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CHAPTER 1

Inferring information about
populations from samples

Inference is the process of looking at the outcomes of experiments, and then
determining some underlying facts using some form of model. This is an exam-

ple of inference — we observe some random phenomena, and must then draw
conclusions.
Example: Patriot missiles

I got this example from “Dueling idiots”, a nice book by P.J. Nahin, Princeton
University Press. Apparently in 1992, the Boston Globe of Jan 24 reported on this
controversy. The pentagon claimed that the patriot missile successfully engaged
SCUD missiles in 80% of encounters. An MIT physicist, Theodore Postol, pointed
out there was a problem. He viewed tapes of 14 patriot/SCUD encounters, with
one hit and 13 misses. We can reasonably assume each encounter is independent.
The probability of getting one hit and 13 misses if P(hit) = 0.8 is

( 114 >0.2130.81

which is around le-8. Now you could look at this data and make several arguments:
(a) the probability is 0.8, and the pentagon just got unlucky with the videotapes
that Postol looked at; (b) the probability is not 0.8, because you would need to
fire 14 patriots at 14 SCUD missiles about 1e8 times to see this set of videotapes
once; (c¢) for some reason, the videotapes are not independent — perhaps only
unsuccessful encounters get filmed.

Example: MTG and Shuffling

You build a deck of 24 lands and 36 spells. You shuffle this deck, and draw a hand
of seven cards. You get no lands. You repeat the experiment, and still get no lands.
On a third try, you still get no lands. By the results in chapter 2, this event (three
shuffles and draws with no lands in each hand) has probability about 8e-6. You
could conclude that the shuffling is not randomizing the cards effectively; the cards
might stick together, or you might be bad at shuffling.

Very often the data we see is a small part of the data we could have seen, if

we’d been able to collect enough data. We need to know how the measurements we
make on the dataset relate to the measurements we could have made, if we had all
the data. This situation occurs very often. For example, imagine we wish to know,
on a scale of 1-5, how much people like using a touch interface. Asking everyone
on the planet and then averaging the answers would be absurd. Instead, we ask a
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small set of people, chosen rather carefully. If we have chosen sufficiently carefully,
then the answer from the small set is quite a good representation of the answer
from the whole set.

This gives us a powerful and quite general way of thinking about data. The
data we could have observed, if we could have seen everything, is the population.
The data we actually have is the sample. We would like to know the mean of the
population, but can see only the sample; surprisingly, we can say a great deal from
the sample alone, assuming that it is chosen appropriately.

This framework allows us to use samples to summarize populations; to test
a sample to tell whether a population has a particular property; and to ask if two
samples represent the same, or different, populations.

1.1 SAMPLES AND POPULATIONS

Assume we have a population {z;}, for ¢ = 1,..., N,. Notice the subscript here —
this is the number of items in the population, for example, all the people in the
world. We want to know the mean of this dataset, but we do not get to see the
whole dataset. Instead, we see the sample. This is obtained by choosing a fixed
number %, which we expect is a lot smaller than NV, of data items. Each choice
is independent, and fair, meaning that each time we choose, we choose one from
the entire set of N, data items, and each has the same probability of being chosen.
This is sometimes referred to as “sampling with replacement”. One model that
people often use is to imagine the data items as being written on tickets, which are
placed in a jar. You repeat the following experiment k times: shake the jar; take
a ticket from the jar and write down the data on the ticket; put it back in the jar.
Sometimes the jar is referred to as an “urn”.

1.1.1 Describing the population from a sample

We summarize the whole dataset with a mean, which we write popmean ({z;}). The
notation is just to drive home the facts that it’s the mean of the whole population,
and that we don’t, and can’t, know it. The whole point of this exercise is to estimate
this mean.

We would like to estimate the mean of the whole dataset from the items that
we actually see. Think about the random variable X whose value is obtained by
drawing a ticket from the jar. Write E[X] for the expected value of a ticket drawn
from the jar. Then we have that

EX] = > @pi)

i€l,...N,
1 . .
= Z Tine because we draw fairly from the jar
i€l,...N, p

Eiel,...Np €T
Np
= popmean ({z;})

which is the mean value of the items in the jar. Now imagine we draw k tickets



Section 1.1 Samples and Populations 4

from the jar, and average them. Write X(®) for this random variable. We must
have that

IE[X(’“)] = % (]E {X(l)] +... +]E[X(1)D = IE[X(U} = E[X] = popmean ({z;})

so we can estimate the mean of the whole dataset from the items we see simply by
averaging them.

