
Contents

1 Higher Dimensions 2
1.1 Straightforward Properties of High Dimensional Data 2

1.1.1 Linear Functions of High Dimensional Data 5
1.1.2 Affine Transformations of High Dimensional Data 7

1.2 Principal Components Analysis . 9
1.3 Similarity and Singular Value Decompositions 16

1.3.1 Word Counts, Documents and Matching 18
1.3.2 Smoothing Word Counts and Latent Semantic Analysis . . . 20
1.3.3 Recommender Systems . 21
1.3.4 Multidimensional Scaling . 22

1.4 The Curse of Dimension . 23
1.5 The Multivariate Normal Distribution 24

1.5.1 Affine Transformations and Gaussians 25

1

C H A P T E R 1

Higher Dimensions

Up to this point, we have mainly discussed one dimensional data. This data
is important, because it is common and easy to visualize and to deal with. Two
dimensional data appeared when we talked about scatter plots and regression. How-
ever, much data has very high dimension. Representations of items like documents,
images, or sound quite commonly involve thousands of dimensions.

High dimensions involve special problems of their own, which we describe in
section ??. There are relatively few reliable models we can use for high dimensional
data, because there is often an unmanageable number of parameters to estimate.
One quite reliable model is the multivariate normal distribution (or gaussian, as
it is usually called). We describe these models in section ??. Finally, from these
models we derive a nice trick to reduce the dimension of a dataset in section ??.

1.1 STRAIGHTFORWARD PROPERTIES OF HIGH DIMENSIONAL DATA

Generally, we will represent our data items with column vectors. The i’th data
item is xi. If we need to refer to the j’th component of a vector xi, we will write

x
(j)
i (notice this isn’t in bold, and the j is in parentheses because it isn’t a power).

In any data set, there are N such d-dimensional vectors.
There is a natural analogue to the mean in high dimensions. For one-dimensional

data, we wrote

mean ({xi}) =

∑
i xi
N

.

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({xi}) =

∑
i xi

N

and call this the mean of the data. Notice that each component of mean ({xi})
is the mean of that component of the data. There is not an easy analogue of the
median, however (how do you order high dimensional data?) and this is a nuisance.
Notice that, just as for the one-dimensional mean, we have

mean ({xi −mean ({xi})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).
If our data items are d dimensional vectors, we could compute

cov
({
x(j)

}
,
{
x(k)

})
for any pair of j, k. When j and k are different, this gives us the covariance of two
components of the vectors. This behaves like the covariances we saw in Chapter 1.

2

Section 1.1 Straightforward Properties of High Dimensional Data 3

−20 −15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

FIGURE 1.1: On the left, a “blob” in two dimensions. This is a set of data points that
lie somewhat clustered around a single center, given by the mean. I have plotted the
mean of these data points with a ’+’. On the right, a data set that is best thought
of as a collection of five blobs. I have plotted the mean of each with a ’+’. We could
compute the mean and covariance of this data, but it would be less revealing than
the mean and covariance of a single blob. In chapter 1.5, I will describe automatic
methods to describe this dataset as a series of blobs.

For example, if the j’th component tends to be positive when the k’th component
is negative (and vice versa), cov

({
x(j)

}
,
{
x(k)

})
should be negative. Similarly,

cov
({
x(j)

}
,
{
x(k)

})
= cov

({
x(k)

}
,
{
x(j)

})
. Finally, as we saw in Chapter 1, we

must have that cov
({
x(j)

}
,
{
x(j)

})
= std

(
x(j)

)2
, which we called variance.

There are d(d−1)/2 unique covariances, one for each j, k pair independent of
order. Conveniently, we can compute all these covariances with one computation.
We compute the matrix

Covmat ({xi}) =

∑
i(xi −mean ({xi}))(xi −mean ({xi}))T

N

and the j, k’th entry of this matrix is cov
({
x(j)

}
,
{
x(k)

})
, according to our original

definition (you should check this sum).
When we plotted histograms, we saw that mean and variance were a very

helpful description of data that had a unimodal histogram. If the histogram had
more than one mode, one needed to be somewhat careful to interpret the mean and
variance; in the pizza example, we plotted diameters for different manufacturers to
try and see the data as a collection of unimodal histograms.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 1.1). You might not believe that this is a technical term, but it’s
quite widely used. Mean and covariance are less useful as descriptions of data that
forms multiple blobs (Figure 1.1). In chapter 1.5, we discuss methods to model data
that forms multiple blobs, or other shapes that we will interpret as a set of blobs.
But it’s valuable to get some intuition for individual blobs, and we concentrate on

Section 1.1 Straightforward Properties of High Dimensional Data 4

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

FIGURE 1.2: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a ’.’ (it’s easier to see when there is a lot of
data). On the right, I subtracted the mean from each data point, which has the
effect of translating the data — the whole blob is translated to lie around the origin.

that here.
The trick to interpreting high dimensional data is to use the mean and covari-

ance to understand the blob. Figure 1.2 shows a two-dimensional data set. Notice
that there is obviously some correlation between the x and y coordinates (it’s a
diagonal blob), and that neither x nor y has zero mean. We can easily compute
the mean and subtract it from the data points, and this translates the blob so that
the origin is at the center (Figure 1.2).

If we were to rescale x and y to get normalized coordinates, we could compute
the correlation between x and y. But there is another approach, which is more
revealing. We can rotate the blob so that x and y are not correlated (Figure 1.3).
The rotation can be read off the covariance matrix (next section), and it results in a
new blob, in a new coordinate system, where there is no correlation between x and
y. To describe this data, we need only specify the variance of x and the variance
of y — the covariance is zero.

If we care to, we can now scale the data in this new coordinate system so
that the variance of x and of y is one (Figure 1.4). This gives us a new type of
normalized coordinate, where all covariances are zero, and all variances are one.
There is a crucial point here: we can reduce any blob of data, in any dimension, to
a standard blob of that dimension. All blobs are one, except for some stretching,
some rotation, and some translation. This is why blobs are so well-liked.

