L—q ; /* receiver */

if (p—area < A, and g—area < A)
return(FALSE);

if (p—B,; == 0.0)
return(FALSE);

if((p""*B,g *p—>A7"€a o L‘*qu) < BFE)
return(FALSE);

else 10 return(TRUE);

v NGO NI ON WA B U R i e

Figure 7.16: oracle2 pseudocode.

BIF links, from Hanrahan et al, 91