We will not get the same value of X(¥) each time we perform the experiment,
because we see different data items in each sample. So X (%) has variance, and this
variance is important. If it is large, then each estimate is quite different. If it is
small, then the estimates cluster. Knowing the variance of X *) would tell us how
accurate the estimate is.

We can compute the variance easily. We write popsd ({z;}) for the standard
deviation of the whole population of z;. Again, we write it like this to keep track
of the facts that (a) it’s for the whole population and (b) we don’t know it.

Write E[(X(1))?] for the expected value of the random variable generated by
drawing a single number out of the jar, squaring that number, and reporting it.
Write E[X5] for the expected value of the random variable generated by: drawing
a number out of the jar; writing it down; returning it to the jar; then drawing a
second number from the jar; and reporting the product of these two numbers. Now
we have

M a2 2 2
E[(X(l))ﬂ = ZZX{;’ = popsd ({z;})” + popmean ({z;})

and
E[X,] = E{XU)}E[X(U}

Worked example 1.1 Jar variances
Show that

2

Ny 2
E[(x®)Z] = ZJ—V — popsd ({w:})? & popmean ({z:})?

Solution: First, we have (X(1)? is the number obtained by taking a ticket out
of the jar and squaring its data item. So

Np Np 1
E[(XM)] = Y alpe) = ot~
i=1 i=1 P
Now

e (2; — popmean ({z;}))2 e 32 2
popsd ({xl})z _ Zi:l( i P?\F;p ean ({z})) _ ZZK/‘; L _ popmean ({xz})
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Worked example 1.2 Jar variances
Show that

E[X,] = JE{X“’}]E{X(”}

Solution: This is more interesting. It is the expected value of the random variable
generated by: drawing a number out of the jar; writing it down; returning it to
the jar; then drawing a second number from the jar; and reporting the product of
these two numbers. Notice the two numbers are independent. Write U for the first
draw, V for the second draw. Now we have

E[Xy] = E[UV]
E[([U - E[U]] + EUD([V - E[V]] + E[V])]
(U - EU)(V - E[V]])
+([U - E[U])E[V]

I Al 1))
+E[U]E[V]
But U and V are independent, so E[([U—-E[U])([V —-E[V]]))] = O0;

E[([U - E[UDE[V]] = E[VIE[([U — E[U]])] = 0, so

E[X,] = E[UE[V] = E[X“)}E[XU)}.

Now
KE[(XM)?] + k(k — DE[Xo]
k2
E[(XD)?] + (k — DE[X,)]
k
popsd ({x;})” + (k — 1)popmean ({;})*
k

E[(X(k))ﬂ =

so we have

\/ar{X(k)] — ]ET{(X(’“))Q}—E[X(’“)T

popsd ({9&1})2
—

This is a very useful result which is well worth remembering. There are
several important consequences. First, you can estimate the mean of a dataset
without seeing the whole dataset. Second, if you draw k samples, the standard
deviation of your estimate of the mean is

popsd ({z:})
vk
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which means that (a) the more samples you draw, the better your estimate becomes
and (b) the estimate improves rather slowly — for example, to halve the standard
deviation in your estimate, you need to draw four times as many samples. The
standard deviation of the estimate of the mean is often known as the standard
error of the mean. This allows us to draw a helpful distinction: the population
has a standard deviation, and our estimate of its mean (or other things — but we
won’t go into this) has a standard error.

Notice we cannot state the standard error of our estimate exactly, because we
do not know popsd ({;}). But we could make a good estimate of popsd ({;}), by
computing the standard deviation of the examples that we have. It is now helpful
to have some notation for the particular sample we have. I will write Zz‘esample
for a sum over the sample items, and we will use

Zz‘esample Zi

k
for the mean of the sample — that is, the mean of the data we actually see; this is
consistent with our old notation, but there’s a little reindexing to keep track of the
fact we don’t see all of the population. Similarly, I will write

sd ({z:}) = \/Ziesample(fﬂi k— mean ({z;}))

for the sample standard deviation. Again, this is the standard deviation of the data
we actually see; and again, this is consistent with our old notation, again with a
little reindexing to keep track of the fact we don’t see all of the population. We
could estimate

mean ({z;}) =

popsd ({z:}) ~ sd ({z:})
and as long as we have enough examples, this estimate is good. If the number of
samples is small, it is better to use

icsample\Ti — Mean (1Z; 2
popsd ({wi})z\/zzew pl (k1 an ({z:h))*

In fact, much more is known about the distribution of X *).

