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Abstract

We employ a virtual marine world inhabited by realis-
tic artificial animals as an ALife laboratory for develop-
ing and evaluating zoomimetic perception and learning
algorithms. In particular, we propose active perception
strategies that enable artificial marine animals to nav-
igate purposefully through their world by using com-
puter vision algorithms to analyze the foveated retinal
image streams acquired by their eyes. We also demon-
strate learning algorithms that enable artificial marine an-
imals to acquire complex motor skills similar to those
displayed by trained marine mammals at aquatic theme
parks.

1 Introduction
A recent result of artificial life research is a virtual world in-
habited by artificial animals and plants that emulate some of
the fauna and flora of natural marine environments [1]. In this
paper, we employ this highly realistic virtual world as an arti-
ficial zoological laboratory. The laboratory facilitates the in-
vestigation of open problems related to biological information
processing in animals, and it has enabled us to develop and
evaluate zoomimetic perception and learning algorithms.

The psychologist J.J. Gibson studied (in pre-computational
terms) the perceptual problems faced by an active observer
situated in the dynamic environment [2].1 We present a pro-
totype active perception system that enables artificial marine
animals to navigate purposefully through their world by ana-
lyzing the retinal image streams acquired by their eyes. Reti-
nal image analysis is carried out using computer vision algo-
rithms. We equip our artificial animals with directable, virtual
eyes capable of foveal vision. This aspect of our work is re-
lated to that of Cliff and Bullock [5], but our realistic animal
models have enabled us to progress a great deal further.2 Our

1Computational versions of Gibson’s paradigm were developed
in computer vision by Bajcsy [3] and Ballard [4] under the names of
“active perception” and “animate vision”, respectively.

2Cliff and Bullock [5] were concerned with the evolution of sim-
ple visually guided behaviors using Wilson’s animat in a discrete 2D
grid world.

Figure 1: Artificial fishes swimming among aquatic plants in
a physics-based virtual marine environment.

goal is to engineer general-purpose vision systems for artifi-
cial animals possessing zoomimetic eyes that image continu-
ous 3D photorealistic worlds. We assemble a suite of vision
algorithms that support foveation, retinal image stabilization,
color object recognition, and perceptually-guided navigation.
These perceptual capabilities allow our artificial fishes to pur-
sue moving targets, such as fellow fishes. They do so by sac-
cading their eyes to maintain foveation on targets as they con-
trol their muscle-actuated bodies to locomote in the direction
of their gaze.

We also demonstrate motor learning algorithms that en-
able artificial marine animals to acquire some nontrivial mo-
tor skills through practice. In particular, these algorithms en-
able an artificial dolphin to learn to execute stunts not unlike
those performed by trained marine mammals to the delight of
spectators at aquatic theme parks. This research builds upon
the low-level motor learning algorithms described in our prior
work [1]. It reinforces our earlier claim that biomechanical
models of animals situated in physics-based worlds are fertile
ground for learning novel sensorimotor control strategies.

2 Review of Artificial Fishes
Artificial fishes are autonomous agents inhabiting a realistic,
physics-based virtual marine world (Fig. 1). Each agent has a
deformable body actuated by internal muscles. The body also
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Figure 2: Artificial fish model (from [1]).

harbors eyes and a brain with motor, perception, behavior, and
learning centers (Fig. 2). Through controlled muscle actions,
artificial fishes are able to swim throughsimulated water in ac-
cordance with hydrodynamic principles. Their functional fins
enable them to locomote, maintain balance, and maneuver in
the water. Thus the model captures not just the form and ap-
pearance of the animal, but also the basic physics of the animal
in its environment. Although rudimentary compared to those
of real animals, the brains of artificial fishes are nonetheless
able to learn some basic motor functions and carry out per-
ceptually guided motor tasks. The behavior center of the arti-
ficial fish’s brain mediates between its perception system and
its motor system, harnessing the dynamics of the perception-
action cycle. The innate character of the fish is determined
by fixed habits. Its dynamic mental state is represented by
a set of mental variables—hunger, libido, and fear. An in-
tention generator serves as the fish’s cognitive faculty, arbi-
trating the artificial fish’s behavioral repertoire in accordance
with its perceptual awareness of the virtual world. The be-
havioral repertoire includes primitive, reflexive behavior rou-
tines, such as collision avoidance, as well as more sophisti-
cated motivational behavior routines such as foraging, prey-
ing, schooling, and mating.

