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Abstract

We employ a virtual marine world inhabited by redis-
ticartificial animals as an ALife laboratory for devel op-
ing and evaluating zoomimetic perception and learning
algorithms. In particular, we propose active perception
strategies that enable artificidl marine animals to nav-
igate purposefully through their world by using com-
puter vision algorithms to analyze the foveated retinal
image streams acquired by their eyes. We aso demon-
stratelearning algorithmsthat enableartificial marinean-
imals to acquire complex motor skills similar to those
displayed by trained marine mammals at aquatic theme
parks.

1 Introduction

A recent result of artificial life research isavirtua world in-
habited by artificial animals and plants that emulate some of
thefaunaand floraof natural marine environments[1]. Inthis
paper, we employ thishighly redistic virtua world as an arti-
ficia zoological laboratory. The laboratory facilitatesthe in-
vestigation of open problemsrelated to biological information
processing in animals, and it has enabled us to develop and
evaluate zoomimetic perception and learning a gorithms.
The psychologist J.J. Gibson studied (in pre-computational
terms) the perceptua problems faced by an active observer
situated in the dynamic environment [2].! We present a pro-
totype active perception system that enables artificial marine
animal s to navigate purposefully through their world by ana-
lyzing the retinal image streams acquired by their eyes. Reti-
nal image analysisis carried out using computer vision algo-
rithms. Weequip our artificial animalswithdirectable, virtua
eyes capable of fovea vision. This aspect of our work isre-
lated to that of Cliff and Bullock [5], but our redistic animal
models have enabled us to progressagreat deal further.? Our

! Computational versions of Gibson's paradigm were developed
in computer vision by Bajcsy [3] and Ballard [4] under the names of
“active perception” and “animate vision”, respectively.

2Cliff and Bullock [5] were concerned with the evolution of sim-
plevisually guided behaviorsusing Wilson’s animat in a discrete 2D
grid world.

Figure 1. Artificial fishes swimming among aquatic plantsin
a physics-based virtual marine environment.

goal isto engineer genera -purpose vision systems for artifi-
cia animals possessing zoomimetic eyes that image continu-
ous 3D photorealistic worlds. We assemble a suite of vision
algorithmsthat support foveation, retinal image stabilization,
color object recognition, and perceptual ly-guided navigation.
These perceptual capabilitiesallow our artificia fishesto pur-
sue moving targets, such as fellow fishes. They do so by sac-
cading their eyes to maintain foveation on targets as they con-
trol their muscle-actuated bodiesto locomotein the direction
of their gaze.

We also demonstrate motor learning algorithms that en-
able artificial marine animals to acquire some nontrivial mo-
tor skills through practice. In particular, these algorithms en-
able an artificial dolphinto learn to execute stunts not unlike
those performed by trained marine mammals to the delight of
spectators at aquatic theme parks. This research builds upon
thelow-level motor learning algorithmsdescribed in our prior
work [1]. It reinforces our earlier claim that biomechanica
models of animals situated in physics-based worlds are fertile
ground for learning novel sensorimotor control strategies.

2 Review of Artificial Fishes

Artificia fishes are autonomous agents inhabiting a redlistic,
physics-based virtual marineworld (Fig. 1). Each agent hasa
deformable body actuated by internal muscles. The body also
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Figure 2: Artificial fish model (from[1]).

