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Inferring information about models
from samples

In the previous chapter, we were able to estimate the mean of a population
from a sample. The only assumption we needed was that the sample was indepen-
dent and random (the jar model); from this, we could get an estimate of the mean,
and tell how good that estimate was.

In the previous chapter, we assumed that the population was a finite, but huge,
dataset. In this chapter, we will instead model the population with a probability
distribution. This model represents a potentially arbitrarily large supply of data.
In the previous chapter, we obtained the sample by selecting a small subset of
the data using a jar model. In this chapter, our probability model summarizes the
population, and we assume that our data is produced by simulating that probability
model. We must now take our data and determine which probability model applies.
Generally, application logic suggests the type of model (i.e. normal probability
density; Poisson probability; geometric probability; and so on). But usually, we
do not know the parameters of the model — for example, the mean and standard
deviation of a normal distribution; the intensity of a poisson distribution; and so
on. Our model will be better or worse according as we choose the parameters well
or badly. We need to be able to estimate the parameters of a model from a sample
dataset.

1.1 DRAWING SAMPLES FROM A PROBABILITY DISTRIBUTION

We have already seen some methods to simulate random processes. We are now
thinking of the data we have as the results of simulation of some probability model,
but we don’t know many simulation methods. While simulation doesn’t directly
tell us model parameters, it is useful to know some more about simulation.

Assume we have some way of producing data items xi such that (a) they are
independent; (b) each is produced from the same process; and (c) the histogram
of a very large set of data items looks increasingly like the probability distribution
P (x) as the number of data items increases. Then we refer to these data items as
independent identically distributed samples of P (x); for short, iid samples
or even just samples. The probability distribution here could be given by a proba-
bility density function, or a discrete probability distribution. If we are dealing with
a probability density function, the histogram should have arbitrarily small boxes.
In either case, the histogram should be normalized so that the sum of box areas is
one.

This is a slightly technical way of capturing a natural intuition. A probability
distribution can model an arbitrarily large dataset. Which particular model ap-
plies to which particular dataset is a matter of choice, judgement and quite often
convenience (there’s no point making a model one can’t work with).
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1.1.1 Simple Samples from Matlab

It is often useful to be able to draw samples from particular probability distri-
butions. A great deal of ingenuity is spent on this point; I will just show a few
tricks, on top of two standard random number generators. Matlab provides the
function rand, which returns a number uniformly distributed in the range [0 − 1].
Furthermore, rand(10, 20) will get you a 10× 20 table of independent uniformly
distributed random numbers in the range [0− 1]. Another really useful function is
randn, which will give you a normal random variable, with mean zero and standard
deviation one. Notice randn(3, 4) will give you a 3 × 4 table of such numbers,
which are independent of each other. If you want a normal random variable with
mean 3 and standard deviation 4, you use 4*randn+3.

There are several other useful tricks. If you want a discrete random variable
with uniform distribution, maximum value 100 and minimum value 7, I habitually
choose a very tiny number (for this example, say 1e-7) and do
floor((100-7-1e-7)*rand+7). I do this because I can never remember whether
rand produces a number no larger than one, or one that is guaranteed to be smaller
than one, and I never need to care about the very tiny differences in probability
caused by the 1e-7. You might be able to do something cleaner if you bothered
checking this point.

As we have seen, if you want to shuffle a vector of 11 elements, you can use
randperm(11) which will give a uniformly distributed random permutation of the
numbers 1, 2, . . . , 11.

1.1.2 Rejection Sampling

Imagine you know a probability distribution describing a discrete random variable.
In particular, you have one probability value for each of the numbers 1, 2, . . . , N
(all the others are zero). Write p(i) for the probability of i. You can generate a
sample of this distribution by the following procedure: first, generate a sample x of
a uniform discrete random variable in the range 1, . . . , N ; now generate a sample t
of a uniformly distributed continuous random variable in the range [0, 1]; finally, if
t < p(x) report x, otherwise generate a new x and repeat. This process is known
as rejection sampling (Algorithm 1.1).

