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C H A P T E R 1

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. There are several reasons to do this. First, we might actually need
to predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms and the square footage of the house, and we wish to
predict its likely sale price. As another example, we know the cost and condition of
a trading card for sale, and we wish to predict a likely profit in buying it and then
reselling it. As yet another example, we have a picture with some missing pixels –
perhaps there was text covering them, and we want to replace it – and we want to
fill in the missing values. Predicting values is very useful, and so there are many
examples like this.

Second, we might want to spot a trend in data. Doing so could make it
clear what is really happening. Here is an example from Efron (“COMPUTER-
INTENSIVE METHODS IN STATISTICAL REGRESSION”, B. Efron, SIAM Re-
view, 1988). Table 1 shows some data from medical devices, which sit in the body
and release a hormone. Each is supposed to have the same behavior. The data de-
scribes devices from three production lots (A, B, and C). The important question
is: Are the lots the same?

The scatter plot of figure 1.1 suggests what might be going on here; the longer
a device has been in service, the less hormone it has. Now the question of whether
the lots are different boils down to whether this relationship is different for each
lot. To answer this question, we need to determine the relationship between time
in service and hormone in more detail. This is what regression is for.

1.1 LEAST SQUARES AND LINEAR MODELS

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of
yi as the value of some function evaluated at xi, with some random component
added. This means there might be two data items where the xi are the same, and
the yi are different. We refer to the xi as explanatory variables and the yi is
a dependent variable. We want to build a model of the dependence between
y and x. This model will be used to predict values of y for new values of x, or
to understand the relationships between the x. The model needs to have some
probabilistic component; we do not expect that y is a function of x, and there is
likely some error in evaluating y anyhow.

A good, simple model is to assume that

y = xTβ + ξ

where ξ is a zero mean normal random variable with unknown variance (we will be
able to estimate this later). Here β is a vector of weights. This model might look
as though it will have trouble predicting cases where the y intercept is not zero (for
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Section 1.1 Least Squares and Linear Models 3

Number A B C
1. 25.8 16.3 28.8
2. 20.5 11.6 22.0
3. 14.3 11.8 29.7
4. 23.2 32.5 28.9
5. 20.6 32.0 32.8
6. 31.1 18.0 32.5
7. 20.9 24.1 25.4
8. 20.9 26.5 31.7
9. 30.4 25.8 28.5

TABLE 1.1: A table showing the amount of hormone remaining in devices from lot
A, lot B and lot C. The numbering is arbitrary (i.e. there’s no relationship between
device 3 in lot A and device 3 in lot B). At first glance, lot C looks rather different
from lots A and B.

Number A B C
1. 99 376 119
2. 152 385 188
3. 293 402 115
4. 155 29 88
5. 196 76 58
6. 53 296 49
7. 184 151 150
8. 171 177 107
9. 52 209 125

TABLE 1.2: A table showing the time in service for devices from lot A, lot B and lot
C. The numbering is arbitrary (i.e. there’s no relationship between device 3 in lot
A and device 3 in lot B), but corresponds to the numbering of table 1.2. The time
may explain the differing amounts of hormone.

example, y = ax + b where b is not zero). It doesn’t, because we can attach a one
to the end of each x, so that it looks like (x1, x2, . . . , xn, 1)

T .
We must first determine β. We must have that β minimizes

∑

i

(yi − xT
i β)
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which we can write more conveniently using vectors and matrices. Write y for the
vector




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
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Amount of hormone against time in service for Efron data, with regression line

FIGURE 1.1: A scatter plot of hormone against time for devices from tables 1.1 and
1.2. Notice that there is a pretty clear relationship between time and amount of
hormone (the longer the device has been in service the less hormone there is). The
issue now is to understand that relationship so that we can tell whether lots A, B
and C are the same or different. The best fit line to all the data is shown as well,
fitted using the methods of section 1.1.

and X for the matrix




xT
1

xT
2

. . .xT
n



 .

