Classification and
Detection in Images

D.A. Forsyth




Classifying Images

® Motivating problems
® detecting explicit images
® classifying materials
® classifying scenes

® Strategy

® build appropriate image features
® train classifier
® test, evaluate
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FIGURE 16.1: Material is not the same as object category (the three cars on the top are
each made of different materials), and is not the same as texture (the three checkered
objects on the bottom are made of different materials). Knowing the material that
makes up an object gives us a useful description, somewhat distinct from its identity and
its texture. This figure was originally published as Figures 2 and 3 of “Exploring Features
in a Bayesian Framework for Material Recognition,” by C. Liu, L. Sharan, E. Adelson,

and R. Rosenholtz Proc. CVPR 2010, 2010 (©) IEEE, 2010.
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FIGURE 16.2: Some scenes are easily identified by humans. These are examples from
the SUN dataset (Xiao et al. 2010) of scene categories that people identify accurately
from images; the label above each image gives its scene type. This figure was originally
published as Figure 2 of “SUN database: Large-scale Scene Recognition from Abbey to
Zoo,” by J. Xiao, J. Hays, K. Fhinger, A. Oliva, and A. Torralba, Proc. IEEE CVPR
2010, © IEEE, 2010.
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GIST Features

Layout 1s important

where stuff is

are there walls?

1s there a floor?

is it an open space?

Texture measures should capture this
Strategy

obtain filter responses, obtain average magnitudes
compute linear discriminants for reference dataset
® to find magnitudes that are most helpful

There 1s now a standard set of GIST features

no need to re-implement
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FIGURE 16.3: GIST features can be used to identify scenes, particularly the place where
the image was taken. Torralba et al. (2003) demonstrated a vision system that moves
through a known environment, and can tell where it is from what it sees using scene
recognition ideas. Images (examples on the top left) are represented with GIST features.
These are used to compute a posterior probability of place conditioned on observations
and the place of the last image, which i1s shown on the right. The shaded blobs corre-
spond to posterior probability, with darker blobs having higher probability. The thin line
superimposed on the figure gives the correct answer; notice that almost all probability lies
on the right answer. For places that are not known, the type of place can be estimated
(bottom left); again, the shaded blobs give posterior probability, darker blobs having
higher probability, and the thin line gives the right answer. This figure was originally
published as Figures 2 and 3 of “Context-based vision system for place and object recogni-
tion,” by A. Torralba, K. Murphy, W.T. Freeman, and M.A. Rubin, Proc. IEEE ICCV
2003, (© IEEFE 2005.
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FIGURE 16.4: Scenes are important, because knowing the type of scene shown in an image
gives us some information about the objects that are present. For example, street’s are
typically at the bottom center of street scenes. These maps show probabilities of object
locations (top row, for each image) extracted from scene information for the image to
the left; brighter values are higher probabilities. Compare these with the true support of
the object (bottom row, for each image); notice that, while knowing the scene doesn’t
guarantee that an object is present, it does suggest where it 1s likely to be. This could
be used to cue object detection processes. This figure was origz'nally published as Figure
10 of “Context-based vision system for place and object recognition,” by A. Torralba, K.
Murphy, W.T. Freeman, and M.A. Rubin, Proc. IEEE ICCV 2003, (©) IEEE 2003.
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Multiclass classification

® Many strategies
® FEasy with k-nearest neighbors

® [-vs-all
® for each class, construct a two class classifier comparing it to all other
classes

® take the class with best output
® if output is greater than some value
ulticlass logistic regression

e M
® Jog(P(ilfeatures))-log(P(klfeatures))=(linear expression)
]
[
°

many more parameters

harder to train with maximum likelihood
still convex
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Useful tricks

® Jittering data
® vyou can make many useful p031t1ves negatives out of some
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FIGURE 15.7: A single positive example can be used to generate numerous positive ex-
amples by slight rescaling and cropping, small rotations and crops, or flipping. These
transformations can be combined, too. For most applications, these positive examples are
informative, because objects usually are not framed and scaled precisely in images. In
effect, these examples inform the classifier that, for example, the stove could be slightly
more or slightly less to the right of the image or even to the left. Jake Fitzjones (©) Dorling
Kindersley, used with permission.