Rejection sampling works because

P ({report x in one round}) =

 P ({accept x} | {generate x})
×

P ({generate x})


= p(x)× 1

N
.

The problem here is that if you don’t report a sample in the first round (because t
is too big), you have to generate another sample, and so on. This makes the current
version of the algorithm absurdly inefficient. For example, if we want to generate a
sample of a uniform distribution on the range 1, . . . , N , we may need many rounds
(because p(x) will be 1/N , so t is often too big).

You can make things more efficient by noticing that multiplying the proba-
bility distribution by a constant doesn’t change the relative frequencies with which
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Listing 1.1: Matlab code for simple rejection sampling; this is inefficient, but simple
to follow.

function rnum=re j e c t s amp l e ( pvec )
%
% pvec i s a p r o b a b i l i t y d i s t r i b u t i o n over numbers
% 1 , . . . , s i z e ( pvec , 1)
%
nv=s ize ( pvec , 1 ) ;
done=0;
while done==0

ptr=f loor (1+(nv−1e−10)∗rand ) ;
% t h i s g i v e s me a uniform random
% number in the range 1 , . . nv
pval=pvec ( ptr ) ;
i f rand<pval

done=1;
% i . e . accep t

end
end
rnum=ptr ;

numbers are selected. So this means that we can find the largest value p̂ of p(x),
and form q(x) = (1/p̂)p(x). Our process then becomes that shown in algorithm 1.2.

This process is not the most efficient available. You could make it more
efficient by building a binary tree whose leaves were the numbers 1, . . . , N , then
flipping appropriately biased coins to walk the tree, reporting the leaf you arrive at
(Algorithm 1.3 is the caller for the tree walk, Algorithm 1.4 does the work).

1.2 ESTIMATING PARAMETERS WITH MAXIMUM LIKELIHOOD

We have a coin, and would like to know P (H) = p (where p is currently unknown).
One strategy to identify p is to toss the coin k times, then look at the number of
heads we see. This is (in essence) the strategy of the previous section. To see this,
we assume that the coin is tossed an infinite number of times and we see a sample
of k tosses, selected independently and at random. The strategy yields an estimate
of p is

number of heads

number of tosses
,

which we know will be rather good if the number of tosses is large. But we could
see this problem slightly differently. We know the probability distribution for the
number of heads is a binomial distribution, and it has parameter p — we could try
to wrestle information about p from our observed data.

We could apply another strategy to estimate p. We flip the coin repeatedly
until we see a head. We know that, in this case, the number of flips has the geometric
distribution with parameter p. Again, we could try to wrestle information about p
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Listing 1.2: Matlab code for simple rejection sampling; this is somewhat more effi-
cient.

function rnum=f a s t e r r e j e c t s a m p l e ( pvec )
%
% pvec i s a p r o b a b i l i t y d i s t r i b u t i o n over numbers
% 1 , . . . , s i z e ( pvec , 1)
%
nv=s ize ( pvec , 1 ) ;
wv=max( pvec ) ;
pv2=pvec/wv ; % we r e s c a l e
done=0;
while done==0

ptr=f loor (1+(nv−1e−10)∗rand ) ;
% t h i s g i v e s me a uniform random
% number in the range 1 , . . nv
pval=pv2 ( ptr ) ; % work wi th r e s c a l e d probs
i f rand<pval

done=1;
% i . e . accep t

end
end
rnum=ptr ;

Listing 1.3: Matlab code to call a sampler for a vector of probabilities. This is a
wrapper that calls a recursive tree walk.

function ind=samplevec ( vec )
ind=rsample ( vec , 0 ) ;

from our observed data.
As yet another example, imagine we know for some reason that our data is well

described by a normal distribution. We could ask what is the mean and standard
deviation of the normal distribution that best represents the data?