1.1.2 Confidence Intervals

In the previous chapter, I mentioned that adding a number of independent random
variables almost always got you a normal random variable, a fact sometimes known
as the central limit theorem. I didn’t prove it, and I'm not going to now. But when
we form X*), we're adding random variables. This means that X ) is a normal
random variable, for sufficiently big k (for some reason, k > 30 is usually seen as
right).

What this means is the following: Compute X*) for each of a very large
number of different experiments and regard the resulting numbers eq, ..., e;, ..., e,
as data items. Convert the e; to standard coordinates s;, where

(e; — mean ({e;}))
std (e;)

S; =
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(i.e. by subtracting the mean of the e;, and dividing by their standard deviation).
Now construct a construct a histogram of the s. If r» and k are sufficiently large,
the histogram will be increasingly close to the standard normal curve.

This fact is very powerful, because it tells us how close to the true mean our
estimate of the mean is likely to be. The reasoning looks like this. Our estimate of
popmean ({z;}) is X(*). We know that the error — which is X *) — popmean ({z;})
— is a normal random variable, with mean 0 and standard deviation %\/g“}).

We can scale the error by the standard deviation to get

-~ X® — popmean ({z;})

o (popsd<{wi}))
Vk

which is a standard normal random variable. But we know rather a lot about
the behaviour of standard normal random variables. In particular, from the last
chapter, we have that:

e About 68% of the time, the true mean is within one standard deviation of
our estimate.

e About 95% of the time, the true mean is within two standard deviations of
our estimate.

e About 99% of the time, the true mean is within three standard deviations of
our estimate.

We do not know the standard deviation of this normal random variable, because
we do not know popsd ({x;}) (the standard deviation of the whole population from
which our samples were drawn). But we could use our estimates

popsd ({z;}) ~ sd ({x:})

or if k is small,

popsd ({z})\/ziesample(llz : 1mean ({x:})) |

This means that we can reason about the effect of not seeing the whole pop-
ulation. The most natural way to do so is to plot a confidence interval for our
estimate. Typically, we would plot the estimate, then a set of vertical bars (which
will often, but not always, be 1, 2, or 3 standard errors in length). We interpret
this interval as representing the effect of sampling uncertainty on our estimate. If
the jar model really did apply, then the confidence intervals have the property that
the true mean lies inside the interval with probability about 0.68 (if we draw one
standard error bars), 0.95 (if we draw two standard error bars) or 0.99 (if we draw
three standard error bars). Figure 1.1 compares (a) numerous sample means with
population means and (b) the population mean with the error bars predicted from
a single sample for human height data.
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o True population mean, sample means, and standard errors for human heights Estimated population mean anel rus population mean for himan heights

mim!wttwt |{]I}£

Value in inches
Value in inches

FIGURE 1.1: I took the heights dataset (from http://wuww2. stetson. edu/
~jrasp/data. htm; look for bodyfat.zls; outliers not removed). I then formed sam-
pled elements with replacement to form random subsets of sizes (2,4,9,16,...,100).
For each of 100 subsets of each size, I computed the sample mean — these are shown
as ©’s on the plot on the left. I then computed the population mean, and the stan-
dard error as measured by the population standard deviation. The x to the side of
each column is the population mean, and the vertical bars are one standard error
above and below the population mean. Notice how (a) the sample means vary less
as the sample gets bigger and (b) the sample means largely lie within the error bars.
On the right, I chose one sample at random of each size; the sample mean is shown
as a *. There are error bars (one standard error above and below) around the sam-
ple mean. These error bars are computed from the sample standard deviation. The
population mean is the x. Notice how the population mean is within the error bars
most, but not all, of the time (about 68% of the time, as they should be). The sam-
ple mean is rather a good estimate of the population mean, and the standard error
18 quite a reliable estimate of how well the sample mean represents the population
mean.

Now we might reasonably ask another question. We should like to know a
confidence interval such that the true mean lies within it with probability p — this
is equivalent to asking what is the u such that

vl

——exp (—2%/2)dz =p
_u V21
(i.e. what is the range of values such that p% of standard normal random variables
lies in this range). Such numbers can be extracted from the inverse of the error
function (which is known as the inverse error function).

1.1.3 When This Model Works

In our model, there was a population of N, data items z;, and we saw k of them,
chosen at random. In particular, each choice was fair (in the sense that each data
item had the same probability of being chosen) and independent. These assump-
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tions are very important for our analysis to apply. If our data does not have these
properties, bad things can happen.