® Hard negative mining
® negatives are often common - find ones that you get wrong by a search
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Visual words

® [ssue:

® category will not produce a single, simple pattern
® but it might have components that are distinctive, but move around

® [dea:

® |ook for distinctive local patches
® found using methods from domain slides
® described with HOG/SIFT style features
® vector quantize, to form Visual Words
® build a histogram
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Important trick: K-Means

Choose a fixed number of clusters
Choose cluster centers and point-cluster allocations to

minimize error
2
2 ij — Y }

iclusters { Jj€elements of i'th cluster

can’t do this by search

® there are too many possible allocations.

Algorithm
® fix cluster centers; allocate points to closest cluster
® fix allocation; compute best cluster centers

® x could be any set of features for which we can compute a distance
(careful about scaling)
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K-means

Choose k data points to act as cluster centers
Until the cluster centers change very little
Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.
Replace the cluster centers with the mean of the elements
in their clusters.
end

Algorithm 6.3: Clustering by K-Means.
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Building visual words - 1

® [ carn a dictionary
® cluster patch representations with k-means
® k will be big (1000’s-100,000’s)

Learning a dictionary
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Building visual words - 11

® Encode an image
® find all interest points
® for each patch around each interest point
® map patch to closest cluster center
® build histogram of interest points

o=
2
3 A
- Replace
o :
with
o=
= closest ) j I
L
2 cluster i
Q. ~ € - R
2 center Histogram
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Visual words
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FIGURE 16.6: Visual words are obtained by vector quantizing neighborhoods like those
shown in Figure 16.5. This figure shows 30 examples each of instances of four different
visual words. Notice that the words represent a moderate-scale local structure in the
image (an eye, one and a half letters, and so on). Typical vocabularies are now very large,
which means that the instances of each separate word tend to look a lot like one another.
This figure was originally published as Figure 3 of “Efficient Visual Search for Objects in

Videos,” by J. Siwvic and A. Zisserman, Proc. IEEE, Vol. 96, No. /, April 2008 (©) IEEE
2008.
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Visual words

FIGURE 16.5: The original application of visual word representations was to search video
sequences for particular patterns. On the left, a user has drawn a box around a pattern
of interest in a frame of video; the center shows a close-up of the box. On the right,
we see neighborhoods computed from this box. These neighborhoods are ellipses, rather
than circles; this means that they are covariant under affine transforms. Equivalently,
the neighborhood constructed for an affine transformed patch image will be the affine
transform of the neighborhood constructed for the original patch (definition in Section
5.3.2). This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. j}, April 2008
(© IEEFE 2008.
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Visual words

FIGURE 16.7: This figure shows results from the query of Figure 16.5, obtained by looking
for image regions that have a set of visual words strongly similar to those found in the
query region. The first row shows the whole frame from the video sequence; the second
row shows a close-up of the box that is the result (indicated in the first row); and the
third row shows the neighborhoods in that box that generated visual words that match
those in the query. Notice that some, but not all, of the neighborhoods in the query were
matched. This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. /, April 2008
(© IEEFE 2008.




Features from visual words

® Histogram
® oood summary of what is in image; quick and efficient
® insensitive to spatial reorganization

® Spatial pyramid
® build histograms of local blocks at various scales
® Jess insensitive to spatial reorganization
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Spatial pyramids
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FIGURE 16.8: A simplified example of constructing a spatial pyramid kernel, with three
levels. There are three feature types, too (circles, diamonds, and crosses). The image is
subdivided into one-, four-, and sixteen-grid boxes. For each level, we compute a histogram
of how many features occur in each box for each feature type. We then compare two images
by constructing an approximate score of the matches from these histograms. This figure
was originally published as Figure 1 of “Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J. Ponce, Proc.

IEEFE CVPR 2006, © IEEE 2006.