The general problem is this: We have a set of observations D. We know that
these observations can be described by a probability model that has some unknown
parameters which are traditionally written θ. We must determine the parameter
values.

Example: Inferring p from repeated flips — binomial

In this case, the data is a sequence of 1’s and 0’s from the coin flips. There are n flips
(or terms) and k heads (or 1’s). We know that an appropriate probability model is
the binomial model P (k;n, p). But we do not know p, which is the parameter.
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Listing 1.4: This code walks a tree representation of the vector, flipping biased coins
to come up with the sample.

function ind=rsample ( vec , o f f s e t )
sv=max( s ize ( vec ) ) ;
i f sv==1

ind=o f f s e t +1;
e l s e i f sv==2

w1=sum( vec ) ;
r1=(w1∗(1−1e−10))∗rand+(1e−9∗w1 ) ;
i f r1>vec (1 )

ind=o f f s e t +2;
else

ind=o f f s e t +1;
end

else
%
% s p l i t i t
%
nin=f loor ( sv / 2 ) ;
v1=vec ( 1 : nin ) ;
v2=vec ( nin +1: sv ) ;
t o t=sum( vec ) ;
r1=( to t ∗(1−1e−10)∗rand+(1e−9∗ to t ) ) ;
i f r1<sum( v1 )

ind=rsample ( v1 , o f f s e t ) ;
else

ind=rsample ( v2 , o f f s e t+nin ) ;
end

end

Example: Inferring p from repeated flips — geometric

In this case, the data is a sequence of 0’s with a final 1 from the coin flips. There
are n flips (or terms) and the last flip is a head (or 1). We know that an appropriate
probability model is the geometric distribution Pg(n; p). But we do not know p,
which is the parameter.

1.2.1 The Maximum Likelihood Principle

In each of the examples above, we know the probability of observing the data,
conditioned on a parameter value. We could write this as P (D|θ). We need a
“reasonable” procedure to choose a value of θ to report. One — and we stress this
is not the only one — is the maximum likelihood principle. This says: Choose
θ such that P (D|θ) is maximised.
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The maximum likelihood principle has a variety of neat properties we cannot
yet expound. One worth knowing about is consistency; for our purposes, this
means that the maximum likelihood estimate of parameters can be made arbitrarily
close to the right answer by having a sufficiently large dataset.

Example: Inferring p with maximum likelihood for repeated independent coin
flips — binomial

We see a sequence of 1’s and 0’s from independent coin flips. There are n flips (or
terms) and k heads (or 1’s). We know that an appropriate probability model is the
binomial model P (k;n, p). But we do not know p, which is the parameter.
We have that

P (D|θ) = Pb(k;n, θ)

which is a function of θ — the unknown probability that a coin comes up heads;
k and n are known. We must find the value of θ that maximizes this expression.
Now

Pb(k;n, θ) =

(
n
k

)
θk(1− θ)(n−k)

and the maximum occurs when

∂Pb(k;n, θ)

∂θ
= 0.

So we can write

∂Pb(k;n, θ)

∂θ
=

(
n
k

)(
kθk−1(1− θ)(n−k) − θk(n− k)(1− θ)(n−k−1)

)
and this is zero when

kθk−1(1− θ)(n−k) = θk(n− k)(1− θ)(n−k−1)

so the maximum occurs when

k(1− θ) = θ(n− k)

or when

θ =
k

n

which is what we guessed would happen, but now we know why that guess “makes
sense”.
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Example: Inferring p with maximum likelihood for repeated independent coin
flips — geometric

We flip a coin n times, stopping when we see a head. We have a sequence of tails,
ending in a head. There are n flips (or terms) and the last flip is a head (or 1). We
know that an appropriate probability model is the geometric distribution Pg(n; p).
But we do not know p, which is the parameter.
We have that

P (D|θ) = Pg(n; θ) = (1− θ)(n−1)θ

which is a function of θ — the unknown probability that a coin comes up heads;
n is known. We must find the value of θ that maximizes this expression. Now the
maximum occurs when

∂Pg(n; θ)

∂θ
= 0.