For example, assume we wish to estimate the percentage of the population
that has beards. This is a mean (the data items take the value 1 for a person with
a beard, and 0 without a beard). If we select people according to our model, then
ask them whether they have a beard, then our estimate of the percentage of beards
should behave as above.

The first thing that should strike you is that it isn’t at all easy to select people
according to this model. For example, we might select phone numbers at random,
then call and ask the first person to answer the phone whether they have a beard;
but many children won’t answer the phone because they are too small. The next
important problem is that errors in selecting people can lead to massive errors in
your estimate. For example, imagine you decide to survey all of the people at a
kindergarten on a particular day; or all of the people in a women’s clothing store;
or everyone attending a beard growing competition (they do exist). In each case,
you will get an answer that is a very poor estimate of the right answer, and the
standard error might look very small. Of course, it is easy to tell that these cases
are a bad choice.

It may not be easy to tell what a good choice is. You should notice the sim-
ilarity between estimating the percentage of the population that wears a beard,
and estimating the percentage that will vote for a particular candidate. There is
a famous example of a survey that mispredicted the result of the Dewey-Truman
presidential election in 1948; poll-takers phoned random phone numbers, and asked
for an opinion. But at that time, telephones tended to be owned by a small per-
centage of rather comfortable households, who tended to prefer one candidate, and
so the polls mispredicted the result rather badly.

Sometimes, we don’t really have a choice of samples. For example, we might
be presented with a small dataset of (say) human body temperatures. If we can be
satisfied that the people were selected rather randomly, we might be able to use this
dataset to predict expected body temperature. But if we knew that the subjects
had their temperatures measured because they presented themselves at the doctor
with a suspected fever, then we most likely cannot use it to predict expected body
temperature.

One important and valuable case where this model works is in simulation. If
you can guarantee that your simulations are independent (which isn’t always easy),
this model applies to estimates obtained from a simulation. Notice that it is usually
straightforward to build a simulation so that the ¢’th simulation reports an x; where
popmean ({z;}) gives you the thing you want to measure. For example, imagine
you wish to measure the probability of winning a game; then the simulation should
report one when the game is won, and zero when it is lost. As another example,
imagine you wish to measure the expected number of turns before a game is won;
then your simulation should report the number of turns elapsed before the game
was won.
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1.2 HYPOTHESIS TESTING

Very often we want to draw a conclusion from data. For example, does this treat-
ment work? Is 98.4° the average human body temperature? Does a 20 land deck
beat a 24 land deck in an MTGDAF game? and so on. Such problems can be
phrased as hypothesis tests.

For example, imagine we hypothesize that the average human body tempera-
ture is 95°. We collect a random sample of people, and measure their temperatures.
We compute the average of these temperatures; call this T. We know this average
is an estimate of the mean of the original large set. We can estimate the standard
error s. Our estimate may not be right, but we now know a probability distribution
for the errors in the estimate that arise from sampling. In particular, we know that

(T — 95°)

is a standard normal random variable. Call this random variable O (for Offset).
We now compute the probability that we observe a value of O at least as large, or
at least as small, as the one we see IF the average body temperature were, in fact,
95°. If this probability is small enough, we conclude that the average human body
temperature is not 95°.

There are many different kinds of hypothesis test. We just scratch the surface
here. Most of the complexity occurs when the datasets are small, or when one
wants to test more refined hypotheses than the ones we treat. Section 7?7 shows
three qualitative tests for whether data is normal or not. In Section 5, I describes
ways to test whether a population has a particular mean value; the details vary
depending on what is assumed about the population. Section 5 tests whether two
populations have the same or different means; again, some details vary according
to what is assumed about the population.

Generally, quantitative hypothesis tests have the same structure. We start
with a null hypothesis; we then look at data, and from it compute a number; then
we determine the probability that we would have gotten a number at least as large
as this by chance, if the null hypothesis were true. The resulting number is not
usually thought of as a probability, because it is highly unlikely that we would be
able to repeat the process of sampling and testing. Instead, it is usually thought
of as representing the significance of the evidence. If the number is small, we can
assert the evidence suggests the null hypothesis is untrue. The smaller the number,
the more convincing the evidence that the null hypothesis is untrue.

One potential source of confusion arises. Imagine the probability that the
number we observed occured by chance is high. This does not mean that we have
confirmed the null hypothesis, or that the null hypothesis is true; instead, it means
that we have failed to reject it. The evidence does not suggest that it is false. This
is not the same as saying that the evidence suggests that it is true.