Evaluation

® Precision
® percentage of items in retrieved set that are relevant

® Recall

® percentage of relevant items that are retrieved

® Precision vs recall

® use classifier to label a collection of images
® now plot precision against recall for different classifier thresholds

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth




Evaluation

e AP

® average precision
® average of precision as a function of recall

Write rel(r) for the binary function that is one when the rth document is
relevant, and otherwise zero; P(r) for the precision of the first » documents in the
ranked list; N for the number of documents in the collection; and N, for the total
number of relevant documents. Then, average precision is given by

1 N

A= N Z(P(r)rel(r))

r=1

Notice that average precision is highest (100%) when the top N, documents are
the relevant documents. Averaging over all the relevant documents means the
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Precision vs recall
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FIGURE 16.19: Plots of precision as a function of recall for six object queries. Notice
how precision generally declines as recall goes up (the occasional jumps have to do with
finding a small group of relevant images; such jumps would become arbitrarily narrow
and disappear in the limit of an arbitrarily large dataset). Each query is made using the
system sketched in Figure 16.5. Each graph shows a different query, for two different
configurations of that system. On top of each graph, we have indicated the average
precision for each of the configurations. Notice how the average precision is larger for
systems where the precision is higher for each recall value. This figure was originally
published as Figure 9 of J. Siwvic and A. Zisserman “Efficient Visual Search for Objects in
Videos,” Proc. IEEE, Vol. 96, No. }, April 2008 (¢) IEEE 2008.




[ Category | 2007 | 2008 | 2009 | 2010 ]

aeroplane 0.775 | 0.811 | 0.881 | 0.933
bicycle 0.636 | 0.543 | 0.686 | 0.790

bird 0.561 | 0.616 | 0.681 | 0.716
boat 0.719 | 0.678 | 0.729 | 0.778
bottle 0.331 | 0.300 | 0.442 | 0.543
bus 0.606 | 0.521 | 0.795 | 0.859

car 0.780 | 0.595 | 0.725 | 0.804

cat 0.588 | 0.599 | 0.708 | 0.794
chair 0.535 | 0.489 | 0.595 | 0.645
cow 0.426 | 0.336 | 0.536 | 0.662
diningtable | 0.549 | 0.408 | 0.575 | 0.629
dog 0.458 | 0.479 | 0.593 | 0.711

horse 0.775 | 0.673 | 0.731 | 0.820
motorbike | 0.640 | 0.652 | 0.723 | 0.844
person 0.859 | 0.871 | 0.853 | 0.916
pottedplant | 0.363 | 0.318 | 0.408 | 0.533
sheep 0.447 | 0.423 | 0.569 | 0.663

sofa 0.509 | 0.454 | 0.579 | 0.596

train 0.792 | 0.778 | 0.860 | 0.894

tvmonitor | 0.532 | 0.647 | 0.686 | 0.772
# methods 2 5 4 6
# comp 17 18 48 32

TABLE 16.1: Average precision of the best classification method for each category for
the Pascal image classification challenge by year (per category; the method that was best
at “person” might not be best at “pottedplant”), summarized from http://pascallin.
ecs.soton.ac.uk/challenges/VOC/. The bottom rows show the number of methods in
each column and the total number of methods competing (so, for example, in 2007, only
2 of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily
monotonically (this is because the test set changes). Most categories now work rather

well.
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Can be hard

Pansy

Fritillary

Dandelion - A Colts’ foot

Tiger Lily

Dandelion -B

FIGURE 16.21: Identifying a flower from an image is one useful specialized application for
image classification techniques. This is a challenging problem. Although some flowers have
quite distinctive features (for example, the colors and textures of the pansy, the fritillary,
and the tiger lily), others are easy to confuse. Notice that dandelion-A (bottom) looks
much more like the colts’ foot than like dandelion-B. Here the within-class variation is
high because of changes of aspect, and the between-class variation is small. This figure was
originally published as Figures 1 and 8 of “A Visual Vocabulary for Flower Classification,”
by M.E. Nilsback and A. Zisserman, Proc. IEEE CVPR 2006, (c) IEEE 2006.
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Detection with a classifier

Search
® 3]l windows
® at relevant scales

Prepare features
Classity

Issues

® how to get only one response
® speed

® accuracy
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Detection with a classifier

Train a classifier on n x m image windows. Positive examples contain
the object and negative examples do not.
Choose a threshold ¢t and steps Ar and Ay in the  and y directions

Construct an image pyramid.