Then we want to minimize

(y −Xβ)T (y −Xβ)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, this
equation is easy to solve. If it does not, there is more to do, which we will do below
once we have done some examples.
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1.1.1 Interpreting a Regression

For the data of tables 1.1 and 1.2, y is the hormone remaining in the device and
x = (time, 1). This gives us a model of the hormone in the device as

y = β1time + β2

which should look like the line in figure ??. We get β = (−0.0574, 34.2). Now we
can ask whether some lots of device behave differently than others. One way to
address this is to consider the residual,

yi − xT
i β

which is the difference between the observed value and what the model predicts.
Look at figure 1.4, which shows this residual plotted against the time. Notice that,
for batch A, the model always over predicts, whereas batches B and C seem about
the same; this suggests that there is something different about A — any effects
caused by the hormone being taken up from the device have been accounted for by
our model, and the residual shows the effects that are left.

You can regress anything against anything. For example, we will take the
bodyfat dataset. The dependent variable is weight, and the explanatory variables
are everything else (except the number of the example). Figure ?? shows the
residual for this regression, plotted against example number. Figure ?? shows a
regression of boston house prices against a variety of explanatory variables (the data
set is quite well known; you can find it at the UCI repository, http://archive.
ics.uci.edu/ml/datasets/Housing).

1.1.2 How Good is a Fit?

However, it is quite important to know whether the regression is helpful. For ex-
ample, it seems highly unlikely that regressing the first digit of a telephone number
against some numerological score of your name will work that well (or at all). There
are some simple facts we can use to make this easier. Assume we ensure that X
always has a column of ones (or twos, or threes, etc.) in it, so that the regression
can have a non-zero x-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
The facts give some useful technical results.
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Regression residual against time in service for Efron data

FIGURE 1.2: This is a scatter plot of residual — the distance between each data point
and the best fit line — against time for the devices from tables 1.1 and 1.2. Now you
should notice a clear difference; some devices from lots B and C have positive and
some negative residuals, but all lot A devices have negative residuals. This means
that, when we account for loss of hormone over time, lot A devices still have less
hormone in them. This is pretty good evidence that there is a problem with this lot.

Useful facts: Regression

We write y = Xβ + e, where e is the residual. Assume X has a column of ones,
and β is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This is because,
if e is not orthogonal to some column of e, we can increase or decrease the
β term corresponding to that column to make the error smaller. Another
way to see this is to notice that beta is chosen to minimize eT e, which is
(y − Xβ)T (y − Xβ). Now because this is a minimum, the gradient with
respect to β is zero, so (y −Xβ)T (−X ) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the previous
result).

3. 1T (y −Xβ) = 0 (same as previous result).

4. eTXβ = 0 (first result means that this is true).
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FIGURE 1.3: This is a scatter plot of residual — the distance between each data point
and the best fit line — against weight for the bodyfat dataset. You should notice
that there is no particular pattern to the residuals — a good sign; if the residual
had a pattern, then there is some structure in the data that the regression is not
explaining. However, the residuals are moderately large. The mean weight in this
dataset is 178.9, and the standard deviation of the weight is 29.4. The mean of
the residual is zero — it has to be — and the standard deviation is 5. This means
that the regression is explaining a lot, but not all, of the variance in the weight.
This might be due to genuinely random errors, or it may be because there is some
explanatory variable missing.

Now y is a one dimensional dataset arranged into a vector, so mean ({yi})
is meaningful, as is Var[yi]. Similarly, Xβ is a one dimensional dataset arranged
into a vector (its elements are xT

i β), as is e, so we know the meaning of mean and
variance for each. We have a particularly important result:

Var[yi] = Var
[

xT
i β

]

+ Var[ei].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for
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scatter plot of residual against true value for Boston house price data

FIGURE 1.4: This is a scatter plot of residual — the distance between each data point
and the best fit line — against house price for a data set of Boston house prices.
There are a total of 13 explanatory variables here. You should notice that there is no
particular pattern to the residuals — a good sign; if the residual had a pattern, then
there is some structure in the data that the regression is not explaining. However,
the residuals are moderately large. The mean house price in this dataset is 22.5
(thousand’s of dollars; this is quite old data) and the standard deviation is 9.2.
The mean of the residual is zero — it has to be — and the standard deviation is
4.7. This means that the regression is explaining only about half of the variance in
the house prices. This might be due to genuinely random errors, or — more likely
— there is some explanatory variable missing.

the vector whose entries are all mean ({yi}); similarly for e and for Xβ. We have

Var[yi] = (1/N)(y − y)T (y − y)
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and so on for Var[ei], etc. Notice from the facts that y = Xβ. Now