1.2.1 Is this Data Normal?

There are a variety of tests to tell whether data is normal or not. We describe only
informal tests. First, a sensible thing to do is to prepare a histogram and look at
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it. Normal (or roughly normal) data has quite characteristic histograms, with a
pronounced bump at the mean and quite light tails.

Another useful approach is the 68-95-99 rule. A normal random variable
is within one standard deviation of the mean about 68% of the time, within two
standard deviations of the mean 95% of the time; and within three standard devi-
ations of the mean about 99% of the time. You can test whether data is normal by
computing the percentage of data within one, two and three standard deviations of
the mean; if there is too much, or too little, it is not normal.

Finally, you could look at a quantile-quantile plot or a QQ plot. This
is a tool that applies quite generally to comparing distributions. For this case,
you standardize the data set (i.e. subtract the mean, then divide by the standard
deviation). You then construct a set of target percentage values for the data.
Usually, if there are N data items in the sample, one chooses k/(N + 1) for k =
1,..., N. For each of these target percentage values, you compute the corresponding
quantile of the data. Recall that a quantile is a value such that a given percentage
of the data is below that value. These quantiles give a vector ¢;, with one element
for each target percentage.

You then compute these quantiles for standard normal data. Call these g;.
There are two ways to do this. With appropriate manipulation of inverse error func-
tions you can get the quantiles exactly. Alternatively, you could use a simulation
— just draw a very large number of samples from a standard normal distribution,
then compute their quantiles. This is less precise, but is fine for a qualitative test.

You now construct a scatter plot of (g;,¢;) points. If the dataset is a normal
dataset, then §¢; should be very similar to g; for each quantile. In turn, this means
that the scatter of points should lie close to the diagonal line (Figure 1.2).

1.2.2 Doing a One Sample Test

The temperature example illustrates a recipe. We set up a null hypothesis about
a population. For our purposes, this null hypothesis gives a value for an expected
value. We compute a number from a dataset; this number is called a statistic.
Call this statistic s. We then ask what is the probability that we would observe
a range of values for that statistic if (a) the null hypothesis is true; and (b) the
dataset is truly a random sample from the population. If this probability is small
enough, we reject the null hypothesis.
We will always look at test statistics of the form

sample mean — population mean

standard error

because we know how these statistics are distributed. There are now a variety of
one-sample tests distinguished by how one handles details in this recipe. Write §
for the observed value of the statistic s. Our test could be one-way, where we test
P({s > §}) (or, alternatively, P({s < §})). Alternatively, it could be two-way,
where we test P({s > §} U {s < §}). Generally, it is more conservative to use a
two-way test, and one should do so unless there is a good reason not to. Very
often, authors use one-way tests because they result in smaller p-values, and small
p-values are often a requirement for publication.
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QQ Plot for normal data against normal data QQ Plot for lands data against normal data
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FIGURE 1.2: On the top left, a QQ plot of normal data against normal data. Notice
how the points lie close to (but not exactly on) the diagonal line. The are not on
the diagonal line because these are samples of a normal distribution, rather than
numbers computed exactly from that distribution. On the top right, a QQ plot of
4 land probabilities from a simulation against a normal distribution. The data is
obtained by simulations of MTGDAF, estimating the probability that a player draws
four lands with a hand of **** cards. Notice this data looks normal. On the bottom
left, a QQ plot of the data for human weights against a normal distribution. The
points lie very close to the diagonal line, suggesting this could be regarded as normal
data. On the bottom right, a QQ plot of the pizza diameter data against a normal
distribution. Some parts of this plot are well away from the diagonal line, and so
it is likely unwise to treat this as normal data.
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The probability we compute is sometimes referred to as a p-value. It is
conventional to reject the null hypothesis when the p-value is less than 0.05. This
is sometimes called “a significance level of 5%”. Sometimes, the p-value is even
smaller, and this can be interpreted as very strong evidence the null hypothesis is
wrong. A p-value of less than 0.01 allows one to reject the null hypothesis at “a
significance level of 1%”.

Z-tests: When we have a large sample, it is reasonable to assume that the
sample mean is a normal random variable with mean the population mean and
standard deviation given by the standard error. This means that we can compute

P({s > 5}) = \/% [ooexp(—xQ/Q)dm

P({s>s}U{s<stu= 2\/% /;C exp (—x?/2)dx.