The details of the artificial fish model are presented in the
paper [1] (or see an earlier version in the ALIFE IV Proceed-
ings). The reminder of this section covers details about the
motor system which are necessary to understand the learning
and vision algorithms to follow.

The motor system comprises the dynamic model of the fish
including its muscle actuators and a set of motor controllers
(MCs). Fig. 3 illustrates the biomechanical body model which
produces realistic piscine locomotion using only 23 lumped
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Figure 3: Biomechanical fish model. Nodes denote lumped
masses. Lines indicate uniaxial elastic elements (shown at
natural length). Bold lines indicate muscle elements.

masses and 91 elastic elements. These mechanical compo-
nents are interconnected so as to maintain the structural in-
tegrity of the body as it flexes due to the action of its 12 con-
tractile muscles.

Artificial fishes locomote like real fishes, by autonomously
contracting their muscles. As the body flexes it displaces vir-
tual fluid which induces local reaction forces normal to the
body. These hydrodynamic forces generate thrust that pro-
pels the fish forward. The model mechanics are governed by
Lagrange equations of motion driven by the hydrodynamic
forces. The system of coupled second-order ordinary differ-
ential equations are continually integrated through time by a
numerical simulator.3

The model is sufficiently rich to enable the design of motor
controllers by gleaning information from the fish biomechan-
ics literature. The motor controllers coordinate muscle ac-
tions to carry out specific motor functions, such as swimming
forward (swim-MC), turning left (left-turn-MC), and turning
right (right-turn-MC). They translate natural control parame-
ters such as the forward speed or angle of the turn into detailed
muscle actions that execute the function. The artificial fish is
neutrallybuoyant in the virtual water and has a pair of pectoral
fins that enable it to navigate freely in its 3D aquatic world by
pitching, rolling, and yawing its body. Additional motor con-
trollers coordinate the fin actions.

3 Perception
This section describes a vision system for artificial fish which
is based solely on retinal image analysis via computer vi-
sion algorithms [6].4 We have developed a prototype active

3The artificial fish model achieves a good compromise between
realism and computational efficiency. For example, the implemen-
tation can simulate a scenario with 10 fishes, 15 food particles, and
5 static obstacles at about 4 frames/sec (with wireframe rendering)
on a Silicon Graphics R4400 Indigo2 Extreme workstation. More
complex scenarios with large schools of fish, dynamic plants, and
full color texture mapped GL rendering at video resolution can take
5 seconds or more per frame.

4By contrast, in our prior work [1] the artificial fishes rely on sim-
ulated perception—a “perceptual oracle” which satisfies the fish’s
sensory needs by directly interrogating the 3D world model; i.e., the
autonomousagents were permitted direct access to the geometric and
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vision system for our artificial animals. The system is de-
signed for extensibility, so that it can eventually support the
broad repertoire of individual and group behaviors of artificial
fishes. However, our approach to perception applies to any an-
imal, not just fishes. In fact, we view artificial fishes as virtual
piscine robots, and we do not restrict ourselves to modeling
the perceptual mechanisms of real fishes [7]. Indeed, it will
soon become evident that our piscine robots sense their world
through virtual eyes that are patterned after those of primates!

3.1 Active Vision System

The basic functionality of the active vision system starts with
binocular perspective projection of the color 3D world onto
the 2D retinas of the artificial fish. Retinal imaging is accom-
plished by photorealistic graphics rendering of the world from
the animal’s point of view. This projection respects occlusion
relationshipsamong objects. It forms spatiallynonuniformvi-
sual fields with high resolution foveas and low resolution pe-
ripheries. Based on an analysis of the incoming color retinal
image stream, the perception center of the artificial fish’s brain
supplies saccade control signals to its eyes and stabilize the vi-
sual fields during locomotion, to attend to interesting targets
based on color, and to keep targets fixated. The artificial fish
is thus able to approach and track other artificial fishes using
sensorimotor control.

Fig. 4 is a block diagram of the active vision system show-
ing two main modules that control foveation of the eyes and
retinal image stabilization.

Eyes and Foveated Retinal Imaging The artificial fish is
capable of binocular visionand possesses an ocular motor sys-
tem that controls eye movements [8]. The movements of each
eye are controlled through two gaze angles (�; �) which spec-
ify the horizontal and vertical rotation of the eyeball, respec-
tively, with respect to the head coordinate frame (when � =
� = 0�, the eye looks straight ahead).