Section 1.1 Straightforward Properties of High Dimensional Data 5

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

FIGURE 1.3: On the left, the translated blob of figure 1.2. This blob lies somewhat
diagonally, because the x and y components are correlated. On the right, that blob
of data rotated so that there is no correlation. We can now describe the blob by the
x and y variances — in the new coordinate system — alone.

1.1.1 Linear Functions of High Dimensional Data

Consider a vector v. We construct a new data set ui = vTxi — and these are not
vectors, they are scalars. The data points in this new data set are linear functions
of our original data points. Now we have

mean ({ui}) = mean
({

vTxi

})
= vT mean ({xi})

and

cov ({ui} , {ui}) =

∑
i(ui −mean ({ui}))(ui −mean ({ui}))

N

=

∑
i(v

T (xi −mean ({xi})))(xi −mean ({xi}))Tv

N

= vT Covmat ({xi})v.

This means that the covariance matrix must be positive semidefinite, because when
we form vT Covmat ({xi})v, the result is the variance of some data set (the ui). Now
assume that Covmat ({xi}) is indefinite — this means there is some non-zero v such
that vT Covmat ({xi})v = 0. But this means that∑

i

[
(vT (xi −mean ({xi})))

] [
(xi −mean ({xi}))Tv

]
= 0

which means that
(vT (xi −mean ({xi}))) = 0

Section 1.1 Straightforward Properties of High Dimensional Data 6

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

FIGURE 1.4: On the left, the translated and rotated blob of figure 1.3. This blob is
stretched — one direction has more variance than another. On the right, that blob
of data scaled so that all variances are one. You can think of this as a standard
blob. All blobs can be reduced to a standard blob, by relatively straightforward linear
algebra (Section 1.1.1).

for every i. In turn, for Covmat ({xi}) to be indefinite, we must have that all the
data points xi lie on some hyperplane in the space (because (vT (xi−mean ({xi}))) =
0). Generally, this means that some entries in xi are redundant. This case is easy
to detect, and easy to correct if it occurs. We just have to project the data onto the
hyperplane, to get a lower dimensional dataset. As a result, we generally assume
that it doesn’t happen (or, rather, has already been corrected). From now on, we
will assume that Covmat ({xi}) is positive definite (equivalently, you have projected
off any bad dimensions already).

Useful facts: Some Matrix Facts

A matrix M is symmetric if M =MT .
We write I for the identity matrix.
A matrix is positive semidefinite if, for any x such that xTx > 0 (i.e. this vector
has at least one non-zero component), we have xTMx ≥ 0.
A matrix is positive definite if, for any x such that xTx > 0, we have xTMx > 0.
A matrix R is orthonormal if RTR = I = IT = RRT . You should think of
orthonormal matrices as rotations, because they do not change lengths or angles.
For x a vector, R an orthonormal matrix, and u = Rx, we have uTu = xTRTRx =
xTIx = xTx. This means that R doesn’t change lengths. For y, z both unit
vectors, we have that the cosine of the angle between them is yTx; but, by the
same argument as above, the inner product of Ry and Rx is the same as yTx.
This means that R doesn’t change angles, either.

Section 1.1 Straightforward Properties of High Dimensional Data 7

1.1.2 Affine Transformations of High Dimensional Data

Now assume we apply an affine transformation to our data xi, to obtain ui =
Axi + b. Here A is any matrix (it doesn’t have to be square, or symmetric, or
anything else; it just has to have second dimension d). It is easy to compute the
mean and covariance of ui. We have

mean ({ui}) = mean ({Axi + b})
= Amean ({xi}) + b

and, which is much more interesting

Covmat ({ui}) = Covmat ({Axi + b})

=

∑
i(ui −mean ({ui}))(ui −mean ({ui}))T

N

=

∑
i(Axi + b−Amean ({xi})− b)(Axi + b−Amean ({xi})− b)T

N

=
A
∑

i(xi −mean ({xi}))(xi −mean ({xi}))TAT

N

= ACovmat ({xi})AT .

Section 1.1 Straightforward Properties of High Dimensional Data 8

Useful facts: Eigenvectors and Eigenvalues

Assume M is a d× d matrix, v is a d× 1 vector, and λ is a scalar. If we have

Mv = λv

then v is referred to as an eigenvector of M and λ is the corresponding eigen-
value.
If S is a symmetric matrix, then it is possible to find a set of d eigenvectors that
are normal to one another, and can be scaled to have unit length. They can be
stacked into a matrix U = [v1, . . . ,vd]. This matrix is orthonormal, meaning that
UTU = I. You should think of R as a (high-dimensional) rotation of the coordinate
system. In turn, this means that there is a diagonal matrix Λ such that

SU = UΛ

equivalently, we have
UTSU = Λ.

This procedure is referred to as diagonalizing a matrix. In fact, we can do more.
We can apply a transformation that transforms the matrix to an identity
matrix, if S is positive definite. Then all diagonal elements of Λ are
greater than 0. We can write Λ1/2 for the diagonal matrix whose diago-
nal is the square roots of the diagonal elements of Λ. In Matlab, we could
write Lambda12=diag(((diag(Lambda)).(̂1/2))). We have that Λ1/2Λ1/2 =
Λ. Furthermore, (Λ1/2)−1 is the diagonal matrix whose diagonal elements
are the reciprocal of the diagonal elements of Λ1/2. In Matlab, we have
Lambda12inv=diag((1./((diag(Lambda)).(̂1/2)))). Then

(Λ1/2)−1RTSR(Λ1/2)−1 = I.