To compute 3, we need to know the standard error. We estimate the standard error
as above, using the sample standard deviation as an estimate of the population
standard deviation. Usually, practical advice suggests that one should do this only
if the sample has at least 30 elements.

T-tests: When the sample is small, the sample standard deviation is a poor
estimate of the population standard deviation. The value of the sample mean
that we compute minimizes the sample standard deviation, which means that the
estimate tends to be a little too small. In turn, the standard error is a little too
small, and there is slightly more probability that the sample mean is far from the
population mean than the normal model allows for. This can be corrected for.
Instead of using the standard deviation of the sample to form the standard error,

we use \/El(g,j — mean ({mi}))Q.

1
k-1

When we test, instead of using the normal distribution to compute probabilities, we
use Student’s t-distribution. This is a family of probability distributions. There
are two parameters; the observed value of the statistic §, and the number of degrees
of freedom. The number of degrees of freedom is k — 1 for our purposes. When
the number of degrees of freedom is small, the t-distribution has rather heavier
tails than the normal distribution, so the test takes into account that the standard
error may be larger than we think (because the population standard deviation is
larger than we expected). When the number of degrees of freedom is large, the
t-distribution is very similar to the normal distribution. One can get probability
(significance) values from tables, or by the Matlab function ttest.

1.2.3 Worked Example - Weight

Recall the height and weight data from chapter 1. We hypothesize that the average
human body weight is 175lb. We assume this data set represents a random sample.
It contains 252 samples. We take the average of these weights, to get 178.91b.
We know this average is an estimate of the mean of the original large set of all
people. This estimate is not necessarily the mean; in fact, as we have seen, it is
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a normal random variable whose mean is the mean of the original data set, and
whose standard deviation is given by the standard error we computed above.

We do not know the standard error exactly, because we do not know the
standard deviation of the original large set. However, we can estimate it, and the
estimate is quite good if we have a very large sample. Our sample is large (which
usually means over 30 elements) and so we can estimate the standard error as

standard deviation of sample  29.4

— 222,
Vnumberinsample 15.9

where the units are Ib. Now our test statistic is

178.9 — 175

=2.
1.9 05

and we know this is a normal random variable with zero mean and unit variance.
We can now compute the probability that, if the average human body weight were
1751b, we would see a sample which had mean 178.91b or greater purely by chance.

This is )
75 e ()
— exp | — | dxz = 0.02.
27 J2.05 2

We can interpret this as quite strong evidence that the average human body weight
is not, in fact, 175lb. This probability says that, if (a) the average human body
weight is 1751b and (b) we repeat the experiment (weigh 252 people and average
their weights) 50 times, we would see a number as big as the one we see about once.

We could also ask what the probability is that we would see a difference at
least as large as the one we see, if the mean weight were 1751b. This is a two-sided
test. This probability, under our model, is:

P({s > 2.05} U {s < —2.05}) \/% (/:5 exp (_2:"2> dz + /:'05 exp (—2x2> dm)
0.041.

We can interpret this as quite strong evidence that the average human body weight
is not, in fact, 175lb. This probability says that, if (a) the average human body
weight is 1751b and (b) we repeat the experiment (weigh 252 people and average
their weights) 50 times, we would see a number as big as the one we see about
twice.

1.2.4 Two Sample Tests

Sometimes we have two samples, and we need to know whether they come from the
same, or different, populations. For example, we might observe people using two
different interfaces, measure how quickly they perform a task, then ask are their
performances different? As another example, we might run an application with no
other applications running, and test how long it takes to run some standard tasks.
Uncertainty about what the operating system, cache, etc. are up to means that
this number behaves a bit like a random variable, so it is worthwhile to do this
several times, yielding one set of samples. We now do this with other applications
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running as well, yielding another set of samples — are they different? For realistic
sets of samples, the answer is always yes, because they’re random samples. A better
question is could the differences be the result of chance, or do these samples really
come from two different populations?

One really important case occurs when it is reasonable to model both pop-
ulations as normal. Then we can ask if the population means are different. This
we can do with a z-test (or a t-test, if there is too little data). We set up the null
hypothesis that the population means are the same. Now we know that the sam-

ple mean mean ({x(l)}) for the first (resp. second; mean ({x?)})) sample has a

K3
normal distribution whose mean is the first (resp. second) population mean, and
whose standard deviation is the standard error. The samples may have different
sizes, so the standard errors are of different size, too.