Var[yi] = (1/N)
([

Xβ −Xβ
]

+ [e− e]
)T ([

Xβ −Xβ
]

+ [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [

Xβ −Xβ
]

+ 2 [e− e]T
[

Xβ −Xβ
]

+ [e− e]T [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [

Xβ −Xβ
]

+ [e− e]
T
[e− e]

)

because e = 0 and eTXβ = 0 and eT1 = 0

= Var
[

xT
i β

]

+ Var[ei].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, Var[ei] goes down. A
natural measure of the goodness of a regression is what percentage of the variance
of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
Var

[

xT
i β

]

Var[yi]

which gives some sense of how well the regression explains the training data.
One natural use of a regression is to try and find potential explanatory vari-

ables. It is quite natural to want to look at the entries in β, and wonder what they
suggest about the real world. This is something that should be done with caution.
For example, you might think that a β component with large absolute value is evi-
dence that a variable is important; but it might just be evidence that that variable
is poorly scaled. Similarly, you might want to try and add an explanatory variable
to see if the R2 of the regression improves; but you will find that it always does,
because β is chosen to achieve the smallest possible value of R2.

There is a procedure from hypothesis testing that will tell whether an im-
provement in a regression is significant (and so whether one model is better than
another). Assume that we have two nested models. This means that model 2 sees
the same explanatory variables as model one, and some extra explanatory variables
as well. Write n1 for the number of explanatory variables in model 1, n2 for the
number of explanatory variables in model 2, e1 for the residual under model 1, e2
for the residual under model 2, s1 for eT1 e1, s2 for eT2 e2, and N for the number of
data points. If we compute the statistic

s2−s1
n2−n1

s2
N−n2

then, under the null hypothesis that model 2 is as good at explaining the data as
model 1, this statistic will have an F-distribution with (n2−n1, N −n2) degrees of
freedom. This means you do what we are used to, after chapter 1.1.2; you compute
this number, look up the probability of getting this or a larger number under the
null hypothesis in tables (which is where you use the degrees of freedom), and then
use the significance level to decide whether to prefer model 2 to model 1 or not.

With this trick, it is natural to use regression as a tool to try and determine
what effects are important. We can do this by repeatedly (a) inserting plausible
explanatory variables then (b) checking whether the regression has improved or not.
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We could obtain plausible explanatory variables by looking for new measurements
(for example, does the acuity of color perception affect age at death?). We could
take non-linear functions of existing explanatory variables. Natural choices include
powers and logarithms.

Notice also that for some problems we can expect a power law — some-
thing like y = xa1

1 xa2

2 . . . xan

n . In this case, we have log y = a1 log x1 + a2 log x2 +
. . . an log xn, so it makes sense to take logs and then apply a linear regression.

1.1.3 Regularizing Linear Regressions

One occasionally important difficulty is that the explanatory variables might be
significantly correlated. If they are, then it will generally be easy to predict one
explanatory variable from another. This means that X TX may have some very
small eigenvalues (because there is a vector u so that Xu is small; this means that
uTX TXu must be small).

These small eigenvalues lead to bad predictions. If X TX has a small eigen-
value, then there is some vector v such that X TXv is small, or, equivalently, that
the matrix can turn large vectors into small ones; but that means that (X TX )−1

will turn some small vectors into big ones. In turn, this means that small errors in
y — which are likely inevitable — will result in big errors in β. This could cause
trouble in two ways. If we are looking at β to tell which explanatory variables are
important, then large errors in β will be a problem. And if we are trying to predict
new y values, we expect that errors in β turn into errors in prediction.

An important and useful way to suppress these errors is to regularize, using
the same trick we saw in the case of classification. Instead of choosing β to minimize

∑

i

(yi − xT
i β)

2 = (y −Xβ)T (y −Xβ)

we minimize

∑

i

(yi − xT
i β)

2 + λβTβ = (y −Xβ)T (y −Xβ) + λβTβ

where λ > 0 is a constant. We choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. We choose
the λ that yields the smallest validation error. Notice we could use multiple splits,
and average over the splits.

This helps, because to solve for β we must solve the equation

(X TX + λI)β = X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (X TX + λI) will be at least λ.

