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1. INTRODUCTION

The subject of this article is the CLEVER search system developed at the IBM
Almaden Research Center. Our principal focus is a detailed and unified expo-
sition of the various algorithmic components that make up the system. Many
of these have hitherto appeared in a number of articles and reports; some have
appeared in incomplete form; and others have never been disclosed. In addition,
we summarize the results of two user studies performed during the project.
The Web has proven to be a fertile test bed for combining ideas from human
behavior and social network analysis together with traditional information re-
trieval. The latter discipline has focused on relatively focused corpora that are
small, with uniform and high-quality documents. The networking revolution
made it possible for hundreds of millions of individuals to create, share, and
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consume content on a truly global scale, demanding new techniques for in-
formation management and searching. One particularly fruitful direction has
emerged here: exploiting the link structure of the Web to deliver better search,
classification, and mining. The idea is to tap into the annotation implicit in
the actions of content creators: for instance when a page-creator incorporates
hyperlinks to the home pages of several football teams, it suggests that the
page-creator is a football fan.

But the large body of work leveraging this link structure has developed a uni-
fying theme which we echo here: hyperlinking provides a powerful and effective
tool, but only in conjunction with other content-based techniques. The Google
search engine (www.google. com), for instance, makes heavy use of link analysis
in the form of PageRank values [Brin and Page 1998]; however, the ranking
algorithm has roughly 100 additional heuristics that make the approach truly
effective. Similarly, the CLEVER search system began with purely link-based
techniques, and over time incorporated a variety of content-based additions,
many in response to specific conditions prevailing on the Web.

Historically, many of these ideas first came into existence in the CLEVER
(CLient-side EigenVector Enhanced Retrieval) project with the development of
Kleinberg’s HITS (Hypertext Induced Topic Search) algorithm [Kleinberg 1999]
at IBM, during 1997, and its subsequent enhancements in Chakrabarti et al.
[1998b]. The framework of HITS was both elegant and extensible, leaving open
a number of avenues for further exploration and refinement. Many research
groups seized on (and continue to explore) these possibilities (see Section 5 for
more details); the CLEVER project at IBM was perhaps the earliest of these.
From 1997 to 1999, the project focused largely on search, before shifting to a
focus on measurement and mining. Our goal here is to provide a unified and
complete view of the salient technical results derived from the project in the
search domain.

The remainder of the article proceeds as follows. In Section 2 we present
some background in the area of link analysis. However, in order to keep the
presentation focused, we assume that the reader has some familiarity with the
domain. Section 3 describes the CLEVER search system in detail. Section 4
then presents some experimental results, and Section 5 contains a brief de-
scription of link-analysis-based ranking methods. In Section 6 we summarige
our conclusions.

2. BACKGROUND

Link analysis [Kleinberg 1999; Brin and Page 1998], particularly in conjunc-
tion with text-based methods [Bharat and Henzinger 1998; Chakrabarti et al.
1998a; Kumar et al. 2001], is generally believed to enable significant improve-
ments in ranking quality. However, implementing link-based ranking methods
for the World Wide Web is challenging, primarily due to the highly variable
nature of Web pages.

The basis for the CLEVER system is the HITS [Kleinberg 1999] algorithm.
We describe it now for completeness. The interested reader is referred to the
original article for greater detail. Given a collection of pages, the HITS algo-
rithm computes two scores corresponding to each page in the collection. The
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first is the hub score: this measures the value of the page as a collection of
resources. The second is the authority score: which measures public opinion of
the quality of any page. The two scores are expressed as vectors (h and a) with
as many dimensions as the number of pages in the collection, and with each
dimension corresponding to a page.

Kleinberg [1999] posited that hub pages and authority pages of good quality
share a mutually reinforcing relationship, namely, good hub pages point to
many good authorities, and good authority pages are pointed to by many high-
quality hub pages. Letting A be the citation matrix, that is, A;; = 1 if and only
if page i points to page j, we can mathematically state this relationship using
the formulae

o ATh and h « Ad,

and furthermore, since both h and G are scoring functions, we have 71, a > 0.
Here AT is the transpose of matrix A. Under fairly general conditions on A (see
Golub and Loan [1989] for details), the simultaneous gquations above have a
unique nonnegative, nonzero, solution. The hub vector 4 is the principal eigen-
vector of AAT | and the authority vector @ is likewise the principal eigenvector
of AT A. Both vectors can be computed approximately by iterative methods, or
exactly by Gaussian elimination.