harborseyes and abrain with motor, perception, behavior, and
learning centers (Fig. 2). Through controlled muscle actions,
artificia fishesareableto swimthroughsimulated water in ac-
cordance with hydrodynamic principles. Their functiona fins
enable them to locomote, maintain balance, and maneuver in
the water. Thus the model captures not just the form and ap-
pearance of theanimal, but al so thebasi ¢ physicsof theanimal
in its environment. Although rudimentary compared to those
of real animals, the brains of artificia fishes are nonetheless
able to learn some basic motor functions and carry out per-
ceptually guided motor tasks. The behavior center of the arti-
ficia fish’s brain mediates between its perception system and
its motor system, harnessing the dynamics of the perception-
action cycle. The innate character of the fish is determined
by fixed habits. Its dynamic mental state is represented by
a set of menta variables—hunger, libido, and fear. Anin-
tention generator serves as the fish's cognitive faculty, arbi-
trating the artificial fish's behavioral repertoirein accordance
with its perceptual awareness of the virtual world. The be-
havioral repertoireincludes primitive, reflexive behavior rou-
tines, such as collision avoidance, as well as more sophisti-
cated motivational behavior routines such as foraging, prey-
ing, schooling, and mating.

The details of the artificial fish model are presented in the
paper [1] (or see an earlier version in the ALIFE 1V Proceed-
ings). The reminder of this section covers details about the
motor system which are necessary to understand the learning
and vision algorithmsto follow.

The motor system comprises the dynamic model of thefish
including its muscle actuators and a set of motor controllers
(MCs). Fig. 3illustratesthe biomechanical body model which
produces realistic piscine locomotion using only 23 lumped
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Figure 3: Biomechanical fish model. Nodes denote lumped
masses. Lines indicate uniaxial elastic elements (shown at
natural length). Bold lines indicate muscle € ements.

masses and 91 elastic elements. These mechanical compo-
nents are interconnected so as to maintain the structural in-
tegrity of the body as it flexes due to the action of its 12 con-
tractile muscles.

Artificial fishes locomote like real fishes, by autonomously
contracting their muscles. Asthebody flexesit displaces vir-
tual fluid which induces loca reaction forces norma to the
body. These hydrodynamic forces generate thrust that pro-
pelsthe fish forward. The model mechanics are governed by
Lagrange equations of motion driven by the hydrodynamic
forces. The system of coupled second-order ordinary differ-
ential equations are continually integrated through time by a
numerical simulator.?

The modd issufficiently rich to enable the design of motor
controllers by gleaning information from the fish biomechan-
ics literature. The motor controllers coordinate muscle ac-
tionsto carry out specific motor functions, such as swimming
forward (swim-MC), turning left (left-turn-MC), and turning
right (right-turn-MC). They trandate natural control parame-
terssuch astheforward speed or angle of theturninto detailed
muscle actions that execute the function. The artificial fishis
neutrally buoyant inthevirtual water and hasapair of pectoral
finsthat enableit to navigatefreely in its3D aquatic world by
pitching, rolling, and yawing its body. Additional motor con-
trollerscoordinate the fin actions.

3 Perception

This section describes avision system for artificial fish which
is based solely on retina image analysis via computer vi-
sion algorithms [6].* We have developed a prototype active

*The artificial fish model achieves a good compromise between
realism and computational efficiency. For example, the implemen-
tation can simulate a scenario with 10 fishes, 15 food particles, and
5 static obstacles at about 4 frames/sec (with wireframe rendering)
on a Silicon Graphics R4400 Indigo® Extreme workstation. More
complex scenarios with large schools of fish, dynamic plants, and
full color texture mapped GL rendering at video resolution can take
5 secondsor more per frame.

4By contrast, in our prior work [1] the artificial fishesrely onsim-
ulated perception—a “ perceptual oracle” which satisfies the fish’s
sensory needs by directly interrogating the 3D world model; i.e., the
autonomousagentswere permitted direct accessto the geometric and
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vision system for our artificial animals. The system is de-
signed for extensibility, so that it can eventually support the
broad repertoire of individual and group behaviorsof artificia
fishes. However, our approach to perception appliesto any an-
imal, not just fishes. Infact, weview artificial fishesasvirtua
piscine robots, and we do not restrict ourselves to modeling
the perceptual mechanisms of real fishes [7]. Indeed, it will
soon become evident that our piscine robots sense their world
through virtual eyesthat are patterned after those of primates!