L1 Regularization and the Lasso

If we are going to use linear regression to recover a set of explanatory variables,
then we want some terms in β — terms corresponding to explanatory variables that
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aren’t relevant — to be zero. This will not happen, unless we are very lucky, with
our current schemes. Usually, numerical accidents and sampling effects mean that
an explanatory variable will be slightly correlated with the dependent variable.
Furthermore, our regularization does not help much, because the regularizer is
squared. There is no particular advantage to driving a small β to zero, because the
cost of it being non-zero is tiny.

There is a very clever method to encourage β to have zeros in it. We regularize
with what is known as an L1 norm. Rather than use βTβ, we use ||β ||1=

∑

j |βj |.
This means we must choose beta to minimize

∑

i

(yi − xT
i β)

2 + λ ||β ||1= (y −Xβ)T (y −Xβ) + λ ||β ||1 .

This strategy is known as the lasso. It encourages β to have zeros, because small
non-zero entries in β are relatively expensive. There are good numerical methods
for obtaining β under this scheme, which are way beyond our scope. In practice,
this method is very effective when x is large, and it is the method to be preferred.
There are also strong mathematical results suggesting that the choice of explanatory
variables one comes up with is quite good.

1.2 NON-PARAMETRIC REGRESSION AND TEXTURE SYNTHESIS

Linear regression predicts y for x with a simple model, which is quite straightfor-
ward to estimate. This model “fills in” or interpolates values between data points.
The natural alternative is to collect a really large dataset, and predict using the
nearest neighbors. There are cases where this strategy isn’t really practical, but if
a lot of data is available, it is a very good strategy. One impressive success is in
texture synthesis.

Many different kinds of user want to remove things from images or from
video. Art directors might like to remove unattractive telephone wires; restorers
might want to remove scratches or marks; there’s a long history of government
officials removing people with embarrassing politics from publicity pictures (see the
fascinating pictures in ?); and home users might wish to remove a relative they
dislike from a family picture. All these users must then find something to put in
place of the pixels that were removed. Ideally, a program would create regions
of texture that fit in and look convincing, using either other parts of the original
image, or other images.

There are other important applications for such a program. One is to produce
large quantities of texture for digital artists to apply to object models. We know
that good textures make models look more realistic (it’s worth thinking about why
this should be true). Tiling small texture images tends to work poorly, because it
can be hard to obtain images that tile well. The borders have to line up properly,
and even when they do, the resulting periodic structure can be annoying.

1.2.1 Synthesis by Sampling Local Models

As ? point out, an example texture can serve as a probability model for texture
synthesis (Figure 1.5). Assume for the moment that we know every pixel in the
synthesized image, except one. To obtain a model for the value of that pixel, we



Section 1.2 Non-parametric Regression and Texture Synthesis 12

could match a neighborhood of the pixel to the example image. Every matching
neighborhood in the example image has a possible value for the pixel of interest.
This collection of values is a conditional histogram for the pixel of interest. By
drawing a sample uniformly and at random from this collection, we obtain the
value that is consistent with the example image.

We must now take some form of neighborhood around the pixel of interest,
compare it to neighborhoods in the example image, and select some of these to form
a set of example values. The size and shape of this neighborhood is significant,
because it codes the range over which pixels can affect one another’s values directly
(see Figure 1.6). Efros et al. use a square neighborhood, centered at the pixel of
interest.

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods

end
end

Algorithm 1.1: Non-parametric Texture Synthesis.

The neighborhoods we select will be similar to the image example in some
sense. A good measure of similarity between two image neighborhoods can be
measured by forming the sum of squared differences (or ssd) of corresponding
pixel values. We assume that the missing pixel is at the center of the patch to
be synthesized, which we write S. We assume the patch is square, and adjust the
indexes of the patch to run from −n to n in each direction. The sum of squared
differences between this patch and an image patch P of the same size is given by

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)
2.

The notation implies that because we don’t know the value of the pixel to be
synthesized (which is at (0, 0)), we don’t count it in the sum of squared differences.
This similarity value is small when the neighborhoods are similar, and large when
they are different (it is essentially the length of the difference vector). However,
this measure places the same weight on pixels close to the unknown value as it does
on distant pixels. Better results are usually obtained by weighting up nearby pixels
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FIGURE 1.5: ? synthesize textures by matching neighborhoods of the image being
synthesized to the example image, and then choosing at random amongst the possi-
ble values reported by matching neighborhoods (Algorithm 1.1). This means that the
algorithm can reproduce complex spatial structures, as these examples indicate. The
small block on the left is the example texture; the algorithm synthesizes the block on
the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though
it is composed of letters (though this illusion fails as one looks closely). This fig-
ure was originally published as Figure 3 of “Texture Synthesis by Non-parametric
Sampling,” A. Efros and T.K. Leung, Proc. IEEE ICCV, 1999 c© IEEE, 1999.

and weighting down distant pixels. We can do so using Gaussian weights, yielding

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)
2 exp

(

−(i2 + j2)

2σ2

)

.