Each eye is implemented as four coaxial virtual cameras
to approximate the spatially nonuniform, foveal/peripheral
imaging capabilities typical of biological eyes. Fig. 5(a)
shows an example of the 64 � 64 images that are rendered
(using the GL library and SGI graphics pipeline) by the four
coaxial cameras of the left and right eye. The level l = 0
camera has the widest field of view (about 120�). The field
of view decreases with increasing l. The highest resolution
image at level l = 3 is the fovea and the other images form
the visual periphery. Fig. 5(b) shows the 512 � 512 binocu-
lar retinal images composited from the coaxial images at the
top of the figure (the component images are expanded by fac-
tors 2l�3). To reveal the retinal image structure in the figure,
we have placed a white border around each magnified com-
ponent image. Significant computational efficiency accrues
from processing four 64 � 64 component images rather than
a uniform 512� 512 retinal image.

photometric information available to the graphics rendering engine,
as well as object identity and dynamic state information about the
physics-based world model.
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Figure 4: The active vision system. The flow of the algorithm
is from right to left. A: Update gaze angles (�; �) and saccade
using these angles, B: Search current level for model target
and if found localize it, else search lower level, C: Select level
to be processed (see text), F: Reduce field of view for next level
and render, M: Compute a general translational displacement
vector (u; v) between images I(t � 1) and I(t), S: Scale the
color histogram of the model for use by the current level.

Foveation by Color Object Detection The brain of the fish
stores a set of color models of objects that are of interest to it.
For instance, if the fish is a predator, it would possess mental
models of prey fish. The models are stored as a list of 64�64
RGB color images in the fish’s visual memory.

To detect and localize any target that may be imaged in the
low resolution periphery of its retinas, the active vision sys-
tem of the fish employs an improved version of a color index-
ing algorithm proposed by Swain [9]. Since each model ob-
ject has a unique color histogram signature, it can be detected
in the retinal image by histogram intersection and localized by
histogram backprojection. Our algorithms are explained more
fully in [10].
Saccadic Eye Movements When a target is detected in the
visual periphery, the eyes will saccade to the angular offset of
the object to bring it within the fovea. With the object in the
high resolution fovea, a more accurate foveation is obtained
by a second pass of histogram backprojection. A second sac-
cade typically centers the object accurately in both left and
right foveas, thus achieving vergence.

Module A in Fig. 4 performs the saccades by incrementing
the gaze angles (�; �) in order to rotate the eyes to achieve the
required gaze direction.
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Figure 5: Binocular retinal imaging (monochrome versions of original color images). (a) 4 component images; l = 0; 1; 2; are
peripheral images; l = 3 is foveal image. (b) Composited retinal images (borders of composited component images are shown
in white).

Visual Field Stabilization using Optical Flow It is neces-
sary to stabilize the visual field of the artificial fish because
its body undulates as it swims. Once a target is verged in both
foveas, the stabilization process (Fig. 4) assumes the task of
keeping the target foveated as the fish locomotes. Thus, it em-
ulates the optokinetic reflex in animals.

Stabilization is achieved by computing the overall transla-
tional displacement (u; v) of light patterns between the cur-
rent foveal image and that from the previous time instant, and
updating the gaze angles to compensate. The displacement is
computed as a translational offset in the retinotopiccoordinate
system by a least squares minimization of the optical flow be-
tween image frames at times t and t� 1 [6].

The optical flow stabilization method is robust only for
small displacements between frames. Consequently, when the
displacement of the target between frames is large enough that
the method is likely to produce bad estimates, the foveation
module is invoked to re-detect and re-foveate the target as de-
scribed earlier.

Each eye is controlled independently during foveation and
stabilizationof a target. Hence, the two retinal images must be
correlated to keep them verged accurately on the target. Re-
ferring to Fig. 6, the vergence angle is �V = (�R � �L) and
its magnitude increases as the fish comes closer to the target.
Therefore, once the eyes are verged on a target, it is straight-
forward for the fish vision system to estimate the range to the

target by triangulation using the gaze angles.

