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Abstract. In this paper we propose a new approach for constructing efficient schemes for non-smooth convex
optimization. It is based on a special smoothing technique, which can be applied to functions with explicit
max-structure. Our approach can be considered as an alternative to black-box minimization. From the view-
point of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the

gradient schemes from O
(

1
ε2

)
to O

( 1
ε

)
, keeping basically the complexity of each iteration unchanged.
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1. Introduction

Motivation. Historically, the subgradient methods were the first numerical schemes
for non-smooth convex minimization (see [11] and [7] for historical comments). Very
soon it was proved that the efficiency estimate of these schemes is of the order

O

(
1

ε2

)
, (1.1)

where ε is the desired absolute accuracy of the approximate solution in function value
(see also [3]).

Up to now some variants of these methods remain attractive for researchers
(e.g. [4, 1]). This is not too surprising since the main drawback of these schemes, the
slow rate of convergence, is compensated by the very low complexity of each iteration.
Moreover, it was shown in [8] that the efficiency estimate of the simplest subgradient
method cannot be improved uniformly in dimension of the space of variables. Of course,
this statement is valid only for the black-box oracle model of the objective function.
However, its proof is constructive; namely, it was shown that the problem

min
x

{
max

1≤i≤n
x(i) :

n∑
i=1

(x(i))2 ≤ 1

}

Y. Nesterov: Center for Operations Research and Econometrics (CORE), Catholic University of Louvain
(UCL), 34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium. e-mail: nesterov@core.ucl.ac.be

� This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction
initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsi-
bility is assumed by the author.



128 Y. Nesterov

is difficult for all numerical schemes. This demonstration possibly explains a common
belief that the worst-case complexity estimate for finding an ε-approximation of a min-
imum of a piece-wise linear function by gradient schemes is given by (1.1).

Actually, it is not the case. In practice, we never meet a pure black box model. We
always know something about the structure of the underlying objects. And the proper
use of the structure of the problem can and does help in finding the solution.

In this paper we discuss such a possibility. Namely, we present a systematic way to
approximate the initial non-smooth objective function by a function with Lipschitz-con-
tinuous gradient. After that we minimize the smooth function by an efficient gradient
method of type [9], [10]. It is known that these methods have an efficiency estimate of

the order O

(√
L
ε

)
, where L is the Lipschitz constant for the gradient of the objective

function. We show that in constructing a smooth ε-approximation of the initial function,
L can be chosen of the order 1

ε
. Thus, we end up with a gradient scheme with efficiency

estimate of the order O
( 1
ε

)
. Note that our approach is different from the smoothing

technique used in constrained optimization for updating Lagrange multipliers (see [6]
and references therein).

Contents.The paper is organized as follows. In Section 2 we study a simple approach for
creating smooth approximations of non-smooth functions. In some aspects, our approach
resembles an old technique used in the theory of Modified Lagrangians [5, 2]. It is based
on the notion of an adjoint problem, which is a specification of the notion of a dual
problem. An adjoint problem is not uniquely defined and its dimension is different from
the dimension of the primal space. We can expect that the increase of the dimension of
the adjoint space makes the structure of the adjoint problem simpler. In Section 3 we
present a fast scheme for minimizing smooth convex functions. One of the advantages
of this scheme consists in a possibility to use a specific norm, which is suitable for
measuring the curvature of a particular objective function. This ability is similar to that
of the mirror descent methods [8, 1]. In Section 4 we apply the results of the previous
section to particular problem instances: solution of a matrix game, a continuous location
problem, a variational inequality with linear operator and a problem of the minimization
of a piece-wise linear function (see Section 11.3 [7] for interpretation of some exam-
ples). For all cases we give the upper bounds on the complexity of finding ε-solutions
for the primal and dual problems. In Section 5 we discuss implementation issues and
some modifications of the proposed algorithm. Preliminary computational results are
given in Section 6. In this section we compare our computational results with theoretical
complexity of a cutting plane scheme and a short-step path-following scheme. We show
that on our family of test problems the new gradient schemes can indeed compete with
the most powerful polynomial-time methods.

Notation. In what follows we work with different primal and dual spaces equipped with
corresponding norms. We use the following notation. The (primal) finite-dimensional
real vector space is always denoted byE, possibly with an index. This space is endowed
with a norm ‖ · ‖, which has the same index as the corresponding space. The space of
linear functions on E (the dual space) is denoted by E∗. For s ∈ E∗ and x ∈ E we
denote 〈s, x〉 the value of s at x. The scalar product 〈·, ·〉 is marked by the same index
as E. The norm for the dual space is defined in the standard way:
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‖s‖∗ = max
x

{〈s, x〉 : ‖x‖ = 1}.

For a linear operator A : E1 → E∗
2 we define the adjoint operator A∗ : E2 → E∗

1
in the following way:

〈Ax, u〉2 = 〈A∗u, x〉1 ∀x ∈ E1, u ∈ E2.

The norm of such an operator is defined as follows:

‖A‖1,2 = max
x,u

{〈Ax, u〉2 : ‖x‖1 = 1, ‖u‖2 = 1}.

Clearly,

‖A‖1,2 = ‖A∗‖2,1 = max
x

{‖Ax‖∗
2 : ‖x‖1 = 1} = max

u
{‖A∗u‖∗

1 : ‖u‖2 = 1}.

Hence, for any u ∈ E2 we have

‖A∗u‖∗
1 ≤ ‖A‖1,2 · ‖u‖2. (1.2)

2. Smooth approximations of non-differentiable functions

In this paper our main problem of interest is as follows:

Find f ∗ = min
x

{f (x) : x ∈ Q1}, (2.1)

whereQ1 is a bounded closed convex set in a finite-dimensional real vector spaceE1 and
f (x) is a continuous convex function on Q1. We do not assume f to be differentiable.

Quite often, the structure of the objective function in (2.1) is given explicitly. Let us
assume that this structure can be described by the following model:

f (x) = f̂ (x)+ max
u

{〈Ax, u〉2 − φ̂(u) : u ∈ Q2}, (2.2)

where the function f̂ (x) is continuous and convex onQ1,Q2 is a closed convex bounded
set in a finite-dimensional real vector space E2, φ̂(u) is a continuous convex function
on Q2 and the linear operator A maps E1 to E∗

2 . In this case the problem (2.1) can be
written in an adjoint form:

max
u

{φ(u) : u ∈ Q2},
φ(u) = −φ̂(u)+ min

x
{〈Ax, u〉2 + f̂ (x) : x ∈ Q1}. (2.3)

However, note that this possibility is not completely similar to (2.2) since in our case we
implicitly assume that the function φ̂(u) and the setQ2 are so simple that the solution of
the optimization problem in (2.2) can be found in a closed form. This assumption may
be not valid for the objects defining the function φ(u).