CLEVER represents a set of two classes of extensions within the HITS frame-
work. The first class consists of modifications that preserve the overall structure
of the HITS iterations, but allows the matrix to contain real values rather than
simply O or 1 values. Thus, CLEVER uses edge weights to reflect how relevant
each link is to the subject of the query. The principle here (sometimes known
as lexical affinities [Maarek and Smadja 1989]) is that, if relevant text occurs
in the proximity of the link, the link is more likely to be significant. The exact
computation of the weight matrix is somewhat more complex and is described
in Section 3.4.

The second class of modifications comprises extensions to the HITS frame-
work itself; these modifications often fall into the category of heuristics, and
are discussed throughout Section 3.

We digress at this time to a recent observation of Ng et al. [2001]. The “ran-
dom jump” with probability A gives the PageRank iteration a greater stability,
in that page ranks tend not to change dramatically with the deletion of a few
edges. HITS and related schemes are conversely less stable. If HITS (and vari-
ants) were to be “relaxed” using a similar linear combination, then this effect
could be mostly mitigated. We refer the interested reader to Ng et al. [2001].

Similarly, the question of stability raises the Web question of resilience to
link spamming, or creation of pages whose out-links are chosen to increase
the score of some target in a link-based ranking scheme. PageRank requires
that important pages be cited by important pages, and therefore incorporates
natural resistance to link spam. However, systems exist to spam both HITS
and PageRank, and any well-engineered system will require safeguards against
such behavior.

Finally, we should note that the implementation of PageRank in the Google
system is query-independent; the PageRank scores provide a static ranking of
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all Web pages, and this ranking is used with many other factors to produce the
final output for a particular query. The CLEVER system, on the other hand,
incorporates the query directly into the matrix at run-time. Therefore, imple-
menting the run-time is a greater challenge. In particular, we cannot consider
computing the CLEVER rank for every page on the Web given a query.

Instead, we implement CLEVER as a three stage process. The first stage is
a naive indexing step in which we simply choose a small number of pages (the
root set) which contain the query terms. In the second stage, we do a small
focused crawl starting from the root set to identify a larger collection of pages
to process (the base set). Finally, we rank all the pages in the base set using
the algorithms defined in Section 3. This brings us to a fine distinction in the
implementation described in this article and those which are more common
in web scale search engines. Our algorithms are best viewed as refinement
algorithms, those which given a small- (or medium-) sized collection of pages,
refines the search within this set. In our context, two pages may be ranked in
different orders given different queries.

Several other systems and algorithms have been proposed as extensions to
the basic HITS framework. We review some of them in Section 5.

3. THE CLEVER SYSTEM

The HITS algorithm represents a clean and mathematically grounded frame-
work. However, as discussed earlier, there are a number of issues that arise in
building an actual system to implement this algorithm, and in modifying the
algorithm to deal with the vicissitudes of Web data. Addressing these issues
resulted in the CLEVER system. In this section we describe the system and
give some motivation for the particular extensions we found necessary.

The scope of this article does not allow us to provide a “User Manual” of the
system—instead, we seek to provide a sense of the implementation, and enough
algorithmic details that the reader could reproduce the the functionality.

We begin in Section 3.1 with a description of some of the concepts behind
extensions to the HITS framework. Next, Section 3.2 describes some system
issues such as the hardware for which the system has been developed, and the
parameters and control files that influence the functioning of the system. Then
Section 3.3 describes the data gathering, or crawling, phrase of the algorithm.
Section 3.4 describes the process of constructing a weighted graph based on the
crawled data. Section 3.5 then describes the actual iterative procedure applied
to the graph. Finally, Section 3.6 describes the final creation of the output.

3.1 Extensions to the HITS Framework

In this section we list a number of components of CLEVER search which rep-
resent extensions to (or in some cases departures from) the traditional HITS
framework. We also seek to give some motivation for the extensions, based on
real-world examples of structures that might lead a naive link-based algorithm
astray.

—Controlling the engine. Execution of the CLEVER system depends on the val-
ues of a number of parameters (currently 57). These parameters are specified
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in a set of SGML-style configuration files, and can in many cases be set or
modified using an advanced Web search front-end.

—The query language. The system allows users to specify five different sets
of keywords. The first set is sent to the search engines in order to seed the
search, but is not used to weight links between pages. The second set is used
for link weighting, but does not influence the queries sent to search engines.
The third set, which is used by default for keywords entered from a search
front-end, influences both the search engine query and the link weighting
algorithm. The fourth set contains terms that a page must include in order
to be part of the final output. And the fifth and final set contains terms that
a page may not include in order to be part of the final output. Typical users
arriving through the Web front-end use only the third set; more sophisticated
users may use all five.