Now the covariance matrix is symmetric (check the facts if you have forgotten).
This means that we can diagonalize it. In particular, let U be the matrix formed
by stacking the eigenvectors of Covmat ({xi}) into a matrix (i.e. U = [v1, . . . ,vd],
where vj are eigenvectors of the covariance matrix). Now choose R = UT , and
form ui = Rxi.

Then we have

Covmat ({ui}) = Covmat ({Rxi})
= RCovmat ({xi})RT

= UT Covmat ({xi})U
= Λ,

where Λ is a diagonal matrix of eigenvalues. This is an extremely important and
useful idea, because the components of u are decorrelated from one another —
every pair of distinct components has correlation zero. Another way to read this
equation is that I can rotate the coordinate system of a set of high dimensional

Section 1.2 Principal Components Analysis 9

data to put it in coordinates such that every component is decorrelated from every
other component.

We could do more, because we assumed that Covmat ({xi}) is positive definite.
This means that we can compute the square roots of the diagonal matrix and
transform the data into a coordinate system where the covariance matrix is the
identity.

Useful facts: Transforming high dimensional data

Assume xi has mean mean ({xi}) and covariance matrix Covmat ({xi}) = Σ (we
use Σ, for convenience; but it’s also a convention) which is positive definite. Then
we can compute R, b so that

• ui = R(xi − b) = Rxi −Rb

• mean ({ui}) = 0,

• and Covmat ({ui}) = Λ (a diagonal matrix)

Notice the change of definition for b in the first item. I did this because we then have
an easy expression for b, which is b = mean ({xi}). As the text shows, R = UT ,
where U = [v1, . . . ,vd], where vj are eigenvectors of the covariance matrix Σ.
Furthermore, we can compute A, b, so that

• ui = A(xi − b) = Axi −Ab

• mean ({ui}) = 0,

• and Covmat ({ui}) = I (i.e. the identity matrix).

Here A = (Λ)−1/2R, where U = [v1, . . . ,vd].

1.2 PRINCIPAL COMPONENTS ANALYSIS

Imagine you have a high dimensional dataset that you wish to represent in a smaller
set of dimensions. We will subtract the mean of the dataset, to simplify equations,
so we assume that mean ({xi}) = 0. There is no loss of generality here, it just
means we can write simpler equations. For the moment, assume that you want to
represent the data in one dimension. This means that you will represent this data
by computing a projection of the data onto some direction, which we can write v.
We will write ui = vTxi for the projected data points. You should not scale the
data when you project it, so we can insist that vTv = 1. Which linear projection
v should you choose?

For many applications, it is natural to choose the direction along which
the data varies the most, that is, the direction with the highest projected vari-
ance. We know how to compute the variance in any particular direction. This is
vT Covmat ({xi})v. So we could choose a direction to maximize this expression,
subject to the constraint that vTv = 1. The problem is to choose v, without
unnecessary mathematical fuss.

Choosing the direction in the right coordinate system is straightfor-

Section 1.2 Principal Components Analysis 10

ward. The right system is the one where every pair of distinct components has
covariance zero; we know how to rotate data into this coordinate system, using
the eigenvectors of the covariance matrix. Write the data items in this coordinate
system yi = Rxi. In this coordinate system, we have Covmat ({yi}) = Λ, where Λ
is a diagonal matrix. Now this means we have

vT Λv =
∑
i

v2i λi

(because Λ is diagonal). Remember that all λi must be positive, because Covmat ({xi})
is positive definite. The way to maximise this expression is to have vi = 1 for i
the index with the largest value of λi, and vi = 0 for all others. We now have
a (fairly obvious) result. In this coordinate system, if you want to the data with
k < d dimensions, while preserving the most variance, you choose the components
corresponding to the k largest values of λi, and drop the rest. We could choose to
represent on only one dimension — the dimension of the largest variance — but
we could also choose to represent in k dimensions, where we would choose the k
largest variance directions.

Solving in general is also straightforward. Our data does not usually start in
this coordinate system. But we can easily compute a transformation into this coor-
dinate system, which is the matrixR, whose rows are eigenvectors of Covmat ({xi}).
This works because the covariance of Rxi is RCovmat ({xi})RT , so if RT has
columns that are eigenvectors of Covmat ({xi}), the new covariance is diagonal.

Now imagine we choose the order of the rows in R to ensure that the diagonal
of Λ is sorted in decreasing order. For this choice ofR, we have that the components
of yi = Rxi are ordered too. All pairs of distinct components have zero covariance.
The first component has the largest variance, and the last component has the
smallest variance. If we wanted to represent yi in k dimensions, we would keep the
first k components of yi.

One way to do this is to write Ik for the diagonal matrix whose diagonal
is (1, . . . , 1(k times), 0, . . . , 0(d− k times)). The new representation is then ŷi =
Ikyi = IkRxi. But this is still in the yi coordinate system. We know that xi =
RTyi, so we could compute a new representation in the xi coordinate system as

x̂i = RTIkRxi

Equivalently, we could write Rk for the k × d matrix consisting of the first k rows
of R. Then our new representation is

x̂i = RT
kRkxi =Msvdxi.

This expression is extremely rich. The x̂i lie on a k dimensional subspace of the
original space, because Msvd has rank k. This k-dimensional space preserves the
largest variance directions of the data. This is true in the x coordinate system
because it was true in the y coordinate system, and all we did to get from one to
the other was rotate. Another way to look at this is to notice that each of the x̂i is
a weighted sum of k d-dimensional vectors (the columns of RT

k). This is why they
lie on a k dimensional space. This k dimensional space is the best approximation

Section 1.2 Principal Components Analysis 11

to the original data, in the sense of preserving the most variance. Each column of
RT

k is known as a principal component.