Note that for a convex function f (x) the representation (2.2) is not uniquely defined.
If we take, for example,

Q2 ≡ E2 = E∗
1 , φ̂(u) ≡ f∗(u) = max

x
{〈u, x〉1 − f (x) : x ∈ E1},
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then f̂ (x) ≡ 0, andA is equal to I , the identity operator. However, in this case the func-
tion φ̂(u)may be too complicated for our goals. Intuitively, it is clear that the bigger the
dimension of space E2 is, the simpler the structures of the adjoint objects, the function
φ̂(u) and the set Q2 are. Let us see that in an example.

Example 1. Consider f (x) = max
1≤j≤m

|〈aj , x〉1 − b(j)|. Then we can set A = I , E2 =
E∗

1 = Rn and

φ̂(u) = max
x

{
〈u, x〉1 − max

1≤j≤m
|〈aj , x〉1 − b(j)|

}

= max
x

min
s∈Rm


〈u, x〉1 −

m∑
j=1

s(j)[〈aj , x〉1 − b(j)] :
m∑
j=1

|s(j)| ≤ 1




= min
s∈Rm




m∑
j=1

s(j)b(j) : u =
m∑
j=1

s(j)aj ,

m∑
j=1

|s(j)| ≤ 1



 .

It is clear that the structure of such a function can be very complicated.
Let us look at another possibility. Note that

f (x) = max
1≤j≤m

|〈aj , x〉1 − b(j)| = max
u∈Rm




m∑
j=1

u(j)[〈aj , x〉1 − b(j)] :
m∑
j=1

|u(j)| ≤ 1


 .

In this case E2 = Rm, φ̂(u) = 〈b, u〉2 and Q2 = {u ∈ Rm :
m∑
j=1

|u(j)| ≤ 1}.
Finally, we can represent f (x) also as follows:

f (x) = max
u=(u1,u2)∈R2m




m∑
j=1

(u
(j)
1 − u

(j)
2 ) · [〈aj , x〉1 − b(j)] :

m∑
j=1

(u
(j)
1 + u

(j)
2 ) = 1, u ≥ 0



 .

In this case E2 = R2m, φ̂(u) is a linear function and Q2 is a simplex. In Section 4.4 we
will see that this representation is the best. ��

Let us show that the knowledge of the structure (2.2) can help in solving both prob-
lems (2.1) and (2.3). We are going to use this structure to construct a smooth approxi-
mation of the objective function in (2.1).

Consider a prox-function d2(u) of the set Q2. This means that d2(u) is continuous
and strongly convex on Q2 with some convexity parameter σ2 > 0. Denote by

u0 = arg min
u

{d2(u) : u ∈ Q2}
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its prox-center. Without loss of generality we assume that d2(u0) = 0. Thus, for any
u ∈ Q2 we have

d2(u) ≥ 1

2
σ2‖u− u0‖2

2. (2.4)

Let µ be a positive smoothness parameter. Consider the following function:

fµ(x) = max
u

{〈Ax, u〉2 − φ̂(u)− µd2(u) : u ∈ Q2}. (2.5)

Denote by uµ(x) the optimal solution of the above problem. Since the function d2(u) is
strongly convex, this solution is unique.

Theorem 1. The function fµ(x) is well defined and continuously differentiable at any
x ∈ E1. Moreover, this function is convex and its gradient

∇fµ(x) = A∗uµ(x) (2.6)

is Lipschitz continuous with constant

Lµ = 1

µσ2
‖A‖2

1,2.

Proof. Indeed, fµ(x) is convex as a maximum of functions, which are linear in x. It is
differentiable since uµ(x) is unique. Let us prove that its gradient is Lipschitz continu-
ous. Consider two points x1 and x2. For the sake of notation, without loss of generality we
assume that the functions φ̂(·) and d2(·) are differentiable. From the first-order optimality
conditions we have

〈Ax1 − ∇φ̂(uµ(x1))− µ∇d2(uµ(x1)), uµ(x2)− uµ(x1)〉2 ≤ 0,

〈Ax2 − ∇φ̂(uµ(x2))− µ∇d2(uµ(x2)), uµ(x1)− uµ(x2)〉2 ≤ 0.

Adding these inequalities and using convexity of φ̂(·) and strong convexity of d2(·), we
continue as follows:

〈A(x1 − x2), uµ(x1)− uµ(x2)〉2

≥ 〈∇φ̂(uµ(x1))− ∇φ̂(uµ(x2))+ µ(∇d2(uµ(x1))

−∇d2(uµ(x2))), uµ(x1)− uµ(x2)〉2

≥ µ〈∇d2(uµ(x1))− ∇d2(uµ(x2)), uµ(x1)

−uµ(x2)〉2 ≥ µσ2‖uµ(x1)− uµ(x2)‖2
2.

Thus, in view of (1.2), we have

(‖A∗uµ(x1)− A∗uµ(x2))‖∗
1)

2 ≤ ‖A‖2
1,2 · ‖uµ(x1)− uµ(x2)‖2

2

≤ 1

µσ2
‖A‖2

1,2〈A∗(uµ(x1)− uµ(x2)), x1 − x2〉1

≤ 1

µσ2
‖A‖2

1,2 · ‖A∗uµ(x1)−A∗uµ(x2)‖∗
1 · ‖x1 − x2‖1.

��
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DenoteD2 = max
u

{d2(u) : u ∈ Q2} and f0(x) = max
u

{〈Ax, u〉2 − φ̂(u) : u ∈ Q2}.
Then, for any x ∈ E1 we have

fµ(x) ≤ f0(x) ≤ fµ(x)+ µD2. (2.7)

Thus, for µ > 0 the function fµ(x) can be seen as a uniform smooth approximation of
the function f0(x).

In the next section we present an efficient scheme for minimizing a convex function
with Lipschitz continuous gradient.

3. Optimal scheme for smooth optimization

Let us fix a function f (x), which is differentiable and convex on a closed convex set
Q ⊆ E. Assume that the gradient of this function is Lipschitz continuous:

‖∇f (x)− ∇f (y)‖∗ ≤ L‖x − y‖, ∀x, y ∈ Q,
(notation: f ∈ C1,1

L (Q)). In this case for any x, y ∈ Q we have

f (y) ≤ f (x)+ 〈∇f (x), y − x〉 + 1

2
L‖y − x‖2. (3.1)

Denote by TQ(x) ∈ Q the optimal solution of the following minimization problem:

min
y

{
〈∇f (x), y − x〉 + 1

2
L‖y − x‖2 : y ∈ Q

}
. (3.2)

If the norm ‖ · ‖ is not strictly convex, the problem (3.2) can have multiple solutions. In
this case we stick the notation TQ(x) to any of them. In view of inequality (3.1), for any
x ∈ Q we have

f (TQ(x)) ≤ f (x)+ min
y

{
〈∇f (x), y − x〉 + 1

2
L‖y − x‖2 : y ∈ Q

}
. (3.3)

Denote by d(x) a prox-function of the setQ. We assume that d(x) is continuous and
strongly convex on Q with convexity parameter σ > 0. Let x0 be the center of the set
Q:

x0 = arg min
x

{d(x) : x ∈ Q}.
Without loss of generality assume that d(x0) = 0. Thus, for any x ∈ Q we have

d(x) ≥ 1

2
σ‖x − x0‖2. (3.4)