3.2 Vision-Guided Navigation

The fish can use the gaze direction for the purposes of navi-
gation in its world. In particular, it is natural to use the gaze
angles as the eyes are fixated on a target to navigate towards
the target. The � angles are used to compute the left/right
turn angle �P shown in Fig. 6, and the � angles are simi-
larly used to compute an up/down turn angle �P . The fish’s
turn motor controllers (see Section 2) are invoked to execute a
left/right turn—left-turn-MC for an above-threshold positive
�P and right-turn-MC for negative �P—with j�P j as param-
eter. Up/down turn motor commands are issued to the fish’s
pectoral fins, with an above-threshold positive�P interpreted
as “up” and negative as “down”.

The problem of pursuing a moving target that has been fix-
ated in the foveas of the fish’s eyes is simplified by the gaze
control mechanism described above. The fish can robustly
track a target in its fovea and locomote to follow it around
the environment by using the turn angles (�P ; �P ) computed
from the gaze angles that are continuously updated by the
foveation/stabilization algorithms.

We have carried out numerous experiments in which the
moving target is a reddish prey fish whose color histogram
model is stored in the memory of a predator fish equipped
with the active vision system. Fig. 7 shows plots of the
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Figure 8: Retinal image sequence from the left eye of the active vision fish as it detects and foveates on a reddish fish target
and swims in pursuit of the target (monochrome versions of original color images). The target appears in the periphery (middle
right) in frame 0 and is foveated in frame 1. The target remains fixated in the center of the fovea as the fish uses the gaze direction
to swim towards it (frames 7–117). The target fish turns and swims away with the observer fish in visually guided pursuit (frames
135–152).
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Figure 7: Gaze angles resulting from the pursuit of a target by
the AV fish.

gaze angles and the turn angles obtained over the course of
100 frames in a typical experiment as the predator is fixated
upon and actively pursuing a prey target. Fig. 8 shows a se-
quence of image frames acquired by the fish during its nav-
igation (monochrome versions of only the left retinal images
are shown). Frame 0 shows the target visible in the low resolu-
tion periphery of the fish’s eyes (middle right). Frame 1 shows
the view after the target has been detected and the eyes have
performed a saccade to foveate the target (the scale difference
of the target after foveation is due to perspective distortion).
The subsequent frames show the target remaining fixated in
the fovea despite the side-to-side motion of the fish’s body as
it swims towards the target.

The saccade signals that keep the predator’s eyes fixated on
its prey as both are swimming are reflected by the undulatory
responses of the gaze angles in Fig. 7. The figure also shows
that the vergence angle increases as the predator approaches
its target (near frame 100). In comparison to the � angles, the
� angles show little variation, because the fish does not undu-
late vertically very much as it swims forward. It is apparent
from the graphs that the gaze directions of the two eyes are
well correlated.

Note that in frames 87–117 of Fig. 8, a yellow fish whose
size is similar to the target fish passes behind the target. In this
experiment the predator was programmed to be totally disin-
terested in and not bother to foveate any non-reddish objects.
Because of the color difference, the yellowish object does not
distract the fish’s gaze from its reddish target. This demon-
strates the robustness of the color-based fixation algorithm.

4 Learning
The learning center of its brain (see Fig. 2) enables the artifi-
cial fish to acquire effective locomotionskills through practice
and sensory reinforcement. Our second challenge has been to
enhance the algorithms comprising the artificial fish’s learn-
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ing center so that it can learn more complex motor skills than
those we demonstrated in reference [1].

4.1 Low-Level Motor Learning
Recall that some of the deformable elements in the biome-
chanical model (Fig. 3) play the role of contractile muscles
whose natural length decreases under the autonomous control
of the motor center of the artificial animal’s brain. To dynam-
ically contract a muscle, the brain must supply an activation
function a(t) to the muscle. This continuous time function
has range [0; 1], with 0 corresponding to a fully relaxed mus-
cle and 1 to a fully contracted muscle. Typically, individual
muscles form muscle groups, called actuators, that are acti-
vated in unison. Referring to Fig. 3, the artificial fish has 12
muscles which are grouped pairwise in each segment to form
3 left actuators and 3 right actuators. Each actuator i is ac-
tivated by a scalar actuation function ui(t), whose range is
again normalized to [0; 1], thus translating straightforwardly
into activation functions for each muscle in the actuator. Thus,
to control the fish’s body we must specify the actuation func-
tions u(t) = [u1(t); : : : ; ui(t); : : : ; uN (t)]0, where N = 6.
The continuous vector-valued function of time u(t) is called
the controller and its job is to produce locomotion. Learned
controllers may be stored within the artificial animal’s motor
control center.