Useful facts: Sums and differences of normal random variables

Let X be a normal random variable with mean p; and standard deviation o;. Let
X5 be a normal random variable with mean ps and standard deviation go. Let X3
and X, be independent. Then we have that:

e for any constant ¢; # 0, ¢; X7 is a normal random variable with mean c¢; iy
and standard deviation cyo7q;

e for any constant co, X7 + ¢ is a normal random variable with mean g1 + co
and standard deviation oy;

e X+ X5 is anormal random variable with mean p; +p2 and standard deviation
2 2
Vo1t o5.

I will not prove these facts; we already know the expressions for means and standard
deviations from our results on expectations. The only open question is to show that
the sums, products, etc. are normal. This is easy for the first two results (but not
worth our attention). To establish that they are normal requires a bit of integration
that isn’t worth our trouble; you could do reconstruct the proof from section 5’s
notes on sums of random variables and some work with tables.

Now we refer to the facts about normal random variables. We must have
(1) o : e @ 1Y. o "
that mean ( |z, is a normal random variable, and so is mean { § z; ; so this

means that mean ({a:(»l) }) —mean ({:cz@) }) is also normal. Now write stderr (a:gl))

7

for the standard error of the sample mean of sample 1, etc. Then, again from our
facts, the standard error of mean ({xfl)}) — mean ({x?)}) must be

2 2
\/stderr (zgl)) + stderr (IZ(-Q)) .

Now our test statistic is

(s (1) - ven (7] -0)
\/ stderr <x§”)2 4 stderr (xgz))Q
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This is a zero mean random variable with variance one. We can test this statistic
with exactly the same procedures as we used for a one-sample test.
When we have a large sample, we use a z-test, so that

P({s > 5}) = \/% /ooexp(—xQ/z)dx

P({s > 8} U{s < §}) _27/ exp (—22/2)d

To compute §, we need to know the standard error for each population. We estimate
the standard error as above, using the sample standard deviation as an estimate
of the population standard deviation. Usually, practical advice suggests that one
should do this only if the sample has at least 30 elements.

When one or both of the samples are small, we should use a t-test. Instead
of using the standard deviation of the samples to form the standard error, we use

\/Z — mean ({x N2

or

When we test, instead of using the normal distribution to compute probabilities, we
use Student’s t-distribution, as above. This is a family of probability distributions.
There are two parameters; the observed value of the statistic §, and the number
of degrees of freedom. Write s; for the standard error of sample i and n; for the
number of elements in sample ¢. In this case, the number of degrees of freedom is

( +32)?

s
11+21

N

S

S‘»—tw
— 3

5]

7)2

z‘v
~

a wholly non-obvious expression which I shan’t derive.

1.2.5 Doing a two-sample test

We have a dataset of human temperatures (on the website). Does gender 1 have
the same mean temperature as gender 27 First, we check whether the temperature
data is normal with QQ plots (Figure 1.3). For gender 1, the data looks normal;
for gender 2, it quite possibly is not. Nonetheless, we will treat it as normal and
see what happens. Now we compute the mean temperatures and standard errors
Gender: 1 2

shown in the table. | Mean: 98.10  98.39
Std Error: | 0.0867 0.0922
Now the null hypothesis is that these two are the same, so the test statistic is

difference 98.39 — 98.10

std error  1/0.08672 + 0.09222

and we must ask what is the probability of getting a number with absolute value
this big, or bigger, from a normal distribution (two-sided test). This is 0.0223.
We may be able to reject the null hypothesis; alternatively, we may need to worry
about the fact that gender 2 seems not to be normal. More data would likely help.
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QQ Plot for gender 1 temp data against normal data QQ Plot for gender 2 temp data against normal data
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FIGURE 1.3: On the left, a QQ plot of normal human body temperatures for gender
1, against normal data. This data is from the dataset at http: // www2. stetson.

edu/ ~ jrasp/data. htm; normtemp.xls. Notice how the points lie close to (but not
exactly on) the diagonal line, and look fairly normal. On the right, a QQ plot of
normal body temperatures for gender 2 against a normal distribution. Notice this
data looks rather less normal.

1.2.6 Chi-squared tests

Now imagine we have a six-sided die. We throw it many times, and record which
number comes up each time. We would like to know if the die is fair. It is highly
unlikely that each face comes up the same number of times, even if the die is
fair. Instead, there will be some variation in the frequencies observed; with what
probability is that variation, or bigger, the result of chance effects?