3.1 ActiveVision System

The basic functionality of the active vision system starts with
binocular perspective projection of the color 3D world onto
the 2D retinas of the artificial fish. Retinal imaging isaccom-
plished by photorealistic graphicsrendering of theworld from
the animal’s point of view. This projection respects occlusion
rel ationshipsamong objects. It formsspatially nonuniformvi-
sual fieldswith high resolution foveas and low resolution pe-
ripheries. Based on an analysis of the incoming color retinal
image stream, the perception center of theartificial fish’sbrain
suppliessaccade control signalstoitseyesand stabilizethevi-
sua fields during locomoation, to attend to interesting targets
based on color, and to keep targets fixated. The artificia fish
isthus able to approach and track other artificial fishes using
sensorimotor control.

Fig. 4 isablock diagram of the active vision system show-
ing two main modules that control foveation of the eyes and
retinal image stabilization.

Eyes and Foveated Retinal Imaging The artificia fish is
capable of binocular visionand possesses an ocular motor sys-
tem that controlseye movements[8]. The movements of each
eyeare controlled through two gaze angles (¢, ¢) which spec-
ify the horizontal and vertical rotation of the eyeball, respec-
tively, with respect to the head coordinate frame (when § =
¢ = 0°, the eye looks straight ahead).

Each eye is implemented as four coaxia virtua cameras
to approximate the spatially nonuniform, foveal/peripheral
imaging capabilities typica of biologica eyes. Fig. 5(a)
shows an example of the 64 x 64 images that are rendered
(using the GL library and SGI graphics pipeline) by the four
coaxial cameras of the left and right eye. Thelevd | = 0
camera has the widest field of view (about 120°). The field
of view decreases with increasing {. The highest resolution
image at level [ = 3 isthe fovea and the other images form
the visual periphery. Fig. 5(b) showsthe 512 x 512 binocu-
lar retinal images composited from the coaxial images at the
top of the figure (the component images are expanded by fac-
tors 2/~3). To revea the retina image structurein the figure,
we have placed a white border around each magnified com-
ponent image. Significant computationa efficiency accrues
from processing four 64 x 64 component images rather than
auniform512 x 512 retinal image.

photometric information available to the graphics rendering engine,
as well as object identity and dynamic state information about the
physics-based world model.
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Figure4: The active vision system. The flow of the algorithm
isfromrighttoleft. A: Updategazeangles (¢, ¢) and saccade
using these angles, B: Search current level for model target
andif foundlocalizeit, el se search lower level, C: Sdlect level
tobe processed (seetext), F: Reduce field of view for next level
and render, M: Computea general trandational displacement
vector (u, v) betweenimages 7(t — 1) and I(¢), S Scalethe
color histogramof the model for use by the current level.

Foveation by Color Object Detection The brain of thefish
storesa set of color models of objectsthat are of interest toit.
For instance, if the fish is a predator, it would possess mental
models of prey fish. Themodelsare stored asalist of 64 x 64
RGB color images in the fish’s visual memory.

To detect and localize any target that may be imaged inthe
low resolution periphery of its retinas, the active vision sys-
tem of the fish employs an improved version of a color index-
ing algorithm proposed by Swain [9]. Since each model ob-
ject has a unique color histogram signature, it can be detected
intheretinal image by histogramintersection and localized by
hi stogram backproj ection. Our algorithmsare explained more

fullyin.[lg. . ]
Saccadic Eye Movements When atarget is detected in the

visual periphery, the eyeswill saccade to the angular offset of
the object to bring it within the fovea. With the object in the
high resolution fovea, a more accurate fovestion is obtained
by a second pass of histogram backprojection. A second sac-
cade typically centers the object accurately in both left and
right foveas, thus achieving vergence.

Module A in Fig. 4 performs the saccades by incrementing
thegaze angles (¢, ¢) inorder torotatetheeyesto achievethe
required gaze direction.
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Figure 5: Binocular retinal imaging (monochrome versions of original color images). (a) 4 componentimages; [ = 0, 1,2, are
peripheral images; I = 3 isfoveal image. (b) Composited retinal images (borders of composited component images are shown

in white).