So we can write

∂Pg(n; θ)

∂θ
= ((1− θ)(n−1) − (n− 1)(1− θ)(n−2)θ)

and this is zero when

(1− θ)(n−1) = (n− 1)(1− θ)(n−2)θ

so the maximum occurs when

(1− θ) = (n− 1)θ

or when

θ =
1

n
.

We didn’t guess this.

These two examples suggest some difficulties could occur in inference. It can
be hard to find the maximum of the likelihood. Small amounts of data can present
nasty problems — for example, in the binomial case, if we have only one flip we
will estimate p as either 1 or 0. We cannot guarantee the right answer. In the
geometric case, with a fair coin, there is a probability 0.5 that we will perform the
estimate and then report that the coin has p = 1.
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Example: Inference with multinomial probabilities

I throw a die n times, and see n1 ones, . . . and n6 sixes. Write p1, . . . , p6 for the
probabilities that the die comes up one, . . ., six. We now need to estimate p1, . . . , p6.
We could do this with maximum likelihood. The data are n, n1, . . . , n6. The
parameters are θ = (p1, . . . , p6). P (D|θ) comes from the multinomial distribution.
In particular,

P (D|θ) =
n!

n1! . . . n6!
pn1
1 pn2

2 . . . pn6
6

which is a function of θ = (p1, . . . , p6). Now we want to maximize this function by
choice of θ. Notice that we could do this by simply making all pi very large — but
this omits a fact, which is that p1 + p2 + p3 + p4 + p5 + p6 = 1. So we substitute
using p6 = 1− p1 − p2 − p3 − p4 − p5 (there are other, neater, ways of dealing with
this issue, but they take more background knowledge). At the maximum, we must
have that for all i,

∂P (D|θ)
∂pi

= 0

which means that, for pi, we must have

nip
(ni−1)
i (1− p1− p2− p3− p4− p5)n6 − pni

i n6(1− p1− p2− p3− p4− p5)(n6−1) = 0

so that, for each pi, we have

ni(1− p1 − p2 − p3 − p4 − p5)− n6pi = 0

or
pi

1− p1 − p2 − p3 − p4 − p5
=
ni
n6
.

You can check that this equation is solved by

pi =
ni

n1 + n2 + n3 + n4 + n5 + n6

Again, the maximum likelihood estimate is useful, and is consistent with in-
tuition, but small datasets present some worries. If we throw the die only a few
times, we could reasonably expect that, for some i, ni = 0. This doesn’t necessarily
mean that pi = 0 (though that’s what this inference procedure will tell us). This
creates a very important technical problem — how can I estimate the probability
of events that haven’t occurred? This might seem like a slightly silly question to
you, but it isn’t. For example, a really important part of natural language process-
ing involves estimating the probability of groups of three words. These groups are
usually known as “trigrams”. People typically know an awful lot of words (tens to
hundreds of thousands, depending on what you mean by a word). This means that
there are a tremendous number of trigrams, and you can expect that any dataset
lacks almost all of them. Some are missing because they don’t occur in real life,
but others are not there simply because they are unusual (eg “Atom Heart Mother”
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actually occurs in real life, but you may not have seen it all that often). Modern
speech recognition systems need to know how probable every trigram is. Worse, if
a trigram is modelled as having zero probability and actually occurs, the system
will make a mistake, so it is important to model all such events as having a very
small, but not zero, probability.

1.2.2 More Examples of Maximum Likelihood

It is often a lot easier to work with log-likelihood than with likelihood.

Worked example 1.1 Poisson distributions
You observe N intervals, each of the same, fixed length (in time, or space). You
know that these events occur with a Poisson distribution (for example, you might
be observing Prussian officers being kicked by horses...). You know also that the
intensity of the Poisson distribution is the same for each observation. The number
of events you observe in the i’th interval is ni. What is the intensity, λ?