In this section we consider an optimization scheme for solving the following prob-
lem:

min
x

{f (x) : x ∈ Q}, (3.5)
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with f ∈ C1,1
L (Q). For simplicity, we assume that the constant L > 0 is known. Recall

that the standard gradient projection method at this problem converges as O( 1
k
), where

k is the iteration counter (see, e.g. [7]).
In our scheme we update recursively two sequences of points {xk}∞k=0 ⊂ Q and

{yk}∞k=0 ⊂ Q in such a way that they satisfy the following relation:

Akf (yk)≤ψk≡min
x

{
L

σ
d(x)+

k∑
i=0

αi[f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q
}
, (Rk)

where Ak =
k∑
i=0

αi and {αi}∞i=0 are some positive step-size parameters. Let us present

the way this can be done.
Indeed, for k = 0 let us take some α0 ∈ (0, 1] and y0 = TQ(x0). Then, in view of

inequalities (3.4) and (3.3), we have:

min
x

{
L

σ
d(x)+ α0[f (x0)+ 〈∇f (x0), x − x0〉] : x ∈ Q

}

≥ α0 min
x

{
L

2α0
‖x − x0‖2 + f (x0)+ 〈∇f (x0), x − x0〉 : x ∈ Q

}
≥ α0f (y0),

and that is (R0).
Denote

zk = arg min
x

{
L

σ
d(x)+

k∑
i=0

αi[f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q
}
.

Lemma 1. Let some sequence {αk}∞k=0 satisfy the condition:

α0 ∈ (0, 1], α2
k+1 ≤ Ak+1, k ≥ 0. (3.6)

Suppose that (Rk) holds for some k ≥ 0. Let us choose τk = αk+1
Ak+1

and

xk+1 = τkzk + (1 − τk)yk,

yk+1 = TQ(xk+1). (3.7)

Then the relation (Rk+1) holds.

Proof. Indeed, assume (Rk) holds. Then, since function d(x) is strongly convex, we
have

ψk+1 = min
x

{
L

σ
d(x)+

k+1∑
i=0

αi[f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q
}

≥ min
x

{
ψk+ 1

2
L‖x − zk‖2+αk+1[f (xk+1)+〈∇f (xk+1), x − xk+1〉] : x ∈ Q

}
.
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Further, in view of relation (Rk) and the first rule in (3.7), we have

ψk + αk+1[f (xk+1)+ 〈∇f (xk+1), x − xk+1〉]
≥ Akf (yk)+ αk+1[f (xk+1)+ 〈∇f (xk+1), x − xk+1〉]
≥ Ak[f (xk+1)+ 〈∇f (xk+1), yk − xk+1〉]

+αk+1[f (xk+1)+ 〈∇f (xk+1), x − xk+1〉]
= Ak+1f (xk+1)+ αk+1〈∇f (xk+1), x − zk〉. (3.8)

In view of condition (3.6), A−1
k+1 ≥ τ 2

k . Therefore, we can continue as follows:

ψk+1 ≥ Ak+1f (xk+1)+ min
x

{
1

2
L‖x − zk‖2 + αk+1〈∇f (xk+1), x − zk〉 : x ∈ Q

}

= Ak+1

[
f (xk+1)+min

x

{
L

2Ak+1
‖x−zk‖2+τk〈∇f (xk+1), x−zk〉 : x ∈ Q

}]

≥Ak+1

[
f (xk+1)+min

x

{
1

2
τ 2
k L‖x − zk‖2+τk〈∇f (xk+1), x − zk〉 : x∈Q

}]
.

(3.9)

Finally, note that τk ∈ [0, 1]. For arbitrary x ∈ Q define

y = τkx + (1 − τk)yk.

Then, in view of the first relation in (3.7) we have

y − xk+1 = τk(x − zk).

Hence, in view of (3.3) and the second rule in (3.7) we conclude that

min
x

{
1

2
τ 2
k L‖x − zk‖2 + τk〈∇f (xk+1), x − zk〉 : x ∈ Q

}

= min
y

{
1

2
L‖y − xk+1‖2 + 〈∇f (xk+1), y − xk+1〉 : y ∈ τkQ+ (1 − τk)yk

}

≥ min
y

{
1

2
L‖y − xk+1‖2 + 〈∇f (xk+1), y − xk+1〉 : y ∈ Q

}

≥ f (yk+1)− f (xk+1).

Combining this bound with the final estimate in (3.9) we get the result. ��
Clearly, there are many ways to satisfy the conditions (3.6). Let us give an example.

Lemma 2. For k ≥ 0 define αk = k+1
2 . Then

τk = 2

k + 3
, Ak = (k + 1)(k + 2)

4
, (3.10)

and the conditions (3.6) are satisfied.

Proof. Indeed, τ 2
k = α2

k+1

A2
k+1

= 4
(k+3)2

≤ 4
(k+2)(k+3) = 1

Ak+1
, and that is (3.6). ��
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Now we can analyze the behavior of the following scheme.

For k ≥ 0 do
1. Compute f (xk) and ∇f (xk).
2. Find yk = TQ(xk).

3. Find zk = arg min
x

{
L
σ
d(x)+

k∑
i=0

i+1
2 [f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q

}
.

4. Set xk+1 = 2
k+3zk + k+1

k+3yk.

(3.11)

Theorem 2. Let the sequences {xk}∞k=0 and {yk}∞k=0 be generated by the method (3.11).
Then for any k ≥ 0 we have

(k + 1)(k + 2)

4
f (yk)

≤ min
x

{
L

σ
d(x)+

k∑
i=0

i + 1

2
[f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q

}
. (3.12)

Therefore,

f (yk)− f (x∗) ≤ 4Ld(x∗)
σ (k + 1)(k + 2)

, (3.13)

where x∗ is an optimal solution to the problem (3.5).

Proof. Indeed, let us choose the sequence {αk}∞k=0 as in Lemma 2. Then, in view of
Lemma 1 and convexity of f (x) we have

Akf (yk) ≤ ψk ≤ L

σ
d(x∗)+ Akf (x

∗).

It remains to use (3.10). ��
Note that, in general, method (3.11) does not ensure a monotone decrease of the

objective function during the minimization process. However, sometimes this property
is quite useful. To achieve that, we need to introduce a minor change in the scheme.

Indeed, in the proof of Lemma 1 we need only the following condition on yk+1:

f (yk+1) ≤ f (TQ(xk+1)).

Let us change the rules of Step 2 in (3.11) as follows:

2’. Find y′
k = TQ(xk). Compute f (y′

k).