Visual Field Stabilization using Optical Flow It isneces-
sary to stabilize the visual field of the artificia fish because
itsbody undulatesasit swims. Once atarget isverged in both
fovesas, the stabilization process (Fig. 4) assumes the task of
keeping thetarget fovested asthefish locomotes. Thus, it em-
ulates the optokinetic reflex in animals.

Stabilization is achieved by computing the overall tranda
tional displacement (u, v) of light patterns between the cur-
rent foveal image and that from the previoustimeinstant, and
updating the gaze angles to compensate. The displacement is
computed asatrang ational offset in theretinotopi ccoordinate
system by aleast squares minimization of the optical flow be-
tween image frames at times¢ and ¢ — 1 [6].

The optical flow stabilization method is robust only for
small displacementsbetween frames. Consequently, whenthe
displacement of thetarget between framesislargeenough that
the method is likely to produce bad estimates, the foveation
moduleisinvoked to re-detect and re-foveate thetarget asde-
scribed earlier.

Each eyeis controlled independently during foveation and
stabilizationof atarget. Hence, thetwo retina images must be
correlated to keep them verged accurately on the target. Re-
ferring to Fig. 6, the vergence angleisfy = (fr — 01) and
its magnitude increases as the fish comes closer to the target.
Therefore, once the eyes are verged on atarget, it is straight-
forward for thefish vision system to estimate the range to the

target by triangulation using the gaze angles.

3.2 Vision-Guided Navigation

The fish can use the gaze direction for the purposes of navi-
gation initsworld. In particular, it is naturd to use the gaze
angles as the eyes are fixated on a target to navigate towards
the target. The ¢ angles are used to compute the left/right
turn angle 6p shown in Fig. 6, and the ¢ angles are simi-
larly used to compute an up/down turn angle ¢p. Thefish's
turn motor controllers(see Section 2) areinvoked to execute a
[eft/right turn—Ieft-turn-M C for an above-threshold positive
6p and right-turn-MC for negative 6 p—with |0 p | as param-
eter. Up/down turn motor commands are issued to the fish's
pectoral fins, with an above-threshold positive ¢ p interpreted
as“up” and negative as“down”.

The problem of pursuing a moving target that has been fix-
ated in the foveas of the fish's eyes is simplified by the gaze
control mechanism described above. The fish can robustly
track a target in its fovea and locomote to follow it around
the environment by using theturn angles (¢p, ¢ p) computed
from the gaze angles that are continuously updated by the
foveation/stabilization a gorithms.

We have carried out humerous experiments in which the
moving target is a reddish prey fish whose color histogram
model is stored in the memory of a predator fish equipped
with the active vision system. Fig. 7 shows plots of the
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Figure 8: Retinal image sequence from the left eye of the active vision fish as it detects and foveates on a reddish fish target
and swimsin pursuit of the target (monochrome versions of original color images). The target appearsin the periphery (middle
right) inframeO andisfoveatedinframe 1. Thetarget remainsfixated inthecenter of the fovea asthefish usesthe gazedirection
toswimtowardsit (frames 7—117). Thetarget fish turnsand swims away with the observer fishin visually guided pursuit (frames

135-152).
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Figure 6: Gaze anglesand rangeto target geometry.
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Figure7: Gaze anglesresulting fromthe pursuit of atarget by
the AV fish.

gaze angles and the turn angles obtained over the course of
100 frames in atypical experiment as the predator is fixated
upon and actively pursuing a prey target. Fig. 8 shows a se-
guence of image frames acquired by the fish during its nav-
igation (monochrome versions of only the |eft retinal images
areshown). Frame O showsthetarget visibleinthelow resolu-
tion periphery of thefish’seyes (middleright). Frame 1 shows
the view after the target has been detected and the eyes have
performed a saccade to foveate thetarget (the scale difference
of the target after foveation is due to perspective distortion).
The subsequent frames show the target remaining fixated in
the fovea despite the side-to-side motion of the fish’sbody as
it swimstowards the target.