All of these sets are specified using keyword search semantics based on
Altavista’s “Advanced Search” language. Query terms may be single words
or double-quoted phrases. Terms may be preceded by a + or —, to imply em-
phasis or deemphasis of the term. These modifiers impact crawling because
they are sent directly to the search engines used to generate the initial set of
pages. They also impact the graph generation stage because keyword mod-
ifiers have significant influence on the weights assigned to links, based on
keywords that are roughly proximate to the anchor.

—Incorporation of textual content into edge weights. There are a number of
factors used to determine the weight of a particular edge (see Section 3.4
for details), but the most important is the textual content surrounding the
location of the anchor. If the anchortext contains the query term, the edge
should be treated as highly relevant. While the anchortext itself is critical,
we also allow text appearing within some window of the anchor to influence
the weighting, with a diminishing contribution depending on distance from
the anchor. We refer to the graph showing contribution as a function of word
location as the tower bridge function: flat along the anchortext itself, then
falling off linearly on either side.

More formally, let a;; be zero if there is no link from page i to page j, and
be positive if a link exists. The value of the textual contribution to that edge
weight has a contribution from each query term. The contribution of a query
term appearing at distance i within a window W of terms from the hyperlink
is proportional to W — i. Query terms within quotes are treated as atomic
units, so the word car generates no contribution for the query vintage car.

—Nepotistic links. A nepotistic link has both source and destination on the
same Web site. Such links represent a form of self-promotion, in that a Web
site confers authority upon itself. Thus, we seek to discard these links. It
therefore becomes important to determine when two pages are on the same
site. To make this determination, we use information about the URL and IP
address of the two pages. See Section 3.4 for details.

—Covering heuristic. The value of a hub page is by definition in its links rather
than its contents. If all the destinations accessible from a particular hub
are also accessible from better hubs, we do not need to output this hub.
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More generally, we seek to return a set of hub pages that together contain as
many unique, high-quality links as possible. We therefore apply a well-known
greedy set-cover heuristic as follows. Once the iteration step has converged,
we repeat the following process until we have generated the correct number
of hubs: return the best hub, zero the authority values of all pages pointed
to by the hub, and recompute hub values. See Section 3.6 for details.

—Authority packing heuristic. Despite the removal of nepotistic links, it is pos-
sible, for instance, for an organization’s homepage, and several children of
that page, to accumulate authority. However, in the final output we wish to
provide the user with as much authoritative substance as possible in a small
number of pages. To achieve this, after each step of the iteration we “repack”
the authority of any site, as follows: if multiple documents within a logical
site (as defined above) have nonzero authority, the authorities of all but the
page with the largest authority are set to zero. See Section 3.5 for details.

—Hub functions. Many resource compilations (e.g., bookmark files) contain
pages pertinent to a number of disjoint topics. This causes such compila-
tions to become good hubs, which in turn causes irrelevant links from the
same page to become good authorities. To address this problem we note that
pointers to pages on the same topic tend to be clustered together in resource
compilations. We allow each link in a Web page to have its own hub value, so
the hub value of a page is now a function of the particular link rather than a
constant. When computing authority values, the authority of the destination
is incremented by the hub value of the link. When recomputing hub values,
the authority value of the destination is used to increment the hub value
of the source link, and according to a spreading function, the hub values of
neighboring links. Thus, useful regions of a large hub page can be identified.
The final hub value of a page is the integral of the hub values of its links. See
Section 3.5 for details.

—Page relevance. A set of irrelevant but highly-linked pages might accidentally
creep into the crawled set of pages, and become highly ranked hubs and
authorities due to their mutual reinforcement. Or more likely, some pages
might be clearly “on-topic,” while others might be of limited or zero relevance.
The algorithm makes strong use of text near links in order to determine
relevance of a link, but nonetheless, we would prefer not to conflate pages
that are entirely irrelevant with pages that are relevant but happen not to
have a keyword appearing near a link.

Thus, we use a traditional ranking function to determine the overall rel-
evance of the page to the query. Based on the relevance of the source and
destination pages, we increase or decrease the weight of links between them.
See Section 3.4 for details.

—Exemplary pages. The user may identify certain URLs as exemplary hubs,
authorities, or sites. Exemplary hubs are high-quality collections of links to
topical pages. Exemplary authorities are high-quality pages about the topic.
Exemplary sites are both. Additionally, the user may identify stopsites: URLs
that should not be crawled under any circumstances. See Sections 3.3 and 3.4
for a full description.
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These types of pages impact the algorithm in two ways. First, they influ-
ence the set of pages crawled by the system. Second, they influence the edge
weights connecting hyperlinked pages. The following describes these issues
in more detail:

—Each exemplary hub is added to the graph along with its out-neighbors,
and all pages connected (through in-links or out-links) to the hub or its
out-neighbors.