Now we know how to obtain the value of a single missing pixel: choose uniformly
and at random amongst the values of pixels in the example image whose neigh-
borhoods match the neighborhood of our pixel. We cannot choose those matching
neighborhoods by just setting a threshold on the similarity function, because we
might not have any matches. A better strategy to find matching neighborhoods
is to select all whose similarity value is less than (1 + ǫ)smin, where smin is the
similarity function of the closest neighborhood and ǫ is a parameter.

Generally, we need to synthesize more than just one pixel. Usually, the values
of some pixels in the neighborhood of the pixel to be synthesized are not known;
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and scale the similarity to take into account the number of
known pixels. Write K for the set of pixels around a point whose values are known,
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FIGURE 1.6: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 1.1. In the figure, the textures at the right are synthesized
from the small blocks on the left, using neighborhoods that are increasingly large
as one moves to the right. If very small neighborhoods are matched, then the
algorithm cannot capture large-scale effects easily. For example, in the case of
the spotty texture, if the neighborhood is too small to capture the spot structure
(and so sees only pieces of curve), the algorithm synthesizes a texture consisting
of curve segments. As the neighborhood gets larger, the algorithm can capture the
spot structure, but not the even spacing. With very large neighborhoods, the spacing
is captured as well. This figure was originally published as Figure 2 of “Texture
Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung, Proc. IEEE
ICCV, 1999 c© IEEE, 1999.

and ♯K for the size of this set. We now have, for the similarity function,

1

♯K

∑

(i,j)∈K

(Aij − Bij)
2 exp

(

−(i2 + j2)

2σ2

)

.

The synthesis process can be started by choosing a block of pixels at random from
the example image, yielding Algorithm 1.1.

Filling in Patches

Synthesizing a large texture in terms of individual pixels will be unnecessarily
slow. Because textures repeat, we expect that whole blocks of pixels also should
repeat. This suggests synthesizing a texture in terms of image patches, rather than
just pixels. Most of the mechanics of the procedure follow those for pixels: to
synthesize a texture patch at a location, we find patches likely to fit (because they
have pixels that match the boundary at that location), then choose uniformly and
at random from among them. However, when we place down the new patch, we
must deal with the fact that some (ideally, many) of its pixels overlap with pixels
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that have already been synthesized. This problem is typically solved by image
segmentation methods, and we defer that discussion to Chapter ??.

FIGURE 1.7: If an image contains repeated structure, we have a good chance of
finding examples to fill a hole by searching for patches that are compatible with its
boundaries. Top left: An image with a hole in it (black pixels in a rough pedestrian
shape). The pixels on the region outside the hole, but inside the boundary marked
on the image, match pixels near the other curve, which represents a potentially good
source of hole-filling pixels. Top right: The hole filled by placing the patch over the
hole, then using a segmentation method (Chapter ??) to choose the right boundary
between patch and image. This procedure can work for apparently unpromising
images, such as the one on the bottom left, an image of the facade of a house, seen
at a significant slant. This slant means that distant parts of the facade are severely
foreshortened. However, if we rectify the facade using methods from Section ??,
then there are matching patches. On the bottom right, the hole has been filled in
using a patch from the rectified image, that is then slanted again. This figure was
originally published as Figures 3 and 6 of “Hole Filling through Photomontage,”
by M. Wilczkowiak, G. Brostow, B. Tordoff, and R. Cipolla, Proc. BMVC, 2005
and is reproduced by kind permission of the authors.