Procedure: Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional vec-
tors. We compute x̂i = xi − mean ({xi}), to obtain a zero-mean version
of this dataset. Now write Σ = Covmat ({x̂i}) = Covmat ({x̂i}) for the
covariance matrix.
Form U , Λ, such that ΣU = UΛ (these are the eigenvectors and eigenvalues
of Σ). Ensure that the entries of Λ are sorted; we will work with decreasing
order. Choose k, the number of dimensions you wish to represent. Write
R = UT . Typically, we do this by plotting the eigenvalues and looking for
a “knee” (Figure ??). It is quite usual to do this by hand.
Constructing a low-dimensional representation: Form Rk, a matrix
consisting of the first k rows of R. Now compute ni = Rkx̂i. This is a
set of data vectors which are k dimensional, and where each component
is independent of each other component (i.e. the covariances of distinct
components are zero).
Smoothing the data: Form si = mean ({xi})+RT

k ni. These are d dimen-
sional vectors that lie in a k-dimensional subspace of d-dimensional space.
The “missing dimensions” have the lowest variance, and are independent.

There are now two useful things that we can do with these principal compo-
nents. First, we can use it to construct low-dimensional representations of the data.
If we compute ni = Rkxi, we have a k dimensional data set with special proper-
ties. Each component is independent of each other component (the covariances of
distinct components are zero). And the components capture the most important
variances in the original data set.

Alternatively, we could use it to construct smoothed versions of the original
data. Smoothing is the process of suppressing small, irrelevant variations by ex-
ploiting multiple data items; there are many smoothing algorithms and procedures.
We compute si = RT

k ni = RT
k (Rkxi). This is a data set of the same dimension

as the original data (d), but where the smallest variance components — which in
many cases are irrelevant — have been removed. One way to think of this process
is that we have chosen a low-dimensional basis that represents the main variance
in the data rather well. It is quite usual to think of a data item as being given by a
the mean plus a weighted sum of these basis elements. In this view, the first weight
has larger variance than the second, and so on.

Example: Principal Components and Scatter Plots
Recall the height-weight data set of section ?? (from http://www2.stetson.

edu/~jrasp/data.htm; look for bodyfat.xls). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height;
adiposity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist.

The mean of this dataset is in table 1.1. It is reasonable to think of this as
the measurements of an “average person”. We subtract the mean, and perform
a principal component analysis, using the code of listing 1.5. Table 1.2 gives the

Section 1.2 Principal Components Analysis 12

bodyfat density age weight height adiposity neck chest

18.9385 1.0556 44.8849 178.9244 70.1488 25.4369 37.9921 100.8242

abdomen hip thigh knee ankle biceps forearm wrist
92.5560 99.9048 59.4060 38.5905 23.1024 32.2734 28.6639 18.2298

TABLE 1.1: The mean of the bodyfat.xls dataset. I don’t know the units, though I’d
guess that age is in years, weight is in pounds, height is in inches. I’m not sure
about neck, chest, abdomen, etc.; they seem large to be in inches.

0.0000 0.2403 0.6839 1.0655 1.4553 1.6715 1.9146 2.3892

3.3873 4.4466 6.7966 11.2635 12.2388 40.4327 177.1665 1139.1

TABLE 1.2: The eigenvalues of the covariance matrix for the bodyfat data set, in
order. The right way to think of these eigenvalues is to assume that we have
translated the data set so that the mean is at the origin, then rotated it so that
covariances between distinct components are zero. In this case, the eigenvalues
represent the variances of each component of the rotated data. Notice how some
components have large variance (e.g. the last one), but many have quite small
variances. Some directions have three orders of magnitude more variance than
others. In turn, this means we should be able to ignore some, or even many,
directions in the data, and still represent it reasonably well.

bodyfat density age weight height adiposity neck chest
0.2124 -0.0005 0.9335 -0.1230 -0.0696 0.0339 0.0127 0.1108
0.7177 -0.0018 -0.3155 -0.3140 -0.2856 0.1145 -0.0545 0.1295
-0.5011 0.0012 0.0203 -0.0942 -0.7259 0.2258 0.0252 0.2356
0.1535 -0.0004 0.1391 0.0753 -0.1642 -0.0465 -0.0738 -0.7577
-0.3160 0.0007 -0.0506 -0.1130 0.2899 -0.0521 -0.1085 -0.1596

abdomen hip thigh knee ankle biceps forearm wrist
0.1982 -0.0417 -0.0884 -0.0063 -0.0199 -0.0176 -0.0177 0.0099
0.3865 0.0753 0.1005 -0.0437 -0.0464 -0.0194 -0.0212 -0.0487
0.0912 0.2402 0.1913 -0.0187 -0.0189 0.0416 -0.0220 -0.0033
-0.1354 0.3807 0.3939 0.1353 0.0401 0.0040 -0.0662 -0.0085
0.6484 0.2825 -0.1304 -0.0281 -0.0701 -0.3845 -0.2977 -0.0386

TABLE 1.3: The first five principal components of the bodyfat.xls data set, in order
of decreasing variance. One way to interpret these is that you could model any
element of the data set as the mean plus a weighted sum of these five principal
components. By doing so, you would represent most of the variance in the data
set. The remaining variance is less than 1% of the total variance; this means that
this basis captures most of what is important in the original dataset. Notice that
the first principal component can be interpreted as saying that the most important
variation in the data is, approximately, in age; the second suggests that the next
most important is in bodyfat, though bodyfat goes up as ages goes down.

variances (equivalently, the eigenvalues of the covariance matrix). In the rotated
coordinate system, each component is independent of each other component, but

Section 1.2 Principal Components Analysis 13

350 400 450 500 550 600 650 700 750 800
0.05

0.1

0.15

0.2

0.25

0.3
Mean spectral reflectance, total of 1995 spectra

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 v

a
lu

e

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
Sorted eigenvalues of covariance of spectral data, total of 1995 spectra

Number of eigenvalue

V
a
lu

e

350 400 450 500 550 600 650 700 750 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
First principal component of spectral reflectance, total of 1995 spectra