—Each exemplary authority is added to the graph along with all pages
that point to at least two exemplary authorities, and all pages connected
(through in-links or out-links) to the authority such an in-neighbor.

—Each exemplary site is added to the graph with its in- and out-neighbors,
and all pages connected (through in-links or out-links) to the page or its
neighbors.

—Each stopsite is eliminated before being crawled.

The intuition behind these rules is the following. We believe the pages
pointed-to by an exemplary hub to be high-quality candidate authorities. There-
fore, pages that point to these pages have a better than average chance of being
good hubs. So we add these candidate to the graph. Similarly for exemplary
authorities: pages that point to two or more exemplary authorities are high-
quality candidate hubs, so we place them in the initial set so any candidate
authorities they point to will be added to the root set. The asymmetry in treat-
ment of exemplary hubs and exemplary authorities arises because the user who
specifies an exemplary hub knows all the out-links of the page, while the user
who specifies an exemplary authority may not know all the in-links of the page.

Exemplary sites also influence edge weighting. Intuitively, the edges that
point to example authorities or edges originating at example hubs should weigh
more. Additionally, if a page is cited in the lexical neighborhood of example au-
thorities, then that link should weigh more. Let w(x, y) denote the weight of
the edge from x to y in the graph. The following four heuristics are in addi-
tion to the basic edge-weighting schemes stated in Chakrabarti et al. [1998a,
1998b]: (1) if x is an example hub and x points to y, then w(x, y) is increased;
(2)if y is an example authority and x points to y, then w(x, y)isincreased; (3)if
y is an example authority and x points to both y and y’ in the same lexical
neighborhood, then w(x, y’) is increased; and (4) if ¥y and z are example au-
thorities, and x points to ¥’ in the same lexical neighborhood with both y and
z and the reference to y’ is between the references to y and z, then w(x, y’) is
increased.

Consider searching for long-distance phone companies. If Sprint and AT&T
are example authorities for this node, and both occur in a single list of links,
we have strong evidence that the other elements of the list may be relevant
to the topic. However, if the list contains only AT&T, then we have only weak
evidence that the list is about long-distance phone companies. The increase in
weight of an edge is a superlinear function of the number of links to exam-
ple authorities occurring the edge, and of the proximity of the edge to these
links.
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3.2 System Issues

The code for CLEVER is written in C and C++, and runs under Linux (RedHat
6.2) and AIX. It represents approximately 10K lines of code. The system is
invoked from the command line, and leaves its results in various support files.
Itis alsoinvoked through a set of cgi scripts which we do not describe. The entire
system resides on a single machine, and does not support distributed operation.
It executes as a single process and fetches data using multiple threads.

Various parameters (currently 57, as noted earlier) control the operation of
the system. In the initial phases of the algorithm, these parameters are loaded
from a global default SGML-style config file, a similar user-specified config file,
and the command line. If the query has been run recently and the result is
cached, then the system returns the cached result and exits. The setup phase
then checks for various consistency conditions such as the presence of data
directories, and exits with an error if any of these tests fail.

In the following sections, various numerical parameters control the behavior
of the algorithm. For concreteness, we often specify default values for these pa-
rameters. The defaults typically result from some exploration of the parameter
space, but typically have not been subjected to a rigorous sensitivity analysis.

3.3 Crawling

The CLEVER system performs five phases of crawling, after which the system
has resident a set of Web pages relevant to the query upon which link and
text analysis can be performed. Each of the five phases uses the same crawling
infrastructure. We begin with an overview of that infrastructure, and then
describe the five phases in turn.

3.3.1 Operation of the Crawling Module. The crawling module operates
as follows. First, a Crawl object is created to control the fetching threads. This
object reads all URLs into memory, and creates job records for them. It guaran-
tees that no stopsites are fetched, and that no page is fetched more than once at
any point during processing. The Crawl object then creates a number of fetcher
threads, based on a system parameter. As the fetcher threads retrieve pages,
the Crawl object monitors the total number of pages successfully fetched. Based
on a profile depending on the fraction of pages retrieved, the fetch is aborted if
a certain amount of time passes from completion of the most recent fetch.

Each fetching thread regularly checks a shutdown flag to determine whether
it should terminate. If not, it retrieves the next job from a shared data structure,
and spawns a fetch. The fetch takes a timeout parameter which is passed down
to all socket operations. The fetcher then operates as follows. First, it checks
to see that the maximum number of redirects has not yet been reached for this
URL. Next, it verifies the hostname and port. It opens a connection either to the
server, or to a SOCKS server if necessary, sends the http request, and waits for
data with a timeout. As data arrives, it reads it into a buffer with a maximum
allowable data size. If the result is a redirection, it changes the target URL and
iterates.

