
Visual words and their
applications

D.A. Forsyth

Near Duplicate Image Detection

• Find images similar to example image
• Applications:

• image query
• viral marketing
• space efficiency
• image classification
• hole filling
• geolocation
• google “goggles”

Non-parametric regression

quisquis
es armatus

qui nostra
ad !umna

tendis? fare
age, quid

venias, istinc
et comprime

noctisque
soporae

...

Match Smooth and
attach

Brittania
omnia in

A B

Linking A’s and B’s

A=image, B=body pose

Rosales+Sclaroff, ’00; Shakhnarovich+Darrell, ’03

A=image with hole, B=image

Efros+Leung, ’99; Hayes+Efros, ’07

Modern hole filling methods

• Multiple strategies
• Applications

• remove objects
• move objects (i.e. cut out, move, fill hole)
• make picture bigger

A=image, B=location

Hayes+Efros, ’08

Accuracy of im2gps

Land coverage map

Image types from predicted GPS

Forest

Water

Making Visual words

• Build a dictionary of image patches by
• taking lots
• clustering

• Cluster centers are dictionary

Pragmatics

• Scales:
• millions of patches, tens of thousands of cluster centers

• might need to use more than k-means

• What is the distance?
• numerous answers

• sum-of-squared pixel differences
• sometimes weighted by Gaussian centered on patch
• other possibilities that emphasize edges

• How do we find the nearest center?
• small scale: search
• large scale: approximate nearest neighbor

Visual words for image denoising

• Strategy:
• build large dictionary

• To denoise:
• tile image with overlapping patches
• for each patch, find dictionary center, place in location
• at each pixel, take mean (median) value of all patches on that location
• complex variations possible
• very effective

Visual words for video google

Patches don’t have to be rectangular (these are ellipses).
Building an elliptical patch is outside our scope.

Search for objects in video by finding matching visual words:
User sketches region; system finds visual words in that region,

then finds matching visual words in the rest of the video.

Visual words for video google - II

Visual words for video google - III

Scaling k-means

• k-means gets hard for very big datasets and big k
• nearest neighbor search

• strategy 1:
• cluster subset of the data, randomly selected

• uniformly at random (but some images might not contribute tiles)
• stratified sample (eg r tiles per image)

• cluster centers shouldn’t change much

• strategy 2:
• hierarchical k-means

• very good for large k

Hierarchical k-means

• Clustering
• Cluster with small k
• Now divide dataset into k groups (one per cluster center)

• corresponding to clusters
• Now cluster each group with k-means,

• possibly using a different k
• possibly repeat

• Finding a dictionary entry
• find entry at top level

• now in that level, find entry
• and so on

• Good if you want large number of cluster centers

Using visual words: Image classification

• Problem: Is this a picture of a tree or not?
• strategy:

• form a histogram of visual words
• feed to classifier (*not* a linear classifier)
• this is effective

• Impact:
• most cases are still research topics
• “adult” image detection is widely applied

• though not discussed
• some evidence this is used, with other features

Near Duplicate Image Detection

• Model: Information retrieval
• find documents using keywords
• we’ll review this area

• Q: what are the keywords?
• A: visual words

• which come from k-means clustering

Information retrieval

• Word frequencies are revealing
• eg “crimson”, “magenta”, “chrysoprase”, “saffron” ->?
• eg “pachyderm”, “grey”, “trunk”, “ivory”, “endangered” ->?
• eg “flour”, “milk”, “eggs”, “sugar”, “vanilla”, “cherries” ->?

• Some words aren’t helpful
• eg “a”, “an”, “he”, “it”, “she”, “but”, “and” and some others
• often referred to as “stop words”

• Insight
• representing a document by word counts works

• you can weight in various ways

Information retrieval

• Word by document table
• entries:

• drop stopwords
• 0 if word is not in document, 1 if it is
• (more later)

• very very sparse
• D

• Simplest use
• as an index (IR people call this an inverted index!)
• if query is k1, k2, k3 we can

• get D(k1, :) (which is a list of documents containing k1)
• intersect with D(k2, :)
• etc.

The word-document table

• Problems with D
• easy

• all words counted with the same weight
• hard

• cannot rank by similarity between documents and query
• some words are not in documents “by accident”

• Weighting
• 0-1: (as above)
• Frequency: replace 1 with count
• TF-IDF: more weight on words that are common in this document,

uncommon in others

TF-IDF weighting

Measuring document similarity - I

• Similar documents have similar word counts
• c is the word count vector; this could be weighted
• this is a column of D corresponding to the document

Measuring word similarity - I

• Similar words appear in similar documents
• c is now the vector of documents that contain the word; could be weighted
• c is now a row of D

“Missing” data

• Word counts of 0 are often misleading
• eg “elephant”, “trunk”, “ears”, “ivory”

• should have “pachyderm” (same subject)
• but might not, because it’s uncommon

• this will make document similarity estimates unreliable

• Strategy: smooth word counts
• by projecting word count vectors onto low dimensional basis
• basis represents “topics”
• obtain by SVD

Latent Semantic Analysis - I

• Recall: D is word by document table
• Take an SVD of D to get

• cols of U are an orthogonal basis for the cols of D
• cols of V are an orthogonal basis for the rows of D (notice V^T!)
• Sigma is diagonal; sort the diagonal to get largest at top
• Notice

• cols of U span word count vectors (cols of D)
• cols of U corresponding to big singular values are common types of

word count
• cols of U corresponding to small singular values are uncommon types

of word count

Latent Semantic Analysis - II

• Recall: SVD of D is
• Strategy for smoothing word counts:

• take word count vector c
• expand on some of U’s cols corresponding to large singular values
• yields new, smoothed count vector

• eg if many “elephant” documents contain “pachyderm”, then smoothed
“pachyderm” count will be non-zero for all elephant documents.

• Obtain a smoothed word document matrix hat(D) like this

Latent semantic analysis - III

• Want a table of all smoothed document similarities

Latent semantic analysis - IV

• Measuring the similarity between words

• Notice you can build hat(D) “on the fly”
• result: neat trick based on google for finding similarity between two words

Latent semantic analysis - V

• hat(D) is a “better” word-document table than D
• a keyword yields a hit to documents that don’t contain it (but should)
• yields a similarity rank for documents

• cosine similarity between query and document word vector
•

Why visual words are cool - I

• You can do all above with visual words
• inverted index
• hat(D)
• similarity

• Simple near duplicate detection
• compute visual words for query image
• keyword query to D

• Smarter near duplicate detection
• compute visual words for query image
• keyword query to hat(D)
• rank by similarity cosines
• keep top responses

Why visual words are cool - II

• Visual words depend too strongly on the clustering?
• affects results
• easy answer: build three systems and vote (eg by averaging ranking)

• amazingly effective

• Numerous other systems issues now handled very
effectively

Next up: Image segmentation as clustering