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

 v
a

lu
e

350 400 450 500 550 600 650 700 750 800
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Second principal component of spectral reflectance, total of 1995 spectra

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 v

a
lu

e

350 400 450 500 550 600 650 700 750 800
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
Third principal component of spectral reflectance, total of 1995 spectra

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 v

a
lu

e

FIGURE 1.5: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http: // www. cs. sfu. ca/

~ colour/ data/). On the top right, eigenvalues of the covariance matrix of spec-
tral reflectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http: // www. cs. sfu. ca/ ~ colour/ data/). Notice how the first few
eigenvalues are large, but most are very small; this suggests that a good represen-
tation using few principal components is available. The bottom row shows the
first three principal components. A linear combination of these, with appropriate
weights, added to the mean of figure ??, gives a good representation of the dataset.

they have different variances. You can get some sense of the data by adding these
variances; in this case, we get 1404. This means that, in the translated and rotated
coordinate system, the average data point is about 37 =

√
1404 units away from

the center (the origin). Now translations and rotations do not change distances,
so the average data point is about 37 units from the center in the original dataset,
too.

The first five principal components are in table 1.3. These principal compo-
nents correspond the the five largest eigenvalues. Now assume that we represent
each data point as the mean plus appropriate weights times the first five principal
components, as above. Then we will be ignoring the 11 smaller variance compo-
nents, corresponding to approximately 17 units of variance; so the approximate data
points will lie, on average, about 37 =

√
1404− 17 units away from the variance.

Example: Representing Spectral Reflectance with Principal Com-

Section 1.2 Principal Components Analysis 14

350 400 450 500 550 600 650 700 750 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Approximating spectral reflectance with 0, 3, 5, 7 principal components

350 400 450 500 550 600 650 700 750 800
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Error in approximating spectral reflectance with 0, 3, 5, 7 principal components

FIGURE 1.6: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
error falls rather quickly. On the right is the error for these approximations. Fig-
ure plotted from a dataset of 1995 spectral reflectances, collected by Kobus Barnard
(at http: // www. cs. sfu. ca/ ~ colour/ data/).

ponents
Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse

surfaces include matte paint, many styles of cloth, many rough materials (bark,
cement, stone, etc.). One way to tell a diffuse surface is that it does not look
brighter (or darker) when you look at it along different directions. Diffuse surfaces
can be colored, because the surface reflects different fractions of the light falling on
it at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http:

//www.cs.sfu.ca/~colour/data/ (great datasets here, from Kobus Barnard).
Each spectrum has 101 measurements, which are spaced 4nm apart. This

represents surface properties to far greater precision than is really useful. Phys-
ical properties of surfaces suggest that the reflectance can’t change too fast from
wavelength to wavelength. It turns out that very few principal components are
sufficient to describe almost any spectral reflectance function. Figure 1.5 shows the
mean spectral reflectance of this dataset, and Figure 1.5 shows the eigenvalues of
the covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure 1.5. This means that

Section 1.2 Principal Components Analysis 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−5

0

5

10

15

20
Sorted eigenvalues of Japanese Facial Expression data, total of 213 images

Number of eigenvalue

V
a

lu
e

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
Sorted eigenvalues of Japanese Facial Expression data, total of 213 images

Number of eigenvalue

V
a

lu
e

FIGURE 1.7: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k∑
i=1

ciφi(λ) + e(λ)

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3-5 works fine for most
applications (figure ??).

Example: Representing Faces with Principal Components
An image is usually represented as an array of values. We will consider inten-

sity images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another
(use reshape in Matlab). This means you can take the principal components of a
set of images. Doing so was something of a fashionable pastime in computer vision
for a while, though there are some reasons that this is not a great representation
of pictures. However, they give great intuition.

Figure ?? shows the mean of a set of face images encoding facial expressions
of Japanese women (available at http://www.kasrl.org/jaffe.html; there are
tons of face datasets at http://www.face-rec.org/databases/). I reduced the
images to 64x64, which gives a 4096 dimensional vector. The eigenvalues of the
covariance of this dataset are shown in figure 1.7; there are 4096 of them, so it’s
hard to see a trend, but the zoomed figure suggests that the first couple of hundred
contain most of the variance.

Once we have constructed the principal components, they can be rearranged
into images; these images are shown in figure 1.8. Principal components give quite

Section 1.3 Similarity and Singular Value Decompositions 16

Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

a

FIGURE 1.8: The mean and first 16 principal components of the Japanese facial
expression dataset.

good approximations to real images (figure 1.9).

1.3 SIMILARITY AND SINGULAR VALUE DECOMPOSITIONS

In the previous section, we saw methods to represent high-dimensional datasets by
analysing the covariance. Doing so allowed us to spot and exploit low dimensional
structure in the data. There is another tool — the singular value decomposition
— that can expose this structure as well.

Assume we have a matrix D, which need not be symmetric or even square.
We can decompose this matrix as

D = UΣVT ,

where U is orthonormal, V is orthonormal, and Σ is diagonal. This decomposition is
the singular value decomposition, and it is a standard feature of numerical software.
You should think of U and V as rotations in the output and input space of V

Section 1.3 Similarity and Singular Value Decompositions 17

Sample Face Image

mean 1 5 10 20 50 100

FIGURE 1.9: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

respectively. Now write e1, . . . , en for a set of orthonormal vectors, such that V =
[e1, . . . , en]. If x is a vector in the space spanned by this basis, we can represent x
as

(eT
1 x)e1 + (eT

2 x)e2 + . . . (eT
nx)en.

In turn, the coefficients of this expansion
(eT

1 x)
(eT

2 x)
. . .

(eT
nx)

 = VTx.

Assume, for the moment, that D is square. When you form Dx = UΣVTx,
you rotate x into a special coordinate system (by multiplying by VT), scale each
component of the result, then rotate again (by multiplying by U).