At the conclusion of a fetch operation, the crawling module returns the status
of the fetch.
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We found that following redirects is essential to gathering a sufficiently high-
quality dataset. Further, we found that a realistic approach to timeouts if crawl-
ing is being performed in response to a user query, is also essential. Fetching
a few hundred or thousand pages could take a few seconds to a few minutes,
with reasonable timeout procedures, but the last 10% of the pages might take
substantially longer and might never be successfully retrieved.

Similarly, like many before us, we found that DNS code is not well suited for
rapid crawling in a single process, and that the reentrant versions are either
buggy, or lock a process-global mutex, or both. We modified the DNS fetch code
in order to allow multi-threaded operation.

3.3.2 Phases of Crawling. These are as follows:

3.3.2.1 Phase 1: Search Engine Queries. The crawling is seeded by query-
ing 200 pages from internet search engines. The formats of six search engines
are known to the system, and a control parameter specifies the subset to be
used. The 200 pages are split evenly between all search engines specified in the
control parameter.

The search engine query is built by gathering all relevant keywords (see the
Query Language discussion in Section 3.1), possibly including new keywords
generated by an aliasing mechanism that allows a user to specify a “concept”
which has been associated with a full subquery. This query is then sent to
engine-specific generators which create URLs for the fetches. To this resulting
set of query URLs, the system also adds the URLs for all exemplary sites and
exemplary hubs, and adds URLs that will fetch from a search engine the in-
links to all exemplary sites and exemplary authorities. As a result, the rootset
will contain exemplary hubs and their out-links, and exemplary authorities
and their in-links. After expansion of the rootset, as described in Section 3.1,
the final graph will contain pages that link to the sorts of pages linked-to by
exemplary hubs, and also pages that are pointed-to by the kinds of pages that
point to exemplary authorities.

These query URLSs are then sent to the crawling module. The resulting pages
are parsed and their out-links are gathered into a set called the rootset_urlfiles.
All exemplary pages (including exemplary hubs, authorities and sites) are then
added to the rootset_urlfiles. Finally, additional URLs may be specified via a
parameter to be added directly into rootset_urlfiles.

Next, each URL in rootset_urlfiles is passed to an in-link query generator that
creates a URL to be sent to a search engine that will extract in-links to the page.
These in-link query URLs are all written to a set called rootfile_inlink_queries
to be fetched during the third phase of crawling.

During the parsing of the query URLs and the pages of the rootset, a number
of limits are imposed on the number of links a single page can generate, and the
number of links the entire set can generate. Once a per-page limit is reached,
processing of the page is aborted. Once a per-set limit is reached, processing is
aborted for the entire set.

3.3.2.2 Phase 2: The Rootfiles. Next the rootset_urlfiles are sent to the
crawling module. The resulting pages are parsed, and the extracted URLs
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are written to a set called rootfile_out_links. These are fetched during
phase 4.

3.3.2.3 Phase 3: Querying In-Links to Rootfiles. Next the rootfile_inlink_
queries are crawled. These URLs contain queries to search engines, built to
extract pages that link to rootfile URLs. The resulting search engine pages
are parsed, and links are extracted into a set called rootfile_in_links. These are
fetched during phase 5.

3.3.2.4 Phase 4: Rootfile Out-Links. Next, the rootfile_out links set is sent
to the crawling module, which results in all the pages linked-to by pages in the
rootset.

3.3.2.5 Phase 5: Rootfile In-Links. Finally, the rootfile.in links set is
crawled, resulting in pages that link to pages in the rootset.

3.4 Graph Generation

Now that crawling is complete, all further processing is local to the machine.
This section describes the creation of a weighted graph representing a combi-
nation of link and text information. The following section then describes the
iterative algorithm to process that graph in order to generate final hubs and
authorities.

Initially, the system gathers together all query terms to be used in edge
weighting, and breaks them into positive (terms with a + modifier), negative
(terms with a — modifier), and unsigned (all other terms). Query term matching
for edge weighting is case-insensitive, so all terms are converted to lower case.
All pages are then scanned for occurrences of query terms. The following naive
ranking function is used to determine the relevance of a page to the set of query
terms, for use in the page relevance heuristic described in Section 3.1. For each
page, the number of positive, negative, and unsigned query terms is computed.
Pages are then split into three class, based on relevance: strong, normal, and
weak. Any page containing a negative query term, or containing no query terms,
is automatically weak. Otherwise, let p be the number of positive terms in the
query. Then a page is strong if it contains at least two distinct query terms,
and also contains at least min(2, p) distinct positive terms. Otherwise, a page
is normal.