For each level of the pyramid
Apply the classifier to each n x m window, stepping by
Az and Ay, in this level to get a response strength c.
Ife>t
Insert a pointer to the window into a ranked list £, ranked by c.

For each window W in L, starting with the strongest response
Remove all windows U # W that overlap W significantly,
where the overlap is computed in the original image by expanding windows
in coarser scales.

L is now the list of detected objects.

Algorithm 17.1: Sliding Window Detection.
Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth




Non-maximum suppression

e Compute “strength of response”
® SVM value
® [R value

® Threshold

® small values are not faces

® Find largest value (over location, scale)

® suppress nearby values
® repeat
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Core applications

® Face detection
® now very successful for frontal faces
® |ess so for 3/4, profile views

® Pedestrian detection
® cg make cars safer

® Generic object detection
® cxplain pictures
® image search
® robotics applications
® surveillance applications
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In-plane rotation

"" Histogen Reapive Faclid o
Fqualine l ,/ Hadbden Lty

m e
Nework

anu,/ .

e

Joget bmage Pysunnd Extractod Wuslow  Histogram
{20 by Xipixcls)  Bqualined

crulate
o
p
- - - -

T\V\T\‘T\. \

AR \B\R B

" \4\_\\‘
\ %‘\\\\
oQ 510

W Dann \

=

vV
V o Preprocessing Detection Netoork Architecturne
Rouler Netuwork

FIGURE 17.2: The architecture of Rowley, Baluja, and Kanade’s system for finding faces.
Image windows of a fixed size are corrected to a standard illumination using histogram
equalization; they are then passed to a neural net that estimates the orientation of the
window. The windows are reoriented and passed to a second net that determines whether
a face 1s present. This figure was originally published as Figure 2 from “Rotation invariant

neural-network based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE

CVPR, 1998, © IEEE, 1998.
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FIGURE 17.3: Typical responses for the Rowley, Baluja, and Kanade system for face
finding; a mask icon 1s superimposed on each window that is determined to contain a face.
The orientation of the face is indicated by the configuration of the eye holes in the mask.
This figure was originally published as Figure 7 from “Rotation invariant neural-network
based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE CVPR, 1998,
(© IEEE, 1998.
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Fast Features for Faces

FIGURE 17.4: Face detection can be made extremely fast using features that are easy to
evaluate, and that can reject most windows early. On the left, features can be built up out
of sums of the image within boxes, weighted by 1 or —1. The drawings show two two-box
features (some readers might spot a relationship to Haar wavelets). On the right, the
features used for the first two tests (equivalently, the first two classifiers in the cascade)
by Viola and Jones (2001). Notice how they check for the distinctive dark bar at the eyes
with the lighter bar at the cheekbones, then the equally distinctive vertical specularity
along the nose and forehead. This figure was originally published as Figures 1 and 3 from
“Rapid Object Detection using a Boosted Cascade of Simple Features,” by P. Viola and
M. Jones, Proc. IEEE CVPR 2001 (©) IEEE 2001.
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Pedestrians: Scissors and Lollipops

FIGURE 17.5: Examples of pedestrian windows from the INRIA pedestrian dataset, col-
lected and published by Dalal and Triggs (2005). Notice the relatively strong and dis-
tinctive curve around the head and shoulders; the general “lollipop” shape, caused by the
upper body being wider than the legs; the characteristic “scissors” appearance of sepa-
rated legs; and the strong vertical boundaries around the sides. These seem to be the cues
used by classifiers. This figure was originally published as Figure 2 of “Histograms of
Oriented Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR
2005, © IEEE, 2005.
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Convolution

e Each pixel in output image is
® weighted average of window of pixels in input image
® weights stay the same
® window centered on pixel

e [Important operation
® Example: smoothing by averaging
® Example: smoothing by weighted average
® Example: taking a derivative
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Convolution - Example II

* Averaging neighbors yields poor smoothing
® ]ook at picture - ringing effects
® distant neighbors have the same effect as nearby neighbors

e Jdea:

® distant neighbors have small weights, nearby have large
® weights from Gaussian