Solution: The likelihood is∏
i

P ({ni events} |λ) =
∏
i

λnie−λ

ni!

and it will be easier to work with logs. The log-likelihood is∑
i

(ni log λ− λ− log ni!)

so that we must solve ∑
i

(
ni
λ
− 1) = 0

which yields

λ =

∑
i ni
N
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Worked example 1.2 Normal distributions
Assume we have x1, . . . , xN which are data that can be modelled with a normal
distribution. Use the maximum likelihood principle to estimate the mean of that
normal distribution.

Solution: The likelihood of a set of data values under the normal distribution
with mean µ and standard deviation σ is

N∏
i=1

1√
2πσ

exp

(
− (xi − µ)2

2σ2

)
and this expression is a moderate nuisance to work with. But notice that the
logarithm is a monotonically increasing function — this means that, if x gets bigger,
so does log x. We don’t have to worry about negative numbers or zeros, because
the normal distribution is everywhere positive. So if we were to maximize the log
of the likelihood with respect to µ, that would give the same result as maximizing
the likelihood wrt µ. The log of the likelihood is(

N∑
i=1

− (xi − µ)2

2σ2

)
+ term not depending on µ.

We can find the maximum by differentiating wrt µ and setting to zero, which yields

N∑
i=1

2(xi − µ)

2σ2
= 0

=
1

σ2

(
N∑
i=1

xi −Nµ

)

so the maximum likelihood estimate is

µ =

∑N
i=1 xi
N

which probably isn’t all that surprising.
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Worked example 1.3 Normal distributions -II
Assume we have x1, . . . , xN which are data that can be modelled with a normal dis-
tribution. Use the maximum likelihood principle to estimate the standard deviation
of that normal distribution.

Solution: Now we have to write out the log of the likelihood in more detail; we
get (

N∑
i=1

− (xi − µ)2

2σ2

)
−N log σ + Term not depending on σ

We can find the maximum by differentiating wrt σ and setting to zero, which yields

−2

σ3

N∑
i=1

−(xi − µ)

2
− N

σ
= 0

so the maximum likelihood estimate is

σ2 =

∑N
i=1(xi − µ)2

N

which probably isn’t all that surprising, either.
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Worked example 1.4 Choosing Predictors with Maximum Likelihood
Assume we wish to model a random variable Y as a linear function of another
random variable X, plus noise. This noise will be a zero mean normal random
variable, with unknown variance. Then our model says that y − ax − b is a zero
mean normal random variable. Equivalently, our model is that P (y|x, a, b, σ) is a
zero mean normal random variable with variance σ2. We have a set of pairs (xi, yi)
— what a and b should we choose? what will the value of σ be?

Solution: We want to maximize the likelihood∏
i

P (yi|xi, a, b, σ) =
∏
i

1√
2πσ

exp

(
−(yi − axi − b)2

2σ2

)
but this form looks inconvenient (among other things, we don’t know σ). We take
logs, to get

L(a, b, σ) =
∑
i

logP (yi|xi, a, b, σ) =
∑
i

[(
−(yi − axi − b)2

2σ2

)
− log σ − 1

2
log 2π

]
.

To maximise this, we can take the partial derivatives and set them to zero. We
have

∂L
∂a

=
∑
i

(yi − axi − b)xi
σ2

∂L
∂b

=
∑
i

(yi − axi − b)
σ2

∂L
∂σ

=
∑
i

[(
(yi − axi − b)2

σ3

)
− 1

σ

]
Now we can recover a, b and c by solving( ∑

i x
2
i

∑
i xi∑

i xi N

)(
a
b

)
=

( ∑
i xiyi∑
i yi

)
and ∑

i

[
(yi − axi − b)2 − σ2

]
= 0

1.3 BAYESIAN INFERENCE

Sometimes when we wish to estimate parameters of a model we have prior infor-
mation. For example, we may have good reason to believe that some parameter
is close to some value. We would like to take this information into account when
we estimate the model. One way to do so is to place a prior probability distri-
bution p(θ) on the parameters θ. Then, rather than working with the likelihood
p(D|θ), we could apply Bayes’ rule, and form the posterior p(θ|D). This posterior
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represents the probability that θ takes various values, given the data D.
There are two natural ways to use the posterior. In the first, we plot the

distribution, and try and infer useful information from it. In the second, sometimes
known as maximum a priori inference or MAP inference, we choose the value
of θ that maximizes the posterior.