Set yk = arg min
x

{
f (x) : x ∈ {yk−1, xk, y

′
k}
}
. (3.14)

Clearly, in this case we will have

f (yk) ≤ f (yk−1) ≤ · · · ≤ f (x0). (3.15)
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4. Application examples

Let us put the results of Sections 2 and 3 together. Let us assume that the function f̂ (·)
in (2.2) is differentiable and its gradient is Lipschitz-continuous with some constant
M ≥ 0. Then the smoothing technique as applied to the problem (2.1) gives us the
following objective function:

f̄µ(x) = f̂ (x)+ fµ(x) → min : x ∈ Q1. (4.1)

In view of Theorem 1, the gradient of this function is Lipschitz continuous with the
constant

Lµ = M + 1

µσ2
‖A‖2

1,2.

Let us choose some prox-function d1(x) for the setQ1 with the convexity parameter σ1.
Recall that we assume the set Q1 to be bounded:

max
x

{d1(x) : x ∈ Q1} ≤ D1.

Theorem 3. Let us apply method (3.11) to the problem (4.1) with the following value
of smoothness parameter:

µ = µ(N) = 2‖A‖1,2

N + 1
·
√

D1

σ1σ2D2
.

Then afterN iterations we can generate the approximate solutions to the problems (2.1)
and (2.3), namely,

x̂ = yN ∈ Q1, û =
N∑
i=0

2(i + 1)

(N + 1)(N + 2)
uµ(xi) ∈ Q2, (4.2)

which satisfy the following inequality:

0 ≤ f (x̂)− φ(û) ≤ 4‖A‖1,2

N + 1
·
√
D1D2

σ1σ2
+ 4MD1

σ1 · (N + 1)2
. (4.3)

Thus, the complexity of finding an ε-solution to the problems (2.1), (2.3) by the smoothing
technique does not exceed

4‖A‖1,2

√
D1D2

σ1σ2
· 1

ε
+ 2

√
MD1

σ1ε
. (4.4)

Proof. Let us fix an arbitrary µ > 0. In view of Theorem 2, after N iterations of the
method (3.11) we can deliver a point x̂ = yN such that

f̄µ(x̂) ≤ LµD1

σ1(N + 1)2
+ min

x

{ N∑
i=0

2(i + 1)

(N + 1)(N + 2)
[f̄µ(xi)

+〈∇f̄µ(xi), x − xi〉1] : x ∈ Q1

}
. (4.5)
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Note that

fµ(x) = max
u

{〈Ax, u〉2 − φ̂(u)− µd2(u) : u ∈ Q2}

= 〈Ax, uµ(x)〉2 − φ̂(uµ(x))− µd2(uµ(x)),

〈∇fµ(x), x〉1 = 〈A∗uµ(x), x〉1.

Therefore

fµ(xi)− 〈∇fµ(xi), xi〉1 = −φ̂(uµ(xi))− µd2(uµ(xi)), i = 0, . . . , N. (4.6)

Thus, in view of (2.6) and (4.6) we have

N∑
i=0

(i + 1)[f̄µ(xi)+ 〈∇f̄µ(xi), x − xi〉1]

≤
N∑
i=0

(i + 1)[fµ(xi)− 〈∇fµ(xi), xi〉1] + 1

2
(N + 1)(N + 2)(f̂ (x)+ 〈A∗û, x〉1)

≤ −
N∑
i=0

(i + 1)φ̂(uµ(xi))+ 1

2
(N + 1)(N + 2)(f̂ (x)+ 〈A∗û, x〉1)

≤ 1

2
(N + 1)(N + 2)[−φ̂(û)+ f̂ (x)+ 〈Ax, û〉2].

Hence, using (4.5), (2.3) and (2.7), we get the following bound:

LµD1

σ1(N + 1)2
≥ f̄µ(x̂)− φ(û) ≥ f (x̂)− φ(û)− µD2.

That is

0 ≤ f (x̂)− φ(û) ≤ µD2 + 4‖A‖2
1,2D1

µσ1σ2(N + 1)2
+ 4MD1

σ1(N + 1)2
. (4.7)

Minimizing the right-hand side of this inequality in µ we get inequality (4.3). ��

Note that the efficiency estimate (4.4) is much better than the standard boundO( 1
ε2 ).

In accordance with the above theorem, forM = 0 the optimal dependence of the param-
eters µ, Lµ and N in ε is as follows:

µ = ε

2D2
, Lµ = D2

2σ2
· ‖A‖2

1,2

ε
, N + 1 = 4‖A‖1,2

√
D1D2

σ1σ2
· 1

ε
. (4.8)

Let us look now at some examples.
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4.1. Minimax strategies for matrix games

Denote by �n the standard simplex in Rn:

�n = {x ∈ Rn : x ≥ 0,
n∑
i=1

x(i) = 1}.

Let A : Rn → Rm, E1 = Rn and E2 = Rm. Consider the following saddle point
problem:

min
x∈�n

max
u∈�m

{〈Ax, u〉2 + 〈c, x〉1 + 〈b, u〉2}. (4.9)

From the viewpoint of players, this problem is reduced to a problem of non-smooth
minimization:

min
x∈�n

f (x), f (x) = 〈c, x〉1 + max
1≤j≤m

[〈aj , x〉1 + b(j)],

(4.10)
max
u∈�m

φ(u), φ(u) = 〈b, u〉2 + min
1≤i≤n

[〈âi , u〉2 + c(i)],

where aj are the rows and âi are the columns of the matrix A. In order to solve this pair
of problems using the smoothing approach, we need to find a reasonable prox-function
for the simplex. Let us compare two possibilities.

1. Euclidean distance. Let us choose

‖x‖1 =
[

n∑
i=1

(x(i))2

]1/2

, d1(x) = 1

2

n∑
i=1

(x(i) − 1

n
)2,

‖u‖2 =



m∑
j=1

(u(j))2




1/2

, d2(x) = 1

2

m∑
j=1

(u(j) − 1

m
)2.

Then σ1 = σ2 = 1, D1 = 1 − 1
n
< 1, D2 = 1 − 1

m
< 1 and

‖A‖1,2 = max
u

{‖Ax‖∗
2 : ‖x‖1 = 1} = λ1/2

max(A
T A).

Thus, in our case the estimate (4.3) for the result (4.2) can be specified as follows:

0 ≤ f (x̂)− φ(û) ≤ 4λ1/2
max(A

T A)

N + 1
. (4.11)
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2. Entropy distance. Let us choose

‖x‖1 =
n∑
i=1

|x(i)|, d1(x) = ln n+
n∑
i=1

x(i) ln x(i),

‖u‖2 =
m∑
j=1

|u(j)|, d2(u) = lnm+
m∑
j=1

u(j) ln u(j).

Lemma 3. Under the above choice of prox-functions we have

σ1 = σ2 = 1, D1 = ln n, D2 = lnm.

Proof. Note that d1(x) is two times continuously differentiable and 〈d ′′
1 (x)h, h〉 =

n∑
i=1

(h(i))2

x(i)
. It remains to use the following variant of Cauchy-Schwartz inequality

(
n∑
i=1

|h(i)|
)2

≤
(

n∑
i=1

x(i)

)
·
(

n∑
i=1

(h(i))2

x(i)

)
,

which is valid for all positive x. The reasoning for d2(u) is similar. ��

Note also, that now we get the following norm of the operator A:

‖A‖1,2 = max
x

{ max
1≤j≤m

|〈aj , x〉| : ‖x‖1 = 1} = max
i,j

|A(i,j)|.