B 1 — [u2 + v2]
Huw = 22 AP 202
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Smoothing with a Gaussian

Inset: smoothing weights

Input image Output image, average Output image, gaussian weights

Figure 4.1
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Recall: Edges

e [dea:

® points where image value change very sharply are important
® changes in surface reflectance
® shadow boundaries
® outlines

* Finding Edges:
® Estimate gradient magnitude using appropriate smoothing
® Mark points where gradient magnitude is

® [ .ocally biggest and
® big
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Recall: Smoothed gradients

e Fact: These two are the same O(Ggx*I) (8G(,
® Smooth, then differentiate or N O
® Filter with derivative of Gaussian

) * *1

e Exploit:

® Filter image with derivative of Gaussian filters to get smoothed gradient
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Edge Maps Depend on Shading

o [f the image 1s brighter (resp. darker)

® because the camera gain is higher (resp. lower)
® because there is more (resp. less) light
® because the pixel values got multiplied by a constant

* Then the gradient magnitude is bigger (resp. smaller)

* So scaling image brightness changes the edge map
® because some magnitudes will go above (resp. below) the test threshold

* Edge maps differ for brighter/darker copies of a picture
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Orientations - 1

® Gradient magnitude is affected by illumination changes
® but gradient direction isn’t

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change: we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward (©) Dorling Kindersley,
used with permission.
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Orientations - 11

® Notice larger gradients are “better”
® we know the orientation better; associated image points “more interesting”

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change:; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward (©) Dorling Kindersley,

used with permission.
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Rose plot

Orientations at different scales

FIGURE 5.8: The scale at which one takes the gradient affects the orientation field. We
show the overall trend of the orientation field by plotting a rose plot, where the size of a
wedge represents the relative frequency of that range of orientations. Left shows an image
of artists pastels at a fairly fine scale; here the edges are sharp, and so only a small set of
orientations occurs. In the heavily smoothed version on the right, all edges are blurred
and corners become smooth and blobby; as a result, more orientations appear in the rose
plot. Philip Gatward (©) Dorling Kindersley, used with permission.
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Orientation Histograms Vary

FIGURE 5.9: Different patterns have quite different orientation histograms. The left shows
rose plots and images for a picture of artists pastels at two different scales; the right shows
rose plots and images for a set of pastels arranged into a circular pattern. Notice how the
pattern of orientations at a particular scale, and also the changes across scales, are quite
different for these two very different patterns. Philip Gatward (©) Dorling Kindersley, usec

with permission.
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Building Orientation Representations

® We would like to represent a pattern in an image patch
® to detect things in images
® to match points in one image to corresponding points in another image

® Necessary properties

® we have to know which patch to describe
® think of this as knowing the center and size of an image window

® Desirable features

® representation doesn’t change much if the center is slightly wrong
representation doesn’t change much if the size is slightly wrong
representation is distinctive

representation doesn’t change much if the patch gets brighter/darker
large gradients are more important than small gradients
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® Necessary properties

® we have to know which patch to describe
® think of this as knowing the center and size of an image window

® Desirable features

Use histograms<C— e representation doesn’t change much if the center is slightly wrong
® representation doesn’t change much if the size is slightly wrong

Histograms of Oriented Gradients

For the moment,
assume window

1s known

Break

® representation is distinctive
Use orientations— ® representation doesn’t change much if the patch gets brighter/darker
® Jarge gradients are more important than small gradients

Weight orientation histogram entries

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

window
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describe each
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Histograms of Oriented Gradients

® Strategy:
® break patch up into blocks
® construct histogram representing gradient orientations in that block
® which won’t change much if the patch moves slightly
® entries weighted by magnitude

® Variants

® histogram of angles
® histogram of gradient vectors, length normalized by block averages
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HOG features

Given a grid cell G for patch with center ¢ = (z.,y.) and radius r

Create an orientation histogram
For each point p in an m X m subgrid spanning G
Compute a gradient estimate VZ |p estimate at p
as a weighted average of VZ, using bilinear weights centered at p.

Add a vote with weight | VZ | \/12— exp (_lﬂ;ﬁﬁ)

r T

to the orientation histogram cell for the orientation of VZ.