The saccade signal sthat keep the predator’ seyesfixated on
itsprey as both are swimming are reflected by the undulatory
responses of the gaze anglesin Fig. 7. Thefigure also shows
that the vergence angle increases as the predator approaches
itstarget (near frame 100). In comparison to the 8 angles, the
¢ angles show littlevariation, because the fish does not undu-
late vertically very much as it swims forward. It is apparent
from the graphs that the gaze directions of the two eyes are
well correlated.

Note that in frames 87-117 of Fig. 8, ayelow fish whose
sizeissimilar tothetarget fish passes behind thetarget. Inthis
experiment the predator was programmed to be totally disin-
terested in and not bother to foveate any non-reddish objects.
Because of the color difference, the yellowish object does not
distract the fish’s gaze from its reddish target. This demon-
strates the robustness of the col or-based fixation al gorithm.

4 Learning

The learning center of itsbrain (see Fig. 2) enables the artifi-
cial fish to acquireeffectivelocomotionskillsthrough practice
and sensory reinforcement. Our second challenge has been to
enhance the a gorithms comprising the artificial fish’s learn-
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Figure 9: The objective functionthat guidesthe learning pro-
cess is a weighted sum of terms that evaluate the controller
and the trajectory.

ing center so that it can learn more complex motor skillsthan
those we demonstrated in reference [1].

4.1 Low-Level Motor Learning

Recall that some of the deformable e ements in the biome-
chanical model (Fig. 3) play the role of contractile muscles
whose natural length decreases under the autonomous control
of the motor center of theartificial animal’sbrain. To dynam-
ically contract a muscle, the brain must supply an activation
function «(t) to the muscle. This continuous time function
has range [0, 1], with 0 corresponding to a fully relaxed mus-
cleand 1 to afully contracted muscle. Typicdly, individual
muscles form muscle groups, called actuators, that are acti-
vated in unison. Referring to Fig. 3, the artificid fish has 12
muscles which are grouped pairwise in each segment to form
3 left actuators and 3 right actuators. Each actuator i is ac-
tivated by a scalar actuation function «;(¢), whose range is
again normalized to [0, 1], thus trandlating straightforwardly
into activationfunctionsfor each musclein theactuator. Thus,
to control the fish’s body we must specify the actuation func-
tionsu(t) = [ui(t),..., u;(t),...,un(t)]’, where N = 6.
The continuous vector-valued function of timeu(¢) is called
the controller and itsjob is to produce locomotion. Learned
controllers may be stored within the artificia animal’s motor
control center.

A continuousobjectivefunctional £ providesaquantitative
mesasure of the progress of the locomotion learning process.
Thefunctional istheweighted sum of aterm F, that evaluates
the controller u(t) and aterm E, that evaluates the motion
v (t) that the controller producesin atimeinterval ¢, < ¢t <
tq, with smaller values of F indicating better controllers u.
Mathematically,

E(u(t)) :/t l(ﬂlEu(U(t))Jrquv(V(t))) dt, (1)

where p; and p» are scalar weights. Fig. 9 illustrates this
schematically.

Itisimportant to notethat thecompl exity of our modelspre-
cludestheclosed-formevaluationof . AsFig. 9indicates, to

compute Z, theartificial anima must first invoke a controller
u(t) to produce amotion v (¢) withits body (in order to eval-
uateterm £,). Thisisdonethrough forward simulation of the
biomechanical model over thetimeinterval ¢y <t < ¢; with
controller u(t).