Thus, if we apply the entropy distance, the estimate (4.3) can be written as follows:

0 ≤ f (x̂)− φ(û) ≤ 4
√

ln n lnm

N + 1
· max
i,j

|A(i,j)|. (4.12)

Note that typically the estimate (4.12) is much better than the Euclidean variant
(4.11).

Let us write down explicitly the smooth approximation for the objective function in
the first problem of (4.10) using the entropy distance. By definition,

f̄µ(x) = 〈c, x〉1 + max
u∈�m




m∑
j=1

u(j)[〈aj , x〉 + b(j)] − µ

m∑
j=1

u(j) ln u(j) − µ lnm


 .

Let us apply the following result.

Lemma 4. The solution of the problem

Find φ∗(s) = max
u∈�m




m∑
j=1

u(j)s(j) − µ

m∑
j=1

u(j) ln u(j)


 (4.13)
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is given by the vector uµ(s) ∈ �m with the entries

u(j)µ (s) = es
(j)/µ

m∑
l=1
es
(l)/µ

, j = 1, . . . , m. (4.14)

Therefore φ∗(s) = µ ln

(
m∑
l=1
es
(l)/µ

)
.

Proof. Indeed, the first order necessary and sufficient optimality conditions for (4.13)
look as follows:

s(j) − µ(1 + ln u(j)) = λ, j = 1, . . . , m,
m∑
j=1

u(j) = 1.

Clearly, they are satisfied by (4.14) with λ = µ ln

(
m∑
l=1
es
(l)/µ

)
− µ. ��

Using the result of Lemma 4, we conclude that in our case the problem (4.1) looks
as follows:

f̄µ(x) = 〈c, x〉1 + µ ln


 1

m

m∑
j=1

e[〈aj ,x〉+b(j)]/µ

 → min : x ∈ �n.

Note that the complexity of the oracle for this problem is basically the same as that for
the initial problem (4.10).

4.2. Continuous location problem

Consider the following location problem. There are p “cities” with “population” mj ,
which are located at points cj ∈ Rn, j = 1, . . . , p. We want to construct a service center
at some position x ∈ Rn ≡ E1, which minimizes the total social distance f (x) to the
center. On the other hand, this center must be constructed not too far from the origin.

Mathematically, the above problem can be posed as follows

Find f ∗ = min
x


f (x) =

p∑
j=1

mj‖x − cj‖1 : ‖x‖1 ≤ r̄



 . (4.15)

In accordance to interpretation, it is natural to choose

‖x‖1 =
[

n∑
i=1

(x(i))2

]1/2

, d1(x) = 1

2
‖x‖2

1.

Then σ1 = 1 and D1 = 1
2 r̄

2.
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Further, the structure of the adjoint space E2 is quite clear:

E2 = (E∗
1 )
p, Q2 = {

u = (u1, . . . , up) ∈ E2 : ‖uj‖∗
1 ≤ 1, j = 1, . . . , p

}
.

Let us choose

‖u‖2 =



p∑
j=1

mj(‖uj‖∗
1)

2




1/2

, d2(u) = 1

2
‖u‖2

2.

Then σ2 = 1 and D2 = 1
2P with P ≡

p∑
j=1

mj . Note that the value P can be seen as the

total size of the population.
It remains to compute the norm of the operator A:

‖A‖1,2 = max
x,u




p∑
j=1

mj 〈uj , x〉1 :
p∑
j=1

mj(‖uj‖∗
1)

2 = 1, ‖x‖1 = 1




= max
rj




p∑
j=1

mjrj :
p∑
j=1

mjr
2
j = 1


 = P 1/2.

Putting the computed values in the estimate (4.3), we get the following rate of con-
vergence:

f (x̂)− f ∗ ≤ 2P r̄

N + 1
. (4.16)

Note that the value f̃ (x) = 1
P
f (x) corresponds to average individual expenses gener-

ated by the location x. Therefore,

f̃ (x̂)− f̃ ∗ ≤ 2r̄

N + 1
.

It is interesting that the right-hand side of this inequality is independent of any dimension.
At the same time, it is clear that the reasonable accuracy for the approximate solution
of the discussed problem should not be too high. Given a very low complexity of each
iteration in the scheme (3.11), the total efficiency of the proposed technique looks quite
promising.

To conclude with the location problem, let us write down explicitly a smooth approx-
imation of the objective function.

fµ(x) = max
u




p∑
j=1

mj 〈uj , x − cj 〉1 − µd2(u) : u ∈ Q2




= max
u




p∑
j=1

mj

(
〈uj , x − cj 〉1 − 1

2
µ(‖uj‖∗

1)
2
)

: ‖uj‖∗
1 ≤ 1, j = 1, . . . , p




=
p∑
j=1

mjψµ(‖x − cj‖1),
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where the function ψµ(τ), τ ≥ 0, is defined as follows:

ψµ(τ) = max
γ∈[0,1]

{γ τ − 1

2
µγ 2} =

{
τ 2

2µ, 0 ≤ τ ≤ µ,

τ − µ
2 , µ ≤ τ.

(4.17)

4.3. Variational inequalities with linear operator

Consider a linear operator B(w) = Bw + c: E → E∗, which is monotone:

〈Bh, h〉 ≥ 0 ∀h ∈ E1.

LetQ be a bounded closed convex set inE. Then we can pose the following variational
inequality problem:

Find w∗ ∈ Q : 〈B(w∗), w − w∗〉 ≥ 0 ∀w ∈ Q. (4.18)

Note that we can always rewrite problem (4.18) as an optimization problem. Indeed,
define

ψ(w) = max
v

{〈B(v),w − v〉 : v ∈ Q}.
Clearly, ψ(w) is a convex function. It is well known that the problem

min
w

{ψ(w) : w ∈ Q} (4.19)

is equivalent to (4.18). For the sake of completeness let us provide this statement with
a simple proof.

Lemma 5. A pointw∗ is a solution to (4.19) if and only if it solves variational inequality
(4.18). Moreover, for such w∗ we have ψ(w∗) = 0.

Proof. Indeed, at anyw ∈ Q the functionψ is non-negative. Ifw∗ is a solution to (4.18),
then for any v ∈ Q we have

〈B(v), v − w∗〉 ≥ 〈B(w∗), v − w∗〉 ≥ 0.

Hence, ψ(w∗) = 0 and w∗ ∈ Arg min
w∈Q

ψ(w).

Now, consider some w∗ ∈ Q with ψ(w∗) = 0. Then for any v ∈ Q we have

〈B(v), v − w∗〉 ≥ 0.

Suppose there exists some v1 ∈ Q such that 〈B(w∗), v1 −w∗〉 < 0. Consider the points

vα = w∗ + α(v1 − w∗), α ∈ [0, 1].