Now assume that D is not square, and is (say) m × n. Then V is n × n and
U is m×m. Σ must be m× n. Assume m < n. Write Σm for an m×m diagonal
matrix, and 0 for an m× n−m matrix of zeros. Then Σ must look like

[Σn, 0] .

This means you can think about the singular value decomposition as follows: Rotate
x into the special coordinate system, then scale each component of the result,
dropping n−m of them completely, then rotate the result of that step into a new
coordinate system.

Similarly, if m > n, Σ must look like[
Σn

0T

]
.

and this means that you can think about the singular value decomposition as fol-
lows: Rotate x into the special coordinate system, then scale the first n components

Section 1.3 Similarity and Singular Value Decompositions 18

of the result, replacing the others with zero, then rotate the result of that step into
a new coordinate system.

The diagonal elements of Σ, of which there are s = min(m,n), are called
singular values. The following operation is of great importance. These are
diag(Σ) = (σ1, σ2, . . . , σs), and we assume that they are sorted in descending or-
der. We compute Σk so that diag(Σk) = (σ1, σ2, . . . , σk, 0, 0, . . . , 0). Equivalently,
we keep the singular values with the k largest magnitudes, and set all others to
zero (we must have k ≤ s). Now we construct Dk = UΣkVT . This matrix is an
approximation to D, where we zero the directions in the special coordinate system
that are scaled by the smallest amounts.

Useful facts: Singular Value Decomposition

The singular value decomposition computes a decomposition of a matrix D into the
form D = UΣVT , where U and V are orthonormal, and Σ is diagonal.
It is usual to construct Σ so that the diagonal values, known as singular values, are
sorted in descending order. There are s = min(m,n) singular values. The singular
values are diag(Σ) = (σ1, . . . , σs).
Write Σk for the matrix obtained by replacing the smallest s − k singular values
with zero, and Dk = UΣkVT . Then we have that Dk has rank k. It is the rank k
matrix that is closest to D in the sense of squared distance.
If M is symmetric, then the singular value decomposition of M has the form
UΣUT .

With some work (which we won’t do), one can use this information to establish
the most important property of the singular value decomposition: Dk is the best
rank k approximation to D. In particular, Dk is the rank k matrix with the smallest
value of ||Dk −D|| (sum of squared differences of the elements).

This is why SVD’s are important. Assume that you know, perhaps from
application logic, that you are dealing with a D that should have low rank. However,
the D that you have consists of measurements, and so may have a higher rank than
it should, as a result of measurement error. You can then easily find the low rank
matrix that is closest to the measurements that you have, which you can reasonably
expect is a correction of the data.

There are a variety of situations where you can expect to encounter low rank
matrices. They are particularly important in information retrieval. Typical text
information retrieval systems expect a set of query words. They use these to query
some form of index, producing a list of putative matches. From this list they chose
documents with a large enough similarity measure between document and query.
These are ranked by a measure of significance, and returned.

1.3.1 Word Counts, Documents and Matching

Much of text information retrieval is shaped by the fact that a few words are com-
mon, but most words are rare. The most common words—typically including “the,”
“and,” “but,” “it”—are sometimes called stop words and are ignored because al-
most every document contains many of them. Other words tend to be rare, which
means that their frequencies can be quite distinctive. Quite often, it is enough to
know whether the word is there or not. For example, documents containing the

Section 1.3 Similarity and Singular Value Decompositions 19

words “stereo,” “fundamental,” “trifocal,” and “match” are likely to be about 3D
reconstruction; documents containing “chrysoprase,” “incarnadine,” “cinnabarine,”
and “importunate” are lists of 11 letter words ending in “e” (many such lists exist,
for crossword puzzle users; you can check this using Google).

Indexing Documents
It is straightforward to build a table representing the documents in which

each word occurs, because very few words occur in many documents, so the table
is sparse. Write Nw for the number of words and Nd for the number of documents.
We could represent the table as an array of lists. There is one list for each word, and
the list entries are the documents that contain that word. This object is referred
to as an inverted index, and can be used to find all documents that contain a
logical combination of some set of words. For example, to find all documents that
contain any one of a set of words, we would: take each word in the query, look up
all documents containing that word in the inverted index, and take the union of
the resulting sets of documents. Similarly, we could find documents containing all
of the words by taking an intersection, and so on. Such logical queries usually are
not sufficient, because the result set might be either very large or too small, and
because we have no notion of which elements of the result set are more important.
We need a more refined notion of similarity between documents, and between a
document and a query.

Similarity from Word Counts
One measure of similarity for two documents is to compare word frequencies.

Assume we have a fixed set of terms that we will work with. We represent each
document by a vector c, with one entry for each term. These entries are zero when
the term is absent, and contain some measure of the word frequency when the word
is present. This measure might be as simple as a one if the word appears at least
once in the document, or might be a count of the number of words. Write c1, c2
for two such vectors; the cosine similarity between the documents they represent
is

c1 · c2
||c1 ||||c2 ||

.

Two documents that both use an uncommon word are most likely more similar than
two documents that both use a common word. We can account for this effect by
weighting word counts. The most usual way to do this is called tf-idf weighting
(for “term frequency-inverse document frequency”). Terms that should have most
weight appear often in the particular document we are looking at, but seldom in
all documents. Write Nd for the total number of documents and Nt for the number
of documents that contain the particular term we are interested in. Then, the
inverse document frequency can be estimated as Nd/(1 +Nt) (where we add one to
avoid dividing by zero). Write nt(j) for the number of times the term appears in
document j and nw(j) for the total number of words that appear in that document.
Then, the tf-idf weight for term t in document j is(

nt(j)

nw(j)

)
/log

(
Nd

(1 +Nt)

)
.