We may want to promote a preference for controllerswith
certain qualities via the controller evaluation term . For
example, we can guide the optimization of £ by discourag-
ing large, rapid fluctuations of u, since chaotic actuations are
usualy energetically inefficient. We encourage lower am-
plitude, smoother controllers through the function £, =
(vi|du/dt|* + vo|d*u/dt?|?) /2, where the weighting factors
v and v- pendize actuation amplitudes and actuation varia-
tion, respectively. The distinction between good and bad con-
trollersal so depends on the goal sthat the animal must accom-
plish. In our learning experiments we used tragjectory criteria
E, such asthefina distanceto the god, the deviation from a
desired speed, etc. These and other criteriawill be discussed
shortly in conjunction with specific experiments.

Thelow level motor learning problem optimizesthe objec-
tivefunctional (1). Thiscannot be done analytically. We con-
vert the continuous optimization problem to an agebraic pa
rameter optimization problem[11] by parameterizing the con-
troller through discretization us ng basis functions. Mathe-
matically, we express u;(t) = Y, u] B/ (t), where the v}
are sclar parameters and the B (t), 1 < j < M are (vector-
valued) temporal basis functions. The simplest case is when
theu! areevenly distributedinthetimeinterval and the B/ (t)
are tent functions centered on the nodes with support extend-
ing to nearest neighbor nodes, so that u(t) isthe linear inter-
polation of the nodd variables.

Since u(t) has N basis functions, the discretized con-
troller is represented using N M/ parameters. Substituting
the above eguation into the continuous objective functional
(1), we approximate it by the discrete objective function
E([ui, ..., u}]). Learning low level motor control anounts
tousing an optimizational gorithmtoiterativel y updatethe pa-
rameters so as to optimize the discrete objective function and
produce increasingly better locomotion.

We use the simul ated annealing method to optimizethe ob-
jective function [12]. Simulated annealing has three features
that makeit particularly suitablefor our application. Firgt, itis
applicableto problemswith alarge number of variablesyield-
ing search spaces large enough to make exhaustive search
prohibitive. Second, it does not require gradient information
about the objective function. Analytic gradients are not di-
rectly attainablein our situation since evaluating I’ requiresa
forward dynamic simulation. Third, it avoids getting trapped
inlocal suboptimaof E. Infact, given asufficiently slow an-
nealing schedule, it will find aglobal optimum of theobjective
functional. Robustness against local suboptimacan beimpor-
tant in obtai ning muscle control functionsthat produceredis-
tic motion.

In summary, the motor learning agorithms discover mus-
cle controllersthat produce efficient locomotion through op-
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timization. Muscle contractions that produce forward move-
ments are “remembered”. These partia successes then form
the basis for the fish’s subsequent improvement in its swim-
ming technique. Their brain’s learning center aso enable
these artificial animals to train themselves to accomplish
higher level sensorimotor tasks, such as maneuvering to reach
avisibletarget (see[1] for the details).

4.2 Learning Complex Skills

Abstracting Controllers It is time consuming to learn a
good solution for a low level controller because of the high
dimensionality of the problem (large V M), the lack of gradi-
ent information to accel erate the optimization of the objective
functional, and the presence of suboptimal traps that must be
avoided. For tractability, thelearning procedure must be able
to abstract compact higher level controllersfromthelow level
controllers that have been learned, retain the abstracted con-
trollers, and apply them to future locomotion tasks.

The process of abstraction takes the form of a dimension-
ality reducing change of representation. More specificaly, it
seeks to compress the many parameters of the discrete con-
trollers to a compact form in terms of a handful of basis
functions. Natural, steady-state locomotion patterns tend to
be quasi-periodic and they can be abstracted very effectively
without substantial loss. A natural approach to abstracting
low-level motor controllersisto apply the fast Fourier trans-
form (FFT) [12] to the parameters of the controller and then
suppress the bel ow-threshold amplitudes.