For a case like this, where we must compare observed frequencies with the-
oretical frequencies, we can use a x? (say “khi-squared”) test. Assume we have a
set of disjoint events &1, ..., &, which cover the space of outcomes (i.e. any out-
come lies in one of these events). Assume we perform k experiments, and record
the number of times each event occurs. We have a null hypothesis regarding the
probability of events. We can take the probability of each event and multiply by
k to get a frequency under the null hypothesis. Now write f,(&;) for the observed
frequency of event 4; f:(&;) for the theoretical frequency of the event under the null
hypothesis. We form the statistic

(fol(&) = fe(&)?
Z fe(&)

%

which compares the observed and actual frequency of events. It turns out that this
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statistic has a distribution very close to a known form, called the x2 distribution, as
long as each count is 5 or more. The distribution has two parameters; the statistic,
and the number of degrees of freedom. The number of degrees of freedom to use
for a straightforward test is k — 1; if one has to estimate a total of p parameters for
the null hypothesis, this number is &k — p — 1.

After this, things follow the usual recipe. We compute the statistic; we then
look at tables, or use the matlab function chi2cdf, to find the probability that the
statistic takes this value or greater under the null hypothesis. If this is small, then
we reject the null hypothesis.

Worked example 1.3 X2 test for dice

die?
1 46
2 13
3 12
4 11
) 9
6 9

number out of matlab.

I throw a die 100 times. I record the outcomes, in the table below. Is this a fair

Solution: The expected frequency is 100/6 for each face. The x? statistic has
the value 62.7, and there are 5 degrees of freedom. We get the significance as
1-chi2cdf (62.7, 5), which is (basically) 3e-12. You would have to run this ex-
periment 3ell times to see a table as skewed as this once, by chance. The die is
not fair. Notice the most important bit of this example, which is how to get the
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Worked example 1.4 Is swearing Poisson?
A famously sweary politician gives a talk. You listen to the talk, and for each of

30 intervals 1 minute long, you record the number of swearwords. You record this
as a histogram (i.e. you count the number of intervals with zero swear words, with

one, etc.).
| no. of swear words [ no. of intervals |
0 13
1 9
2 8
3 5
4 5

The null hypothesis is that the politician’s swearing is Poisson distributed, with
intensity (A) one. Can you reject this null hypothesis?

Solution: If the null hypothesis is true, then the probability of getting n swear
n_ —A

words in a fixed length interval would be 2 <—. There are 10 intervals, so the

theoretical frequencies are 10 times the following probabilities

| number of swear words | probability |

0 0.368
1 0.368
2 0.184
3 0.061
4 0.015

so the x? statistic takes the value 243.1 and there are 4 degrees of freedom. The
significance 1-chi2cdf (243.1, 4) is indistinguishable from zero by matlab, so you
can firmly reject the null hypothesis. Of course, the intensity may be wrong; but
we don’t know how to deal with that, and will have to discuss that question in the
next chapter.

Worked example 1.5 Is gender 2 temperature normal?
Recall we used body temperature data for two genders in earlier examples. The

gender 2 data looked as though it might not be normal. Use a x? test to tell whether
it is normal with mean 98.4° and standard deviation 0.743 or not.

Solution: The null hypothesis is that the data is normal with mean 98.4° and
standard deviation 0.743. We break up the range into five buckets (less than
97.65 = 98.4 — 0.74; between 97.65 and 98 = 98.4 — 0.743/2; between 98 and
98.76 = 98.4 + 0.743/2; and greater than 99.14). With a little work with error
functions, we get that the theoretical frequency in each bucket under the null hy-
pothesis is (10.3126;9.7423;24.8901;9.7423;10.3126). The actual frequencies are
(7;13;26;12; 7). The x? statistic is about 4e3, and the significance level is essen-
tially zero. This data isn’t normal with the parameters given (though it might be
normal with a different mean and a different standard deviation). Looking at the
frequencies suggests the problem; there are far too few temperatures far away from
the mean for this to be normal, and far too many in the center bucket.
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1.2.7 Obiter Dicta

Keep in mind that a p-value is not revealed truth. It is a summary of the evidence
against a null hypothesis. It tells you the probability that you would see the number
you see, or worse, if the null hypothesis were true. There are parts of the scientific
world — rather depraved parts, I should add — where one cannot get papers
published unless something in the papers (a) has a p-value and (b) has a p-value
below 0.05. Substituting ritual for thought is never wise. Among other things, it
leads to a variety of tricks for finding things that have small p-values. This sort of
behavior should be disdained.