Section 1.3 Similarity and Singular Value Decompositions 20

We divide by the log of the inverse document frequency because we do not want
very uncommon words to have excessive weight. Inserting this tf-idf weight into
the count vectors above will get a cosine similarity that weights uncommon words
that are shared more highly than common words that are shared.

1.3.2 Smoothing Word Counts and Latent Semantic Analysis

Our measurement of similarity will not work well on most real document collections,
even if we weight by tf-idf. This is because words tend to be rare, so that most pairs
of documents share only quite common words, and so most pairs of documents will
have quite small cosine similarity. The real difficulty here is that zero word counts
can be underestimates. For example, a document that uses the words “elephant,”
“tusk,” and “pachyderm” should have some affinity for “trunk.” If that word does
not appear in the document, it is an accident of counting. This means that to
measure similarity, we would do well to smooth the word counts.

We can do so by looking at how all terms are distributed across all documents.
An alternative representation of the information in an inverted index is as an Nw

by Nd table D, where each cell contains an entry if the relevant word is not in the
relevant document and a zero otherwise. Entries could be one if the word occurs,
or a count of the number of times the word occurs, or the tf-idf weight for the term
in the document. In any case, this table is extremely sparse, so it can be stored
and manipulated efficiently. A column of the table is a representation of the words
in a document, and the cosine similarity between columns is our original measure
of similarity between documents.

Zeros in D might be the result of counting accidents, as above. We would
like a version of this table that smooths word counts. There are likely to be many
documents for any particular topic in the collection, so the smoothed version of the
table should have many columns that are similar. This means it will be significantly
rank-deficient. We compute a singular value decomposition of D as D = UΣVT .
Write Uk for the matrix consisting of the first k columns of U , Vk for the matrix
consisting of the first k columns of V, Σk for Σ with all but the k largest singular
values set to be zero, and write D̂ = UkΣkVT

k .
Now consider the ith column of D, which we write as di. The corresponding

column d̂i of D̂ lies in the span of Uk. The word counts are smoothed by forcing
them to lie in this span. For example, assume that there are many documents
discussing elephants, and only one uses the word “pachyderm.” The count vectors
for each of these documents could be represented by a single column, but error will
be minimized if there is a small count for “pachyderm” in each. Because of this
smoothing effect, cosine distances between documents represented by columns of D̂
are a much more reliable guide to similarity.

To compute cosine similarity between an old document and a new document
with count vector q, we project the new document’s count vector onto the columns
of Uk to obtain q̂ = UkUT

k q. We can then take the inner product of q̂ and d̂i. A
complete table of inner products (cosine distances) between documents is given by

D̂T D̂ = (VkΣk)(ΣkVT) = (ΣkVT
k)T (ΣkVT),

so that we can think of the columns of ΣkVT as points in a k-dimensional “concept

Section 1.3 Similarity and Singular Value Decompositions 21

space” that represents the inner products exactly. One could, for example, cluster
documents in this space rather than the original count space, and expect a better
clustering. Computing the SVD of D is known as latent semantic analysis; using
the concept space for indexing is known as latent semantic indexing.

D̂ is useful in other ways, too. There is a rough tendency of words that have
similar meaning to appear near similar words in similar documents, an idea known
as distributional semantics. This means that cosine similarity between rows of
D̂ is an estimate of the similarity of meaning of two terms, because it counts the
extent to which they co-occur. Furthermore, D̂ can be used as an inverted index. If
we use it in this way, we are not guaranteed that every document recovered contains
all the words we used in the query; instead, it might contain very similar words.
This is usually a good thing. The columns of U are sometimes called topics and
can be thought of as model word frequency vectors; the coordinates of a column in
the semantic space show the weights with which topics should be mixed to obtain
the document.

1.3.3 Recommender Systems

Online marketing presents sellers with an important problem: it can be hard for a
buyer to tell what is available, because there is so much stuff. Most of this stuff is
only interesting to some other buyer. Sellers would like to have systems that can
suggest new purchases (or rentals, or links to click on, and so on) to buyers. These
systems need to be accurate, and to handle a very large number of preferences.

Assume there are Nc customers and Ni items. We can build an Ni by Nc table
D, containing preference scores of buyers for items. We might get these scores by
asking for reviews, or by surveying the buyers. Assume that buyers do rate items,
and tell the truth when they do so (neither is a minor assumption). If this table
were complete, we would expect it to have relatively low column rank, because
one can reasonably expect that there are many buyers who have many similar
preferences. You can replace “buyer” with “renter”, etc., here and the argument is
still sound. The problem is that the table isn’t complete — we are missing ratings
for a particular buyer for some items, because these are the ratings we want to
predict. In fact, we are missing ratings for many buyers for many items, because
no-one buys everything.

So there is a matrix M, known to have low column rank and known to be
similar to D in the entries of D that we know. This matrix M represents all the
ratings we expect. If we could predict this matrix, then we have an estimate of
everyone’s rating for each product. Although M has Ni ×Nc entries, they are not
independent becauseM has rank k. In fact, knowing only Ni×k+k×Nc numbers
is enough to yield M. This is because there must be an Ni × k matrix A and a
k ×Nc matrix B so that

M = AB.

We cannot expect to compute an SVD of D, because we don’t know every entry
of D. But we could compute a low-rank approximation. Write δij for a variable
that is 1 if we know the i, j’th value of D and 0 if we don’t. Recall we write dij
for the i, j’th entry in D. Assume that M has rank k, which we know from our
understanding of the problem, or by cross-validation (i.e. try several different k’s

Section 1.3 Similarity and Singular Value Decompositions 22

and see how good the predictions are). We now seek an Ni × k matrix A and a
k ×Nc matrix B so that

M = AB is like D in the entries we know

and we can get this by choosing A, B to minimize

C(A,B) =
∑
ij

δij (∑
l

ailblj − dij

)2
 .