Typicaly, our artificial animals are put through a “basic
training” regimen of primitive motor tasks that it must learn,
such as locomoting at different speeds and executing turns
of different radii. They learn effective low level controllers
for each task and retain compact representations of these con-
trollers through controller abstraction. The animals subse-
quently put the abstractions that they have learned into prac-
ticeto accomplish higher level tasks, such astarget tracking or
leaping throughtheair. To thisend, abstracted controllersare
concatenated in sequence, with each controller dightly over-
lapping the next. To eliminate discontinuities, temporally ad-
jacent controllers are smoothly blended together by linearly
fading and summing them over a small, fixed region of over-
lap, approximately 5% of each controller (Fig. 10).

Composing Macro Controllers Next the learning process
discovers composite abstracted controllers that can accom-
plish complex locomotion tasks. Consider the spectacular
stunts performed by marine mammeals that licit applause at
theme parkslike* SeaWorld”. We can treat aleap through the
air asacomplex task that can be achieved using simpler tasks;
e.g., diving deep beneath a suitable legp point, surfacing vig-
orously to gain momentum, maintaining balance during the
balligtic flight through the air, and splashing down dramati-
caly with abelly flop.

We have developed an automatic learning technique that
constructsamacro jump controller of thissort asan optimized
sequence of basic abstracted controllers. The optimization

BASIC ABSTRACTED CONTROLLERS
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Figure 10: Higher level controller for jumping out of water is
constructed from a set of abstracted basic controllers.

processis, in principle, similar to the onein low level learn-
ing. It uses simulated annealing for optimization, but rather
than optimizing over nodal parameters or frequency parame-
ters, it optimizes over the selection, ordering, and duration of
abstracted controllers. Thustheartificial animal applyingthis
method | earns effective macro controllersof thetype shown at
the bottom of Fig. 10 by optimizing over alearned repertoire
of basic abstracted controllersillustrated at the top of thefig-
ure.

We have trained an artificial dolphinto learn effective con-
trollersfor 5 basic motor tasks: turn-down, turn-up, turn-left,
turn-right, and move-forward. Wethen giveit the task of per-
forming a stunt like the one described above and the dolphin
discovers a combination of controllersthat accomplishes the
stunt. In particular, it discovers that it must build up momen-
tum by thrusting from deep in the virtual pool of water up to-
wards the surface and it must exploit this momentum to leap
out of thewater. Fig. 11(a) shows aframe as the dolphin exits
thewater. The dolphin can aso learn to perform tricks while
intheair. Fig. 11(b) showsit using its nose to bounce alarge
beach-ball off a support. The dolphin can learn to control the
angular momentum of its body while exiting the water and
whilein ballistic flight so that it can perform aeria spinsand
somersaults. Fig. 11(c) showsit in the midst of a somersault
inwhich it hasjust bounced the ball with itstail instead of its
nose. Fig. 11(d) shows the dolphin right after splashdown. In
thisinstance it has made a dramatic bellyflop splash.

5 Conclusion

We have demonstrated that the artificial fishes model that we
developed in our prior work may be effectively employed to
devise sophisticated algorithms for perception and learning.
We have successfully implemented within the framework of
theartificial fish aset of activevision agorithmsfor foveation
and vergence of interesting targets, for retina image stabi-
lization, and for pursuit of moving targets through visually-
guided navigation. Note that these vision algorithmsconfront
synthetic retinal images that are by no means easy to ana-
lyze (compared to the sorts of images encountered in physi-
cal robotics). We have also demonstrated enhanced learning



Published in Artificial Life V: Proc. Fifth Inter. Conf. on the Synthesisand Smulation of Living Systems, Nara, Japan, May, 1996.

Figure 11: “ SeaWorld” skillslearned by an artificial dolphin.

algorithmsthat can enable an artificial marine mamma to ac-
quire complex motor skills. These skills necessitate |ocomo-
tion through water, balistic flight through air, and a graceful
style of execution. The use of highly realistic, physics-based
virtual worlds inhabited by biomimetic autonomous agents
appears to be a fruitful strategy for exploring difficult open
problems in biological information processing and control.
Our approach has value beyond artificid lifeto related disci-
plines such as vision, robotics, and virtua reality.
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