1.2.2 Filling in Holes in Images

There are four approaches we can use to fill a hole in an image. Matching meth-

ods find another image patch that looks a lot like the boundary of the hole, place
that patch over the hole, and blend the patch and the image together. The patch
might well be found in the image (for example, Figure 1.7). If we have a very large
set of images, we could find a patch by looking for another image that matches the
image with a hole in it. ? show this strategy can be extremely successful. Blending
is typically achieved using methods also used for image segmentation (Section ??
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Image Hole

Onionskin order

Boundary edges

FIGURE 1.8: Texture synthesis methods can fill in holes accurately, but the order
in which pixels are synthesized is important. In this figure, we wish to remove the
sign, while preserving the signpost. Generally, we want to fill in pixels where most
of the neighbors are known first. This yields better matching patches. One way to
do so is to fill in from the boundary. However, if we simply work our way inwards
(onionskin filling), long scale image structures tend to disappear. It is better to fill
in patches close to edges first. This figure was originally published as Figure 11 of
“Region Filling and Object Removal by Exemplar-Based Image Inpainting,” by A.
Criminisi, P. Perez, and K. Toyama, IEEE Transactions on Image Processing, 2004
c© IEEE, 2004.

describes one method that can be used for blending).
As you would expect, matching methods work very well when a good match

is available, and poorly otherwise. If the hole is in a region of relatively regular
texture, then a good match should be easy to find. If the texture is less strongly
structured, it might be hard to find a good match. In cases like this, it makes
sense to try and synthesize the texture over the region of the hole, using the rest
of the image as an example. Making such texture synthesis methods work well
requires considerable care, because the order in which pixels are synthesized has
a strong effect on the results. Texture synthesis tends to work better for patches
when most of their neighbors are known, because the match is more constrained.
As a result, one wants to synthesize patches at the boundary of the hole. It is
also important to extend edges at the boundary of the hole into the interior (for
example, see Figure 1.8); in practice, this means that it is important to synthesize
patches at edges on the boundary before one fills in other patches. It is possible
to capture both requirements in a priority function ((?)), which specifies where to
synthesize next.

If we choose an image patch at (i, j) as an example to fill in location (u, v)
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FIGURE 1.9: Modern hole-filling methods get very good results using a combina-
tion of texture synthesis, coherence, and smoothing. Notice the complex, long-scale
structure in the background texture for the example on the top row. The center

row shows an example where a subject was removed from the image and replaced in
a different place. Finally, the bottom row shows the use of hole-filling to resize
an image. The white block in the center mask image is the “hole” (i.e., unknown
pixels whose values are required to resize the image). This block is filled with a
plausible texture. This figure was originally published as Figures 9 and 15 of “A
Comprehensive Framework for Image Inpainting,” by A. Bugeau, M. Bertalmı́o, V.
Caselles, and G. Sapiro, Proc. IEEE Transactions on Image Processing, 2010 c©
IEEE, 2010.

in the hole, then image patches near (i, j) are likely to be good for filling in points
near (u, v). This observation is the core of coherence methods, which apply this
constraint to texture synthesis. Finally, some holes in images are not really texture
holes; for example, we might have a hole in a smoothly shaded region. Texture
synthesis and matching methods tend to work poorly on such holes, because the
intensity structure on the boundary is not that distinctive. As a result, we may
find many matching patches, some of which have jarring interiors. Variational

methods apply in these cases. Typically, we try to extend the level curves of the
image into the hole in a smooth way. Modern hole-filling methods use a combi-
nation of these approaches, and can perform very well on quite demanding tasks
(Figure 1.9).
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1.3 MIXED STRATEGIES

Linear regression is extremely powerful, particularly for high dimensional data,
because it involves a relatively simple model. However, it may be the case that
the model is just too simple to get good results on a dataset. One alternative
is to choose a non-parametric method, like that for texture synthesis above. But
that method chose from the neighbors at random, which may not be appropriate
in other applications. For example, imagine we wish to build a model of how a
helicopter moves when we adjust cyclic and collective. We could collect a lot of
data by flying (or, perhaps safer, simulating) the helicopter in a lot of states and
applying experimental adjustments. However, the strategy we used above is not
a particularly good choice. It would collect a set of states similar to the current
state, then choose from them at random. This must produce some noise — we want
something better.

There are two strategies: rather than using a linear regression, we could try
to find more complex functions of more explanatory variables; or we could make
the regression more sensitive to nearby data, and less sensitive to distant data. One
strategy, that has proven useful for many datasets, is to build a linear regression
for the nearby data, weighted by distance, and predict from that.