A continuousobjective functionalE provides a quantitative
measure of the progress of the locomotion learning process.
The functional is the weighted sum of a termEu that evaluates
the controller u(t) and a term Ev that evaluates the motion
v(t) that the controller produces in a time interval t0 � t �
t1, with smaller values of E indicating better controllers u.
Mathematically,

E(u(t)) =

Z t1

t0

(�1Eu(u(t)) + �2Ev(v(t))) dt; (1)

where �1 and �2 are scalar weights. Fig. 9 illustrates this
schematically.

It is important to note that the complexity of our models pre-
cludes the closed-form evaluation of E. As Fig. 9 indicates, to

compute E, the artificial animal must first invoke a controller
u(t) to produce a motion v(t) with its body (in order to eval-
uate term Ev). This is done through forward simulation of the
biomechanical model over the time interval t0 � t � t1 with
controlleru(t).

We may want to promote a preference for controllers with
certain qualities via the controller evaluation term Eu. For
example, we can guide the optimization of E by discourag-
ing large, rapid fluctuations of u, since chaotic actuations are
usually energetically inefficient. We encourage lower am-
plitude, smoother controllers through the function Eu =�
�1jdu=dtj

2+ �2jd
2
u=dt2j2)=2, where the weighting factors

�1 and �2 penalize actuation amplitudes and actuation varia-
tion, respectively. The distinction between good and bad con-
trollers also depends on the goals that the animal must accom-
plish. In our learning experiments we used trajectory criteria
Ev such as the final distance to the goal, the deviation from a
desired speed, etc. These and other criteria will be discussed
shortly in conjunction with specific experiments.

The low level motor learning problem optimizes the objec-
tive functional (1). This cannot be done analytically. We con-
vert the continuous optimization problem to an algebraic pa-
rameter optimization problem [11] by parameterizing the con-
troller through discretization using basis functions. Mathe-
matically, we express ui(t) =

PM

j=1 u
j
iB

j(t), where the uji
are scalar parameters and the Bj (t), 1 � j �M are (vector-
valued) temporal basis functions. The simplest case is when
theuji are evenly distributed in the time interval and theBj(t)
are tent functions centered on the nodes with support extend-
ing to nearest neighbor nodes, so that u(t) is the linear inter-
polation of the nodal variables.

Since u(t) has N basis functions, the discretized con-
troller is represented using NM parameters. Substituting
the above equation into the continuous objective functional
(1), we approximate it by the discrete objective function
E([u1

1
; : : : ; uMN ]0). Learning low level motor control amounts

to using an optimizationalgorithmto iterativelyupdate the pa-
rameters so as to optimize the discrete objective function and
produce increasingly better locomotion.

We use the simulated annealing method to optimize the ob-
jective function [12]. Simulated annealing has three features
that make it particularly suitable for our application. First, it is
applicable to problems with a large number of variables yield-
ing search spaces large enough to make exhaustive search
prohibitive. Second, it does not require gradient information
about the objective function. Analytic gradients are not di-
rectly attainable in our situation since evaluating E requires a
forward dynamic simulation. Third, it avoids getting trapped
in local suboptima of E. In fact, given a sufficiently slow an-
nealing schedule, it will find a global optimum of the objective
functional. Robustness against local suboptima can be impor-
tant in obtaining muscle control functions that produce realis-
tic motion.

In summary, the motor learning algorithms discover mus-
cle controllers that produce efficient locomotion through op-
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timization. Muscle contractions that produce forward move-
ments are “remembered”. These partial successes then form
the basis for the fish’s subsequent improvement in its swim-
ming technique. Their brain’s learning center also enable
these artificial animals to train themselves to accomplish
higher level sensorimotor tasks, such as maneuvering to reach
a visible target (see [1] for the details).

4.2 Learning Complex Skills

Abstracting Controllers It is time consuming to learn a
good solution for a low level controller because of the high
dimensionality of the problem (large NM ), the lack of gradi-
ent information to accelerate the optimization of the objective
functional, and the presence of suboptimal traps that must be
avoided. For tractability, the learning procedure must be able
to abstract compact higher level controllers from the low level
controllers that have been learned, retain the abstracted con-
trollers, and apply them to future locomotion tasks.

The process of abstraction takes the form of a dimension-
ality reducing change of representation. More specifically, it
seeks to compress the many parameters of the discrete con-
trollers to a compact form in terms of a handful of basis
functions. Natural, steady-state locomotion patterns tend to
be quasi-periodic and they can be abstracted very effectively
without substantial loss. A natural approach to abstracting
low-level motor controllers is to apply the fast Fourier trans-
form (FFT) [12] to the parameters of the controller and then
suppress the below-threshold amplitudes.