Then

0 ≤ 〈B(vα), vα − w∗〉 = α〈B(vα), v1 − w∗〉
= α〈B(w∗), v1 − w∗〉 + α2〈B · (v1 − w∗), v1 − w∗〉.

Hence, for α small enough we get a contradiction. ��
Clearly, there are two possibilities for representing the problem (4.18), (4.19) in the

form (2.1), (2.2).
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1. Primal form. We take E1 = E2 = E, Q1 = Q2 = Q, d1(x) = d2(x) = d(x),
A = B and

f̂ (x) = 〈b, x〉1, φ̂(u) = 〈b, u〉1 + 〈Bu, u〉1.

Note that the quadratic function φ̂(u) is convex. For computation of the function fµ(x)
we need to solve the following problem:

max
u

{〈Bx, u〉1 − µd(u)− 〈b, u〉1 + 〈Bu, u〉1 : u ∈ Q}. (4.20)

Since in our case M = 0, from Theorem 3 we get the following estimate for the com-
plexity of problem (4.18):

4D1‖B‖1,2

σ1ε
. (4.21)

However, note that, because of the presence of the non-trivial quadratic function in
(4.20), this computation can be quite complicated. We can avoid that in the dual variant
of the problem.

2. Dual form. Consider the dual variant of the problem (4.19):

min
w∈Q

max
v∈Q

〈B(v),w − v〉 = max
v∈Q

min
w∈Q

〈B(v),w − v〉 = − min
v∈Q

max
w∈Q

〈B(v), v − w〉.

Thus, we can take E1 = E2 = E, Q1 = Q2 = Q, d1(x) = d2(x) = d(x), A = B and

f̂ (x) = 〈b, x〉1 + 〈Bx, x〉1, φ̂(u) = 〈b, u〉1.

Now the computation of function fµ(x) becomes much simpler:

fµ(x) = max
u

{〈Bx, u〉1 − µd(u)− 〈b, u〉1 : u ∈ Q}.

It is interesting that we pay quite a moderate cost. Indeed, now M becomes equal to
‖B‖1,2. Hence, the complexity estimate (4.21) increases up to the following level:

4D1‖B‖1,2

σ1ε
+
√
D1‖B‖1,2

σ1ε
.

Note that in an important particular case of skew-symmetry of operator B, that is
B + B∗ = 0, the primal and dual variant have similar complexity.
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4.4. Piece-wise linear optimization

1. Maximum of absolute values. Consider the following problem:

min
x

{
f (x) = max

1≤j≤m
|〈aj , x〉1 − b(j)| : x ∈ Q1

}
. (4.22)

For simplicity, let us choose

‖x‖1 =
[

n∑
i=1

(x(i))2

]1/2

, d1(x) = 1
2‖x‖2.

Denote by A the matrix with rows aj , j = 1, . . . , m. It is convenient to choose

E2 = R2m, ‖u‖2 =
2m∑
j=1

|u(j)|, d2(u) = ln(2m)+
2m∑
j=1

u(j) ln u(j).

Then
f (x) = max

u
{〈Âx, u〉2 − 〈b̂, u〉2 : u ∈ �2m},

where Â =
(
A

−A
)

and b̂ =
(
b

−b
)

. Thus, σ1 = σ2 = 1, D2 = ln(2m), and

D1 = 1
2 r̄

2, r̄ = max
x

{‖x‖1 : x ∈ Q1}.

It remains to compute the norm of the operator Â:

‖Â‖1,2 = max
x,u

{〈Âx, u〉2 : ‖x‖1 = 1, ‖u‖2 = 1}
= max

x
{ max
1≤j≤m

|〈aj , x〉1| : ‖x‖1 = 1} = max
1≤j≤m

‖aj‖∗
1.

Putting all computed values in the estimate (4.4), we see that the problem (4.22) can
be solved in

2
√

2 r̄ max
1≤j≤m

‖aj‖∗
1

√
ln(2m) · 1

ε

iterations of the scheme (3.11). The standard subgradient schemes in this situation can
count only on an

O

([
r̄ max

1≤j≤m
‖aj‖∗

1 · 1
ε

]2
)

upper bound for the number of iterations.
Finally, the smooth version of the objective function in (4.22) looks as follows:

f̄µ(x) = µ ln


 1

m

m∑
j=1

ξ

(
1

µ
[〈aj , x〉 + b(j)]

)


with ξ(τ ) = 1
2 [eτ + e−τ ].
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2. Sum of absolute values. Consider now the problem

min
x



f (x) =

m∑
j=1

|〈aj , x〉1 − b(j)| : x ∈ Q1



 . (4.23)

The simplest representation of the function f (x) looks as follows. Denote by A the
matrix with the rows aj . Let us choose

E2 = Rm, Q2 = {u ∈ Rm : |u(j)| ≤ 1, j = 1, . . . , m},

d2(u) = 1

2
‖u‖2

2 = 1

2

m∑
j=1

‖aj‖∗
1 · (u(j))2.

Then the smooth version of the objective function looks as follows:

fµ(x) = max
u

{〈Ax−b, u〉2−µd2(u) : u ∈ Q2} =
m∑
j=1

‖aj‖∗
1 ·ψµ

(
|〈aj , x〉1 − b(j)|

‖aj‖∗
1

)
,

where the function ψµ(τ) is defined by (4.17). Note that

‖A‖1,2 = max
x,u




m∑
j=1

u(j)〈aj , x〉1 : ‖x‖1 ≤ 1, ‖u‖2 ≤ 1




≤ max
u




m∑
j=1

‖aj‖∗
1 · |u(j)| :

m∑
j=1

‖aj‖∗
1 · (u(j))2 ≤ 1




= D1/2 ≡



m∑
j=1

‖aj‖∗
1




1/2

.

On the other hand, D2 = 1
2D and σ2 = 1. Therefore from Theorem 3 we get the

following complexity bound:

2
ε

·
√

2D1
σ1

·
m∑
j=1

‖aj‖∗
1.

5. Implementation issues

5.1. Computational complexity

Let us discuss the computational complexity of the method (3.11) as applied to the
function f̄µ(x). The main computations are performed at the Steps 1–3 of the algorithm.
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Step 1. Call of the oracle. At this step we need to compute the solution of the following
maximization problem:

max
u

{〈Ax, u〉2 − φ̂(u)− µd2(u) : u ∈ Q2}.

Note that from the origin of this problem we know, that this computation for µ = 0 can
be done in a closed form. Thus, we can expect that with properly chosen prox-function
this computation is not too difficult for µ > 0 also. In Section 4 we have seen three
examples which confirm this belief.

Step 3. Computation of zk . This computation consists in solving the following problem:

min
x

{d1(x)+ 〈s, x〉1 : x ∈ Q1}

for some fixed s ∈ E∗
1 . If the set Q1 and the prox-function d1(x) are simple enough,

this computation can be done in a closed form (see Section 4). For some sets we need
to solve an auxiliary equation with one variable. The above problem arises also in the
mirror descent scheme. A discussion of different possibilities can be found in [1].