It turns out that this is quite easy to do. We construct initial estimates of A and
B, which we call A(0) and B(0). Now we compute the i + 1’th estimate of A by
minimizing

C(A,B(i))

as a function of A alone. We then compute the i+1’th estimate of B by minimizing

C(A(i+1),B)

as a function of B alone. Each step involves solving a linear system, and so is
relatively straightforward.

Once we have A, B, we formM = AB. This is now a low-rank matrix that is
close to D in the entries that we know. Each term inM should be a good prediction
of a particular buyer’s rating for the relevant item.

Of course, this discussion has been highly simplified. There are usually so
many items and so many buyers that one would want to modify the method rather
a lot. It should strike you that we should not need to recompute A, B every time a
buyer rates an item; that we haven’t explained how to deal with new buyers; and
that there may be other measures of similarity between buyers that cue us to which
columns of the matrix should be similar.

1.3.4 Multidimensional Scaling

The general problem of finding embeddings for points in some dimension so that the
distances are similar to a given table of distances is known as multidimensional
scaling. Assume we have n points we wish to embed in an r-dimensional space.
Write D2 for a table of squared distances between points, with d2ij the squared

distance between point i and point j. Notice that if D2 is a table of distances,
it will be symmetric. Write the embedding for point i as xi. Because translation
does not change the distances between points, we can choose the origin, and we
will place it at the mean of the points, so that 1

n

∑
i xi = 0. Write 1 for the n-

dimensional vector containing all ones, and I for the identity matrix. By noticing
that d2ij = ||xi − xj ||2 = xi · xi − 2xi · xj + xj · xj , we can show that

M = −1

2

[
I − 1

n
11T

]
D2

[
I − 1

n
11T

]
has i, jth entry xi · xj . This means that, to estimate the embedding, we must
obtain a matrix X whose columns are the embedded points, so that M is “close”

Section 1.4 The Curse of Dimension 23

to X TX . A variety of notions of “closeness” might be appropriate; the easiest to
use is least squares. In this case, we can apply a singular value decomposition to
M to get M = UΣUT . We form G = Σ1/2UT , and the first r rows of G are the X
we require.

1.4 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

Assume our data lies within a cube, with edge length two, centered on the
origin. This means that each component of xi lies in the range [−1, 1]. One simple
model for such data is to assume that each dimension has uniform probability
density in this range. In turn, this means that P (x) = 1

2d
. The mean of this model

is at the origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ε) consists of all data items where every component of the data has
a value in the range [−(1 − ε), (1 − ε)]. B(ε) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ε) is the rind (which
has thickness ε) and A(ε) is the fruit.

Your intuition will tell you that there is more rind than fruit. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the
real problem.

We can compute P ({x ∈ A(ε)}) and P ({x ∈ A(ε)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ε)}) is easy
to compute as

P ({x ∈ A(ε)}) = (2(1− ε)))d
(

1

2d

)
= (1− ε)d

and
P ({x ∈ B(ε)}) = 1− P ({x ∈ A(ε)}) = 1− (1− ε)d.

But notice that, as d→∞,

P ({x ∈ A(ε)})→ 0.

This means that, for large d, we expect most of the data to be in B(ε). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[
xTx

]
=

∫
box

(∑
i

x2i

)
P (x)dx

Section 1.5 The Multivariate Normal Distribution 24

but we can rearrange, so that

E
[
xTx

]
=
∑
i

E
[
x2i
]

=
∑
i

∫
box

x2iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[
xTx

]
=
∑
i

E
[
x2i
]

=
∑
i

∫ 1

−1

x2iP (xi)dxi =
∑
i

1

2

∫ 1

−1

x2i dxi =
d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[
d(u,v)2

]
=

∫
box

∫
box

∑
i

(ui − vi)2dudv = E
[
uTu

]
+ E

[
vTv

]
− E

[
uTv

]
but since u and v are independent, we have E

[
uTv

]
= E[u]

TE[v] = 0. This yields

E
[
d(u,v)2

]
= 2

d

3

meaning that, for large d, we expect our data points to be quite far apart.
It is difficult to build histogram representations for high dimensional data.

The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

1.5 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean µ and the
covariance Σ. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d× d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.

The form of the distribution p(x|µ,Σ) is

p(x|µ,Σ) =
1√

(2π)ddet(Σ)
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

The following facts explain the names of the parameters:

Section 1.5 The Multivariate Normal Distribution 25

Useful facts: Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have

• E[x] = µ, meaning that the mean of the distribution is µ.

• E
[
(x− µ)(x− µ)T

]
= Σ, meaning that the entries in Σ represent covariances.

Assume I know have a dataset of items xi, where i runs from 1 to N , and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, µ̂, is

µ̂ =

∑
i xi

N

(which is quite easy to show). The maximum likelihood estimate of the covariance,
Σ̂, is

Σ̂ =

∑
i(xi − µ̂)(xi − µ̂)T

N

(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). These facts mean that we already know most of what is interesting
about multivariate normal distributions (or gaussians).

1.5.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset xi. The mean of the maximum
likelihood gaussian model is mean ({xi}), and the covariance is Covmat ({xi}). I
can now transform the data with an affine transformation, to get yi = Axi + b.
The mean of the maximum likelihood gaussian model for the transformed dataset
is mean ({yi}), and we’ve dealt with this; similarly, the covariance is Covmat ({yi}),
and we’ve dealt with this, too.

A very important point follows in an obvious way. I can apply an affine trans-
formation to any multivariate gaussian to obtain one with (a) zero mean and (b)
independent components. In turn, this means that, in the right coordinate sys-
tem, any gaussian is a product of zero mean one-dimensional normal distributions.
This fact is quite useful. For example, it means that simulating multivariate nor-
mal distributions is quite straightforward — you could simulate a standard normal
distribution for each component, then apply an affine transformation.