Bayes’ rule tells us that

p(D|θ) =
P (D, θ)

P (D)

but (as we shall see) it can be hard to work out P (D). However, P (D) does not
depend on θ — it depends only on the data. This means that we can often ignore it.
If we wish to perform MAP inference, P (D) doesn’t matter (it changes the value,
but not the location, of the maximum). If we wish to look at the posterior, P (D)
is just a scaling constant. So we usually write

p(D|θ) ∝ P (D, θ)

and work with P (D, θ), often called the joint distribution.

Worked example 1.5 Flipping a coin
We have a coin with probability p of coming up heads when flipped. We start
knowing nothing about p. We then flip the coin 10 times, and see 7 heads (and 3
tails). The model parameters are θ = p. What is p(p| {7 heads and 3 tails})?

Solution: We know nothing about p, except that 0 ≤ p ≤ 1. It is reasonable then
that the prior on p is uniform. We have that p({7 heads and 3 tails} |p) is binomial.
It is enough to work with the joint, which is

p({7 heads and 3 tails} |p)× p(p)

but p(p) is uniform, so doesn’t depend on p. So the posterior is proportional to:(
10
7

)
p7(1− p)3

which is graphed in figure 1.1.
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Worked example 1.6 Flipping a coin - II
We have a coin with probability p of coming up heads when flipped. We start
knowing nothing about p. We then flip the coin 10 times, and see 7 heads (and 3
tails). The model parameters are θ = p. What is P ({θ ∈ [0.5, 0.8]})?

Solution: We could answer this question by computing∫ 0.8

0.5

p(θ|D)dθ

We have already worked out that the posterior is proportional to

θ7(1− θ)3.

Now we could work out the constant of proportionality k by noticing that p(θ|D) =
kθ7(1− θ)3, and ∫ 1

0

p(θ|D)dθ = 1.

This means

k =
1∫ 1

0
θ7(1− θ)3dθ

We are looking for a number, so that a numerical estimate of the constant of
proportionality is fine. I obtained one by numerical integration; I divided the
interval of θ values (which is 0− 1) into 1000 steps, evaluated the function at each
point, then estimated the integral as

(
∑
i

θ7(1− θ)3)(1/1000)

although you might know cleaner methods. This got me the value k = 1.32e3. Now

we can compute an estimate of
∫ 0.8

0.5
p(θ|D)dθ using a similar approach; I got∫ 0.8

0.5

p(θ|D)dθ ≈ 0.7238

Example ?? can be generalized. Again, assume that the prior probability
distribution is uniform. In this case the posterior is proportional to the likelihood
(check this statement), so MAP inference isn’t all that interesting. But it is inter-
esting to follow how our posterior on p changes as evidence comes in, which is easy
to do because the posterior is proportional to a binomial distribution. Figure 1.2
shows a set of these posteriors for different sets of evidence.

1.3.1 Normal Distributions and Bayesian Inference

Usually, we don’t have very good reasons to choose one prior model over another.
However, there are some prior properties that we could try to impose. One is that
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The posterior probability of p, given 7 heads and 3 tails

FIGURE 1.1: The probability that an unknown coin will come up heads when flipped
is p. We assume the coin could have any p — perhaps it comes from someone
known for manipulating coins — and so the prior on p is uniform. We now flip the
coin, and get 7 heads and 3 tails. The curve shows the posterior on p in this case,
which you can think of as the probability that p will take a particular value, given
this evidence. Notice that this information is rather richer than the single value we
would get from maximum likelihood inference. The MAP value of p is 0.7, but this
posterior shows that p could still take quite a range of numbers.

unknown parameters tend to be small, or tend to be close to some value. Normal
distributions are particularly useful in this case.