3.4.1 Filter Terms. As described in the Query Language overview of Sec-
tion 3.1, there are two sets of parameter keywords that contain terms which
must, or must not, be contained on any page that becomes part of the final out-
put of the system. These keyword sets are referred to as postfilters. Postfilters
do not affect the execution of the algorithm, but pages that fail some postfilter
are not output. The include postfilter consists of a set of terms, any of which may
have a “+” modifier. To pass the filter, a page must contain every “+” term, and
at least one of the other terms in the filter, if any. The exclude postfilter consists
of a set of unmodified terms. To pass this filter, the page must not contain any

term in the set. The results of this filtering set are used during output.
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Table I.
Address Class Match Requirements
Class A and B addresses Two top octets
Class C addresses Three top octets
Class D addresses All octets

3.4.2 Graph Vertex Construction. A “shingle” value is computed for each
page along the lines of the computation defined by Broder et al. [1997], and
duplicates are removed. Within a class of duplicates, one page at random is
chosen as the representative of that class and kept. All edges whose destination
is a duplicate page are modified to point instead to the primary representative
of their shingle class. In addition, the following pages are removed:

—pages whose URL is a search engine,
—pages that are too small (10 bytes or fewer),
—stopsites (different rules for intranet and Internet).

Next, titles are generated for each page, to be used during output. Also, the
URL of each page is canonicalized, and IP addresses are gathered for all pages
(this information was computed during the crawling phase). The canonical form
of the URL and the IP address are used below to determine whether two pages
are deemed to be from the same site.

3.4.3 Graph Edge Construction. Each page is now parsed, and all hyper-
links are extracted. If the destination is not in the graph, the edge is removed
from consideration. Further, a parameter gives a hard limit on the total num-
ber of out-links from a page. Additionally, relative URLs are not added to the
graph (except in processing intranet data). Finally, “nepotistic edges” within a
site are not considered.

3.4.3.1 The Same Site Algorithm. Two pages are deemed to be from the
same site if they meet either of the two following conditions:

(1) They have similar IP addresses, determined according to Table I.
(2) They have similar URLs, based on the following three rules:

(a) URLs of the form “.../~joe” or “.../[Uulsers/joe” are treated as being
from site “...joe.”

(b) URLs that match a set of templates (i.e., http://www.geocities.com/
Colosseum/Arena/5400/,0orhttp://members.tripod.com/username) are
matched according to special rules.

(c) Otherwise, sites are extracted per RFC 2396.

3.4.4 Edge Weight Computation. Each page is divided into regions using
the regular expression “(h[1-6]r)” as the region separator.

The weight of an edge is then determined according to a variety of local and
global factors.

3.4.4.1 Local Edge Weighting Factors. These are as follows:
(1) Each edge begins with some constant weight, by default 3.
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(2) Fix a particular edge. A query term appearing within i terms of the anchor
for that edge is given weight 10-i as described in Section 3.1. That weight
is doubled for positive query terms, and negated for negative query terms.
These contributions are summed over each query term occurring within 10
terms of the anchor in either direction.

(3) Edges from exemplary hubs are scaled by some factor (default 1.1) and
edges to an exemplary authority are scaled by some factor (also default 1.1)

(4) Page relevance weighting (strong, normal, weak) is incorporated as follows.
Let e denote the page relevance ranking parameter, from 0 to 100. Let s
and w be the number of strong and weak pages in the set {src,dest}. Then
the resulting edge weight is multiplied by the page relevance multiplier
m = 1.4(s—w)e/100

(5) For each region of size <25, the weight of each edge in the region is in-
creased by 1.1 (respectively 1.5) if there is one (respectively more than one)
exemplary authority linked-to from this region.

3.4.4.2 Global Edge Weighting Factors. Following Bharat and Henzinger
[1998], for each link between sites A and B, if there are a total of n links
between A and B, the weight of each edge between the two sites is multiplied
by (1/n) /7190 where f is the “intersite linking factor,” from [0, ..., 100].

3.5 lteration

Now that the graph has been computed, the iterative algorithm proceeds as
follows. First, an authority score is attached to each vertex, and as described in
the hub functions section above, a hub score is attached to each edge. The iter-
ation then proceeds by repeatedly computing hub scores and authority scores,
and then renormalizing. We now describe these three steps, beginning with the
recomputation of authority scores as it is most straightforward. Let A(e) be the
hub score associated with edge e, w(e) be the weight of edge e, and a(p) be the
authority score of page p.