Algorithm 5.5: Computing a Weighted ¢ Element Histogram for a SIFT Feature.
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HOG features
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FIGURE 5.15: The HOG features for each the two images shown here have been visualized
by a version of the rose diagram of Figures 5.7-5.9. Here each of the cells in which the
histogram is taken is plotted with a little rose in it; the direction plotted is at right angles
to the gradient, so you should visualize the overlaid line segments as edge directions.
Notice that in the textured regions the edge directions are fairly uniformly distributed,
but strong contours (the gardener, the fence on the left; the vertical edges of the french
windows on the right) are very clear. This figure was plotted using the toolbox of Dollar
and Rabaud. Left: © Dorling Kindersley, used with permission. Right: Geoff Brightling
© Dorling Kindersley, used with permission.
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HOG - Crucial Points

® Gradient orientations are not affected by intensity
® Orientations with larger magnitude are more important

® Describe an image window of known location, size
® Histograms reduce the effect of poor estimate of location, size
® Break window into subwindows

® for each, compute an orientation histogram, weighting orientations by
magnitude
® Numerous variants available
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Visualizing Distinctive Features

FIGURE 17.7: As Figure 17.6 indicates, a linear SVM works about as well as the best
detector for a pedestrian detector. Linear SVMs can be used to visualize what aspects of
the feature representation are distinctive. On the left, a typical pedestrian window, with
the HOG features visualized on the center left, using the scheme of Figure 5.15. Each
of the orientation buckets in each window 1s a feature, and so has a corresponding weight
in the inear SVM. On the center right, the HOG features weighted by positive weights,
then visualized (so that an important feature is light). Notice how the head and shoulders
curve and the lollipop shape gets strong positive weights. On the right, the HOG features
weighted by the absolute value of negative weights, which means a feature that strongly
suggests a person is not present is light. Notice how a strong vertical line in the center of
the window is deprecated (because it suggests the window is not centered on a person).
This figure was originally published as Figure 6 of “Histograms of Oriented Gradients for
Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, (©) IEEE, 2005.
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FIGURE 17.6: The performance of the pedestrian detector of Dalal and Triggs (2005),

for various choices of features and two different datasets.

On the left, results using

the MIT pedestrian dataset, and on the right, results using the INRIA dataset. The
results are reported as the miss rate (so smaller is better) against the false positive per
window (FPPW) rate, and so evaluate the classifier rather than the system. Overall
system performance will depend on how many windows are presented to the detector in
an average image (details in the text; see Figure 17.8). Notice that different datasets
result in quite different performance levels. The best performance on the INRIA dataset
(which is quite obviously the harder dataset) is obtained with a kernel SVM (circles, Ker.
R-HOG), but there is very little difference between this and a linear SVM (squares, Lin.
R2-HOG). This figure was originally published as Figure 3 of “Histograms of Oriented
Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, (©
IEEE, 2005.
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16.3.1 Codes for Image Features

Oliva and Torralba provide GIST feature code at http://people.csail.mit.edu/
torralba/code/spatialenvelope/, together with a substantial dataset of outdoor
scenes.

Color descriptor code, which computes visual words based on various color
SIFT features, is published by van de Sande et al at http://koen.me/research/
colordescriptors/.

The pyramid match kernel is an earlier variant of the spatial pyramid kernel
described in Section 16.1.4; John Lee provides a library, 1ibpmk, that supports this
kernel at http://people.csail.mit.edu/jj1l/1libpmk/. There are a variety of
extension libraries written for libpmk, including implementations of the pyramid
kernel, at this URL.

Li Fei-Fei, Rob Fergus, and Antonio Torralba publish example codes for
core object recognition methods at http://people.csail.mit.edu/torralba/
shortCourseRLOC/. This URL is the online repository associated with their very
successful short course on recognizing and learning object categories.

VLFeat is an open-source library that implements a variety of popular com-
puter vision algorithms, initiated by Andrea Vedaldi and Brian Fulkerson; it can
be found at http://www.vlfeat.org. VLFeat comes with a set of tutorials that
show how to use the library, and there is example code showing how to use VLFeat
to classify Caltech-101.