We start with a simple example. Assume we drop a measuring device down
a borehole. It is designed to stop falling and catch onto the side of the hole after
it has fallen µ0 meters. On board is a device to measure its depth. This device
reports a known constant c times the correct depth plus a zero mean normal random
variable, which we call “noise”. This noise has standard deviation σn. The device
reports depth every second.

The first question to ask is what depth do we believe the device is at before
we receive any measurement? We designed the device to stop at µ0 meters, so we
are not completely ignorant about where it is. However, it may not have worked
absolutely correctly. We choose to model the depth at which it stops as µ0 meters
plus a zero mean normal random variable. The second term could be caused by
error in the braking system, etc. We could estimate the standard deviation of
the second term (which we write σ0) either by dropping devices down holes, then
measuring with tape measures, or by analysis of likely errors in our braking system.
The depth of the object is the unknown parameter of the model; we write this depth
d. Now the model says that P (d) is a normal random variable with mean µ0 and
standard deviation σ0.

Notice that this model probably isn’t exactly right — for example, there must
be some probability in the model that the object falls beyond the bottom of the
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The posterior probability of p,  given 72 heads and 28tails.

100 flips, 72 heads
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The posterior probability of p,  given 17 heads and 13tails.

30 flips, 17 heads
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The posterior probability of p,  given 7 heads and 3tails.

10 flips, 7 heads
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The posterior probability of p,  given 5 heads and 0tails.

5 flips, 5 heads
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The posterior probability of p,  given 3 heads and 0tails.

3 flips, 3 heads
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The posterior probability of p,  given 1 heads and 0tails.

1 flip, 1 head

FIGURE 1.2: The probability that an unknown coin will come up heads when flipped
is p. For these figures, I simulated coin flips from a coin with p = 0.75. I then
plotted the posterior for (top row, in order) 1 flip, 3 flips, 5 flips, (bottom row,
in order) 10 flips, 30 flips and 100 flips. In this case, the coin came up heads five
times before the first tail. Notice how the posterior gets bigger at the higher values
of p, but is not tightly peaked. As we see more flips, we get more confident about
p. One attraction of Bayesian inference is we can keep track of our uncertainty on
the parameter we are estimating, by looking at the posterior.

hole, which it can’t do — but it captures some important properties of our system.
The device should stop at or close to µ0 meters most of the time, and it’s unlikely
to be too far away.

Now assume we receive a single measurement — what do we now know about
the device’s depth? The first thing to notice is that there is something to do here.
Ignoring the prior and taking the measurement might not be wise. For example,
imagine that the noise in the wireless system is large, so that the measurement is
often corrupted — our original guess about the device’s location might be better
than the measurement. Write x for the measurement. Notice that the scale of
the measurement may not be the same as the scale of the depth, so the mean
of the measurement is cd, where c is a change of scale (for example, from inches
to meters). We have that p(x|d) is a normal random variable with mean cd and
standard deviation σn. We would like to know p(d|x).

Notice p(d|x) ∝ p(d, x) and p(d, x) = p(x|d)p(d). In turn, this means that
log p(d, x) = log p(x|d) + log p(d). We can write this out as

log p(x|d) + log p(d) = − (x− cd)2

2σ2
n

− (d− µ0)2

2σ2
0

+ terms not depending on d or x.
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We have two estimates of the position, d, and we wish to come up with a rep-
resentation of what we know about d. One is x, which is a measurement — we
know its value. The expected value of x is cd, so we could infer d from x. But
we have another estimate of the position, which is µ0. The posterior, p(d|x), is a
probability distribution on the variable d; it depends on the known values x, µ0,
σ0 and σn. We need to determine its form. We can do so by some rearrangement
of the expression for log p(d, x). Notice first that this expression is of degree 2 in d
(i.e. it has terms d2, d and things that don’t depend on d). The terms that don’t
depend on d are expressions in x, etc., that are constant for particular instances of
the problem. This means that the probability distribution must be normal, because
we can rearrange its log into the form

− (d− µp)2

2σ2
p

+ terms not depending on d.