—recompute_auth_scores Let I(P) be the set of in-links to page P. Set a(P) =
2eerpy hle) - wle).

—recompute_hub_scores. This function implements hub functions as described
earlier. The algorithm processes each edge e from page P to page @ as follows.
Consider the location of e within P. Define N (e) to be the set of all edges that
are both within the region of e within P, and within eight edges of e in that
region. During processing of e, the hub score of each edge ¢’ € N(e) will be
updated.

The “raw score” r(e) is set to a(Q) - w(e). For each ¢’ € N(e), let d(e,e’) be
the number of edges between e and e’ in the appropriate region of P; this
is an integer between 0 and 8. We would like to add r(e)/(1 + d (e, e’)) to the
hub score of ¢/, but this may allow authority to be propagated down a low-
weight edge, then back out a high-weight edge, causing a low authority on a
to result in a huge authority score for ¢’ simply because the edge pointing to
a has much lower weight. Thus, we define the edge ratio o (e, e’) = w(e’)/w(e).
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Finally, we can state the complete algorithm. First, Ve € E,e < 0. Then:

Vec E,e’ € N(e):
h(e') < h(e')+r(e)ole,e)/(1+d(e,e)).

—renormalize. Renormalization has two steps. First, and only if the appro-
priate Boolean parameter is set, the value of each nonmaximal authority on
a site is set to 0. Second, the authority and hub score vectors are normalized
to have 2-norm 1.

Iteration proceeds for a fixed number of steps, usually 5-10, and then
terminates.

3.6 Output

First, as many authorities as necessary are output in order from the list of all
pages sorted by final authority score. Pages are output only if they pass the
postfilters as described above. Once a sufficient number of authorities has been
output, output of hubs proceeds as follows:

(1) The hub score of each page is set to the sum of the hub scores of all edges
on the page.
(2) The best hub to pass the postfilter is output.

(3) The authority scores of all authorities pointed-to by this hub are reduced
by a constant factor between 0 and 1, given by a parameter, by default 1.

(4) All hub scores are recomputed according to recompute_hub_scores().

(5) All hubs are resorted, and the procedure iterates until an appropriate num-
ber of hubs have been output

4. EXPERIMENTS AND RESULTS

This section reports on experiments to evaluate the performance of the
CLEVER search system as a search tool (Section 4.1) and as a tool for au-
tomatically constructing taxonomies (Section 4.2).

Traditional IR systems are evaluated using the measures of precision and
recall on a large preevaluated corpus [Salton and Buckley 1990]. Evaluating the
performance of a Web search system, however, is a tricky issue for the following
reasons:

—The Web is large. The Web contains more than 2 billion documents. At this
magnitude, rating the entire Web (even automatically) is out of question.
—The Web is growing. Around 10 million new pages are created every day.
Even if one were to create a preevaluated Web corpus, this could be used
to evaluate actual search engines for only a brief window (probably shorter
than the time to gather the relevance judgments) before the corpus became
“stale.”

—The Web is dynamic. The composition of a “typical” Web document in terms
of links, text, graphics, etc., is changing. Therefore, labeling today’s Web as
a corpus and using it to evaluate/compare search systems can be dangerous
as the results for today’s Web may not generalize to the future Web.

ACM Transactions on Internet Technology, Vol. 6, No. 2, May 2006.



144 o R. Kumar et al.

—Search engines are incomplete. No search engine can index “all” the Web. So
the notion of recall is problematic in Web search.

The closest approximations to “relevance judgments” on today’s Web are por-
tals such as Yahoo! and OpenDirectory, which through human involvement col-
lect high-quality pages on a number of topics. While the above reasons imply
that these portals cannot index the Web exhaustively, they do provide “sound-
ness” judgments. More precisely, for a fixed topic, if a search engine returns
a page that is also indexed by the portal under that topic, then it is a strong
indication that the page is of high quality; if, however (as is more likely), the
portal does not index the page, we have no information about the quality of the

page.

4.1 CLEVER as a Search Engine

We study the performance of CLEVER as a search engine. Since at the time
of this study there were no standard benchmarks for evaluating Web search
systems,! we compared ourselves against the then best-known automatic
search engine, Altavista (http://www.altavista.com), and the then best-known
human-compiled resource site, Yahoo! (http://www.yahoo.com). We chose 26
broad-topic queries: +Thailand +tourism, +recycling +cans, “Gulf war”, “affir-

» o« &

mative action”, “amusement park”, “classical guitar”, “computer vision”, “field

”» o« » « » o«

hockey”, “graphic design”, “lyme disease”, “mutual funds”, “parallel architec-
ture”, “rock climbing”, “stamp collecting”, “table tennis”, “vintage car”, HIV, al-
coholism, bicycling, blues, cheese, cruises, gardening, shakespeare, sushi, and
telecommuting. For these queries, we computed the precision of all three sources
on a fixed number of pages according to our user-provided relevance judgments
and compare these results. We refer to this technique as comparative precision.
The details of this experiment appeared in Chakrabarti et al. [1998b].