There is a repository of code links at http://featurespace.org.

At the time of writing, multiple-kernel learning methods produce the strongest
results on standard problems, at the cost of quite substantial learning times. Sec-
tion 15.3.3 gives pointers to codes for different multiple-kernel learning methods.
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16.3.2

Image Classification Datasets

There is now a rich range of image classification datasets, covering several applica-
tion topics. Object category datasets have images organized by category (e.g.,
one is distinguishing between “bird”s and “motorcycle”s, rather than between
particular species of bird). Five classes (motorbikes, airplanes, faces, cars, spot-
ted cats, together with background, which isn’t really a class) were introduced
by Fergus et al. (2003) in 2003; they are sometimes called Caltech-5. Caltech-
101 has 101 classes, was introduced in Perona et al. (2004) and by Fei-Fei et al.
(2006), and can be found at http://wuw.vision.caltech.edu/Image_Datasets/
Caltech101/. This dataset is now quite well understood, but as Figure 16.20
suggests, it is not yet exhausted. Caltech-256 has 256 classes, was introduced
by (Griffin et al. 2007), and can be found at http://www.vision.caltech.edu/
Image_Datasets/Caltech256/. This dataset is still regarded as challenging.

LabelMe is an image annotation environment that has been used by many
users to mark out and label objects in images; the result is a dataset that is changing
and increasing in size as time goes on. LabelMe was introduced by Russell et al.
(2008), and can be found at http://labelme.csail.mit.edu/.

The Graz-02 dataset contains difficult images of cars, bicycles, and people in
natural scenes; it is originally due to Opelt et al. (2006), but has been recently
reannotated Marszalek and Schmid (2007). The reannotated edition can be found
at http://lear.inrialpes.fr/people/marszalek/data/ig02/.

Imagenet contains tens of millions of examples, organized according to the
Wordnet hierarchy of nouns; currently, there are examples for approximately 17,000
nouns. Imagenet was originally described in Deng et al. (2009), and can be found
at http://www.image-net.org/.

The Lotus Hill Research Institute publishes a dataset of images annoted in
detail at http://www.imageparsing. com; the institute is also available to prepare
datasets on a paid basis.
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Each year since 2005 has seen a new Pascal image classification dataset; these
are available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

There are numerous specialist datasets. The Oxford visual geometry group
publishes two flower datasets, one with 17 categories and one with 102 categories;
each can be found at http://www.robots.ox.ac.uk/~vgg/data/flowers/. Other
datasets include a “things” dataset, a “bottle” dataset, and a “camel” dataset, all
from Oxford (http://www.robots.ox.ac.uk/~vgg/data3.html).

There is a bird dataset published by Caltech and UCSD jointly at http:

//www.vision.caltech.edu/visipedia/CUB-200.html.

Classitfying materials has become a standard task, with a standard dataset.
The Columbia-Utrecht (or CURET) material dataset can be found at http://
www.cs.columbia.edu/CAVE/software/curet/; it contains image textures from
over 60 different material samples observed with over 200 combinations of view and
light direction. Details on the procedures used to obtain this dataset can be found
in Dana et al. (1999). More recently, Liu et al. (2010) offer an alternative and
very difficult material dataset of materials on real objects, which can be found at
http://people.csail.mit.edu/celiu/CVPR2010/FMD/.

We are not aware of collections of explicit images published for use as research
datasets, though such a dataset would be easy to collect.

There are several scene datasets now. The largest is the SUN dataset (from
MIT; http://groups.csail.mit.edu/vision/SUN/; Xiao et al. (2010)) contains
130,519 images of 899 types of scene; 397 categories have at least 100 examples per
category. There is a 15-category scene dataset used in the original spatial pyramid
kernel work at http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

It isn’t possible (at least for us!) to list all currently available datasets.
Repositories that contain datasets, and so are worth searching for a specialist
dataset, include: the pilot European Image Processing Archive, currently at http:
//peipa.essex.ac.uk/index.html; Keith Price’s comprehensive computer vision
bibliography, whose root is http://visionbib.com/index.php, and with dataset
pages at http://datasets.visionbib.com/index.html; the Featurespace dataset
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