The terms not depending on d are not interesting, because if we know σp those
terms must add up to

+ log

(
1√

2πσp

)
so that the probability density function sums to one. Our goal is to rearrange terms
into the form above. Notice that

− (d− µp)2

2σ2
p

= −d2
(

1

2σ2
p

)
+ 2d

µp
2σ2

p

+ term not depending on d

We have

log p(d|x) = − (cd− x)2

2σ2
n

− (d− µ0)2

2σ2
0

+ terms not depending on d

= −d2
 1

2
(

σ2
nσ

2
0

σ2
n+c

2σ2
0

)
+ 2d

(
c
x

2σ2
n

+
µ0

2σ2
0

)
+ terms not depending on d

which means that

σ2
p =

σ2
nσ

2
0

σ2
n + c2σ2

0

and

µp = 2

(
c
x

2σ2
n

+
µ0

2σ2
0

)
σ2
nσ

2
0

σ2
n + c2σ2

0

=

(
cxσ2

0 + µ0σ
2
n

σ2
nσ

2
0

)
σ2
nσ

2
0

σ2
n + c2σ2

0

=
cxσ2

0 + µ0σ
2
n

σ2
n + c2σ2

0

.

The first thing to notice about these equations is that they “make sense”.
Imagine that σ0 is very small, and σn is very big; then our new expected value of d
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— which is µp — is about µ0. Equivalently, because our prior was very accurate,
and the measurement was unreliable, our expected value is about the prior value.
Similarly, if the measurement is reliable (i.e. σn is small) and the prior has high
variance (i.e. σ0 is large), then our expected value of d is about x/c — i.e. the
measurement, rescaled.

There are two ways to look at p(d|x). One way is to think of it as a normal
distribution with mean µp and variance σ2

p. Another is to say we have an estimate
of d — which is µp — and we know the standard deviation of that estimate (σp).

1.3.2 Repeated Bayesian Inference, or Filtering

In the last example, we had a prior distribution on d. This was a normal distribution
with mean µ0 and standard deviation σ0. We then received a measurement x, where
p(x|d) was normal with mean cd and standard deviation σn. We were then able to
compute a posterior on d, whose mean was µp and whose standard deviation was
σp.

Now imagine we receive another measurement. We can apply our reasoning to
obtain a new posterior on d. This is because our reasoning showed how to compute
a posterior from a normal prior with a normal measurement. But the posterior is
normal, so we can go again.

We can do more; imagine the measurement device, for reasons of its own,
changes scale at each measurement, and we know what the scales are. For example,
it could report depth in meters, then in centimeters, then in inches, then in feet,
and so on. Because our analysis applies to a single measurement, we can cope.

The procedure looks like this. At the i’th step, before we receive a measure-
ment, we have a prior distribution on d. This is normal, with mean µi and standard
deviation σi. We now receive a measurement, which is normal, with mean cid and
standard deviation σn. By the equations above, the posterior is normal, with mean

µp =
cixσ

2
i + µiσ

2
n

σ2
n + c2iσ

2
i

and variance

σ2
p =

σ2
nσ

2
i

σ2
n + c2iσ

2
i

.

Now we can treat this posterior as the prior for the next measurement, so we have

µi+1 =
cixσ

2
i + µiσ

2
n

σ2
n + c2iσ

2
i

σ2
i+1 = σ2

p =
σ2
nσ

2
i

σ2
n + c2iσ

2
i

.