Typically, our artificial animals are put through a “basic
training” regimen of primitive motor tasks that it must learn,
such as locomoting at different speeds and executing turns
of different radii. They learn effective low level controllers
for each task and retain compact representations of these con-
trollers through controller abstraction. The animals subse-
quently put the abstractions that they have learned into prac-
tice to accomplish higher level tasks, such as target tracking or
leaping through the air. To this end, abstracted controllers are
concatenated in sequence, with each controller slightly over-
lapping the next. To eliminate discontinuities, temporally ad-
jacent controllers are smoothly blended together by linearly
fading and summing them over a small, fixed region of over-
lap, approximately 5% of each controller (Fig. 10).

Composing Macro Controllers Next the learning process
discovers composite abstracted controllers that can accom-
plish complex locomotion tasks. Consider the spectacular
stunts performed by marine mammals that elicit applause at
theme parks like “SeaWorld”. We can treat a leap through the
air as a complex task that can be achieved using simpler tasks;
e.g., diving deep beneath a suitable leap point, surfacing vig-
orously to gain momentum, maintaining balance during the
ballistic flight through the air, and splashing down dramati-
cally with a belly flop.

We have developed an automatic learning technique that
constructs a macro jump controller of this sort as an optimized
sequence of basic abstracted controllers. The optimization

CONTROLLERSBASIC ABSTRACTED

turn up controller move forward controllerturn down controller 

turn left controller turn right controller

turn down controller move forward controller turn up controller 
turn right controller

HIGHER ORDER CONTROLLER USED FOR JUMPING OUT OF WATER

Figure 10: Higher level controller for jumping out of water is
constructed from a set of abstracted basic controllers.

process is, in principle, similar to the one in low level learn-
ing. It uses simulated annealing for optimization, but rather
than optimizing over nodal parameters or frequency parame-
ters, it optimizes over the selection, ordering, and duration of
abstracted controllers. Thus the artificial animal applying this
method learns effective macro controllers of the type shown at
the bottom of Fig. 10 by optimizing over a learned repertoire
of basic abstracted controllers illustrated at the top of the fig-
ure.

We have trained an artificial dolphin to learn effective con-
trollers for 5 basic motor tasks: turn-down, turn-up, turn-left,
turn-right, and move-forward. We then give it the task of per-
forming a stunt like the one described above and the dolphin
discovers a combination of controllers that accomplishes the
stunt. In particular, it discovers that it must build up momen-
tum by thrusting from deep in the virtual pool of water up to-
wards the surface and it must exploit this momentum to leap
out of the water. Fig. 11(a) shows a frame as the dolphin exits
the water. The dolphin can also learn to perform tricks while
in the air. Fig. 11(b) shows it using its nose to bounce a large
beach-ball off a support. The dolphin can learn to control the
angular momentum of its body while exiting the water and
while in ballistic flight so that it can perform aerial spins and
somersaults. Fig. 11(c) shows it in the midst of a somersault
in which it has just bounced the ball with its tail instead of its
nose. Fig. 11(d) shows the dolphin right after splashdown. In
this instance it has made a dramatic bellyflop splash.

5 Conclusion
We have demonstrated that the artificial fishes model that we
developed in our prior work may be effectively employed to
devise sophisticated algorithms for perception and learning.
We have successfully implemented within the framework of
the artificial fish a set of active vision algorithms for foveation
and vergence of interesting targets, for retinal image stabi-
lization, and for pursuit of moving targets through visually-
guided navigation. Note that these vision algorithms confront
synthetic retinal images that are by no means easy to ana-
lyze (compared to the sorts of images encountered in physi-
cal robotics). We have also demonstrated enhanced learning
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Figure 11: “SeaWorld” skills learned by an artificial dolphin.

algorithms that can enable an artificial marine mammal to ac-
quire complex motor skills. These skills necessitate locomo-
tion through water, ballistic flight through air, and a graceful
style of execution. The use of highly realistic, physics-based
virtual worlds inhabited by biomimetic autonomous agents
appears to be a fruitful strategy for exploring difficult open
problems in biological information processing and control.
Our approach has value beyond artificial life to related disci-
plines such as vision, robotics, and virtual reality.
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