Step 2. Computation of TQ(x). Again, the complexity of this step depends on the com-
plexity of the set Q1 and the norm ‖ · ‖1. In the literature such a computation is usually
implemented with a Euclidean norm. Therefore let us discuss the general case in more
detail.

Sometimes the following statement helps.

Lemma 6. For any g ∈ E∗ and h ∈ E we have

〈g, h〉1 + 1
2L‖h‖2 = max

s

{
〈s, h〉1 − 1

2L(‖s − g‖∗)2 : s ∈ E∗
}
.

Proof. Indeed,

〈g, h〉1 + 1
2L‖h‖2 = max

r≥0
{〈g, h〉1 + r‖h‖1 − 1

2Lr
2}

= max
r,s

{〈g, h〉1 + 〈rs, h〉1 − 1
2Lr

2 : r ≥ 0, ‖s‖∗ = 1}
= max

s
{〈g + s, h〉1 − 1

2L(‖s‖∗)2 : s ∈ E∗}

= max
s

{
〈s, h〉1 − 1

2L(‖s − g‖∗)2 : s ∈ E∗
}
.

��

Let us check what is the complexity of computing TQ(x) in the situation discussed in
Section 4.1. We need to find a solution to the problem

Find ψ∗ = min
x

{〈ḡ, x − x̄〉 + 1

2
L‖x − x̄‖2 : x ∈ �n}, (5.1)
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where ‖x‖ =
n∑
i=1

|x(i)| and x̄ ∈ �n. Therefore, without loss of generality we can assume

that

min
1≤i≤n

ḡ(i) = 0. (5.2)

Using Lemma 6, we can rewrite the above problem as follows:

ψ∗ = min
x∈�n

max
s

{
〈s, x − x̄〉 − 1

2L(‖s − ḡ‖∗)2
}

= min
x≥0

max
s,λ

{
〈s, x − x̄〉 − 1

2L(‖s − ḡ‖∗)2 + λ(1 − 〈en, x〉)
}

= max
s,λ

{
−〈s, x̄〉 − 1

2L(‖s − ḡ‖∗)2 + λ) : s ≥ λen

}
.

Note that in our case ‖s‖∗ = max
1≤i≤n

|s(i)|. Therefore

−ψ∗ = min
s,λ,τ

{
〈s, x̄〉 + τ 2

2L − λ : s(i) ≥ λ, |s(i) − ḡ(i)| ≤ τ, i = 1, . . . , n
}
. (5.3)

In the latter problem we can easily find the optimal values of s(i):

s(i)∗ = max{λ, ḡ(i) − τ }, i = 1, . . . , n.

Moreover, the feasible set of this problem is non-empty if and only if

λ ≤ ḡ(i) + τ, i = 1, . . . , n.

In view of (5.2), this means λ ≤ τ . Thus,

−ψ∗ = min
τ≥λ

{
n∑
i=1

x̄(i) max{λ, ḡ(i) − τ } + τ 2

2L − λ

}

= min
τ≥λ

{
n∑
i=1

x̄(i)(ḡ(i) − τ − λ)+ + τ 2

2L

}
,

where (a)+ = max{a, 0}. Since the objective function of the latter problem is decreasing
in λ, we conclude that λ∗ = τ .

Finally, we come to the following representation:

−ψ∗ = min
τ≥0

{
n∑
i=1

x̄(i)(ḡ(i) − 2τ)+ + τ 2

2L

}
.

Clearly, its solution can be found by ordering the components of the vector ḡ(i) and
checking the derivative of the objective function at the points

τi = 1
2 ḡ
(i), i = 1, . . . , n.

The total complexity of this computation is of the order O(n ln n). We leave the recon-
struction of primal solution x∗ of the problem (5.1) as an exercise for the reader.
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5.2. Computational stability

Our approach is based on smoothing of non-differentiable functions. In accordance with
(4.8) the value of the smoothness parameter µmust be of the order of ε. This may cause
some numerical troubles in computation of function f̄µ(x) and its gradient. Among the
examples of Section 4, only a smooth variant of the objective function in Section 4.2
does not involve dangerous operations; all others need a careful implementation.

In both Section 4.1 and Section 4.4 we need a stable technique for computation of
the values and the derivatives of the function

η(u) = µ ln




m∑
j=1

eu
(j)/µ


 (5.4)

with very small values of the parameterµ. This can be done in the following way. Denote

ū = max
1≤j≤m

u(j), v(j) = u(j) − ū, j = 1, . . . , m.

Then
η(u) = ū+ η(v)

Note that all components of the vector v are non-negative and one of them is zero. There-
fore the value η(v) can be computed with a small numerical error. The same technique
can be used for computing the gradient of this function since ∇η(u) = ∇η(v).

The computations presented in Section 6 confirm that the proposed smoothing tech-
nique works even for a quite high accuracy.

5.3. Modified method

As we have seen, at each iteration of the method (3.11) it is necessary to solve two
auxiliary minimization problems of two different types. It appears that quite often the
computation of the point yk is more complicated then that of zk . Let us show how to
modify the scheme (3.11) in order to have both auxiliary problems written in terms of
the prox-function d(x).

For simplicity assume that d(x) is differentiable. Denote by

ξ(z, x) = d(x)− d(z)− 〈∇d(z), x − z〉, z, x ∈ Q,
the Bregman distance between z and x. Clearly,

ξ(z, x) ≥ 1

2
σ‖x − z‖2.

Define the following mapping:

VQ(z, g) = arg min
x

{〈g, x − z〉 + ξ(z, x) : x ∈ Q}.

In what follows we use the notation of Section 3.
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Lemma 7. Let sequence {αk}∞k=0 satisfies condition (3.6). Suppose that condition (Rk)

holds for some k ≥ 0. Let us choose γk = σ
L
αk+1. Define

xk+1 = τkzk + (1 − τk)yk,

x̂k+1 = VQ(zk, γk∇f (xk+1)),

yk+1 = τkx̂k+1 + (1 − τk)yk. (5.5)

Then the relation (Rk+1) holds.

Proof. Denote lk(x) ≡ βk + 〈lk, x − zk〉 =
k∑
i=0

αi[f (xi)+ 〈∇f (xi), x − xi〉]. Then

〈L
σ
d ′(zk)+ lk, x − zk〉 ≥ 0 ∀x ∈ Q.

Hence, since ψk = L
σ
d(zk)+ βk , in view of inequality (3.8) we have the following:

L

σ
d(x)+ lk(x)+ αk+1〈∇f (xk+1), x − xk+1〉

= L

σ
ξ(zk, x)+ L

σ
(d(zk)+ 〈d ′(zk), x − zk〉)

+βk + 〈lk, x − zk〉 + αk+1〈∇f (xk+1), x − xk+1〉
≥ L

σ
ξ(zk, x)+ ψk + αk+1〈∇f (xk+1), x − xk+1〉

≥ L

σ
ξ(zk, x)+ Ak+1f (xk+1)+ αk+1〈∇f (xk+1), x − zk〉.

Thus, using (3.6), we get the following

ψk+1 ≥ min
x

{L
σ
ξ(zk, x)+ Ak+1f (xk+1)+ αk+1〈∇f (xk+1), x − zk〉 : x ∈ Q}

= L

σ
ξ(zk, x̂k+1)+ Ak+1f (xk+1)+ αk+1〈∇f (xk+1), x̂k+1 − zk〉

≥ 1

2
L‖x̂k+1 − zk‖2 + Ak+1f (xk+1)+ αk+1〈∇f (xk+1), x̂k+1 − zk〉

≥ Ak+1

(
1

2
Lτ 2

k ‖x̂k+1 − zk‖2 + f (xk+1)+ τk〈∇f (xk+1), x̂k+1 − zk〉
)
.

It remains to use relation yk+1 − xk+1 = τk(x̂k+1 − zk). ��

Clearly, we can take

y0 = z0 = arg min
x

{
L

σ
d(x)+ α0[f (x0)+ 〈f ′(x0), x − x0〉] : x ∈ Q

}

for any α0 ∈ (0, 1]. In particular, we can use the sequence suggested in Lemma 2. In
this case we come to the following algorithmic scheme.
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1. Choose y0 = arg min
x

{
L
σ
d(x)+ 1

2 [f (x0)+ 〈f ′(x0), x − x0〉] : x ∈ Q} .
2. For k ≥ 0 iterate:

a) Find zk = arg min
x

{
L
σ
d(x)+

k∑
i=0

i+1
2 [f (xi)+ 〈∇f (xi), x − xi〉] : x ∈ Q

}
.

b) Set τk = 2
k+3 and xk+1 = τkzk + (1 − τk)yk.

c) Find x̂k+1 = VQ(zk,
σ
L
τk∇f (xk+1)).

d) Set yk+1 = τkx̂k+1 + (1 − τk)yk.

(5.6)

Of course, for this method the statement of Theorem 2 holds. As an example, let us
present the form of the mapping VQ(z, g) for entropy distance:

V
(i)
Q (z, g) = z(i)e−g

(i) ·



n∑
j=1

z(j)e−g
(j)




−1

, i = 1, . . . , n. (5.7)

Clearly, this computation looks more attractive as compared with the strategy discussed
in Section 5.1.

6. Preliminary computational results

We conclude this paper with the results of computational experiments on a random set
of matrix game problems

min
x∈�n

max
u∈�m

〈Ax, u〉2.

The matrix A is generated randomly. Each of its entries is uniformly distributed in the
interval [−1, 1].

The goal of this numerical study is twofold. Firstly, we want to be sure that the tech-
nique discussed in this paper is stable enough to be implemented on a computer with
floating point arithmetic. Secondly, it is interesting to demonstrate that the complexity
of finding an ε-solution of the above problem indeed grows proportionally to 1

ε
with

logarithmic factors dependent on n and m.
In order to achieve these goals we implemented the scheme (3.11) exactly as it is

presented in the paper. We chose the parameters of the method in accordance with the
recommendation (4.8). Note that for small ε these values become quite big. For example,
if we take

‖A‖1,2 = 1, n = 104, m = 103, ε = 10−3,

then the values of parameters of the method (3.11) are as follows:

µ = 0.72 · 10−4, Lµ = 23858.54, N = 31906.

Thus, it was not evident that the method with such parameters could be numerically
stable.
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We present three sets of results. They correspond to different values of accuracy
ε, namely to 10−2, 10−3 and 10−4. For the last value of ε we skip the problems of
highest dimension since the general picture becomes already clear. At each step of the
method we compute two matrix-vector products with matrix A. In order to check the
stopping criterion, we compute the values of exact primal and dual functions at the
current approximations x̂ and û and check if

f (x̂)− φ(û) ≤ ε.

This test is performed periodically, after one hundred (or one thousand) iterations. So,
it does not increase significantly the computational time. For our computations we used
a personal computer with processor Pentium 4 (2.6GHz) and frequency of RAM 1GHz.
In the tables below for each problem instance we give the number of iterations, com-
putational time in seconds and the percentage of the actual number of iterations with
respect to the predicted complexity N .

Looking at all three tables, we can see that the complexity of the problem indeed
grows linearly with respect to 1

ε
. Moreover, the prediction of the necessary number of

iterations is very accurate. The computational time, especially for the big problems,
looks quite important. However, that is due to the fact that the matrix A is dense. In
real-life problems we never meet big instances with such a level of density.

It seems that Tables 1 and 2 present quite encouraging results. This range of accuracy
is already very high for the subgradient schemes with O( 1

ε2 ) complexity estimates. Of
course, we can solve our problem by a cutting plane scheme, which has a linear rate of
convergence. However, usually such a method decreases the gap by a constant factor
in n iterations. In this aspect the results shown in the last column of Table 2 are very
promising: we get three digits of accuracy after n or 2n iterations. At the same time,
the complexity of each step in the cutting plane schemes is at least O( 1

3n
3). Therefore,

even if we implement them in the smallest dimension (m), the arithmetical complexity
of the computation shown in the most right-down corner of Table 3 would be equivalent
to 180 · 3 · 2 = 1080 iterations (since there n = 10m).

The level of accuracy in Table 3 is unreachable for the standard subgradient schemes.
It is quite high for cutting plane schemes also. Again, the arithmetical complexity of the
process presented in the cell (3,3) of this table is equivalent to 116 ·3 ·2 = 696 iterations

Table 1. Computational results for ε = 0.01.

m\n 100 300 1000 3000 10000

100 808 0”, 44% 1011 0”,49% 1112 3”,49% 1314 12”,54% 1415 44”,54%
300 910 0”,44% 1112 2”,49% 1415 10”,56% 1617 35”,60% 1819 135”,63%
1000 1112 2”,49% 1213 8”,48% 1415 32”,51% 1718 115”,58% 2020 451”,63%

Table 2. Computational results for ε = 0.001.

m\n 100 300 1000 3000 10000

100 6970 2”,38% 8586 8”,42% 9394 29”,42% 10000 91”,41% 10908 349”,42%
300 7778 8”,38% 10101 27”,44% 12424 97”,49% 14242 313”,53% 15656 1162”,54%
1000 8788 30”,39% 11010 105”,44% 13030 339”,47% 15757 1083”,53% 18282 4085”,57%
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Table 3. Computational results for ε = 0.0001.

m\n 100 300 1000 3000

100 67068 25”,36% 72073 80”,35% 74075 287”,33% 80081 945”,33%
300 85086 89”,42% 92093 243”,40% 101102 914”,40% 112113 3302”,41%
1000 97098 331”,43% 100101 760”,40% 116117 2936”,42% 139140 11028”,47%

of a cutting plane scheme in dimension n = 1000. That is indeed not too much for four
digits of accuracy.
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