For each of the 26 queries, we extracted 10 pages from each of our three
sources. Altavista and CLEVER were both given the query as it appears in the
table (i.e., with quotes, plus-signs, and capitalization intact). The same search
was entered manually into Yahoo!’s search engine, and of the resulting leaf
nodes, the one best matching the query was picked by hand. If the best match
contained too few links, the process was repeated to generate additional links.
Using this procedure we took the top 10 pages from Altavista, the top five
hubs and five authorities returned by CLEVER, and a random 10 pages from
the most relevant node or nodes of Yahoo!?> We then interleaved these three
sets and sorted the resulting approximately 30 pages alphabetically (there are
almost never duplicate pages from the three sources). We asked each user to
rank each of these pages “bad,” “fair,” “good,” or “fantastic” based on how useful
the page would be in learning about the query. We took “good” and “fantastic”
pages to be relevant, and then computed precision in the traditional manner.
Since our users evaluated only the pages returned from our three sources, but

IThis situation has changed with the development of WebTrack at TREC.
2Yahoo! lists pages alphabetically and performs no ranking; hence the requirement that we take
10 pages at random.
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Table II. Precision Ratings, by Search Engine

Measure Yahoo! Altavista CLEVER
Average precision .38 .18 .48
Fantastic fraction .13 .04 .15
Linear measure 42 27 .50

did not know which source returned which page, we refer to this type of data
as blind post-facto relevance judgments.

The subjective evaluation of relevance was performed by a set of 37 subjects,
yielding 1369 data points. The subject was free to browse the list of pages at
leisure, visiting each page as many times as desired, before deciding on a final
quality score. We now outline the results of this experiment.

4.1.1 Precision Measures. Table Il shows the average comparative preci-
sion of each search engine over the set of 26 queries; recall that we took “good”
and “fantastic” to be relevant. CLEVER outperformed both Yahoo! and Altavista
under this metric. While the favorable comparison to Altavista was expected,
the advantage over Yahoo! was surprising. If we consider the fraction of queries
on which each search engine performed best, we find that, in 50% of all topics,
CLEVER was the best in terms of precision, and in 31% of all topics, it tied for
first place with Yahoo! Finally, Yahoo! was better than CLEVER for 19% of the
topics.

Table II also gives two alternative measures of overall quality. The first mea-
sure, “fantastic fraction,” is the fraction of pages returned that are rated as
“fantastic” (rather than either “good” or “fantastic” in our original measure).
The second, “linear measure,” weights a “bad” page at 0, a “fair” page at .33, a
“good” page at .66, and a “fantastic” page at 1. CLEVER performed better than
all other systems under all measures, although Yahoo! found roughly as many
“fantastic” pages (which is not surprising).

4.1.2 Precision Versus Rank. We now consider the rank assigned to a page
by each engine. Figure 1 plots the average precision of the top i pages for each
engine, for i = 1---10. For this purpose, the ranking function that we use for
CLEVER interleaves the hubs and authorities starting with the best hub.

One possible concern is that a large Yahoo! node may contain many good
pages and some excellent ones. Choosing only 10 pages at random from such a
node may penalize Yahoo! for gathering more information on the topic. However,
almost all our Yahoo! nodes contained fewer than 30 pages and the correlation
of precision to Yahoo! node size was minimal, only —0.09. This indicates that
the concern is not serious.

4.1.3 Hubs Versus Authorities. The precision scores of hubs and authori-
ties show only a mild correlation (.36). For some topics, hubs dominated, and
for other topics, authorities dominated, suggesting that users find value in
both types of pages. Overall, CLEVER was better at identifying hubs than
authorities—in 72% of the queries, the comparative precision of the hubs was
at least as high as the authorities.

It remains unclear how to judge the response set of a search engine as a
whole, rather than page-by-page. Both the covering and the packing heuristics
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Fig. 1. Precision as a function of the rank of pages.

(Section 3.1) may reject pages that are individually highly rated in favor of pages
that contribute to the overall quality of the response set. Hence we believe that
the quality of our result set as a collection of pages will be better than the
average precision metric indicates.

4.2 CLEVER for Automated Taxonomy Construction

In this section, we evaluate the performance of CLEVER as an automatic tax-
onomy building tool. This experiment involved a team of four ontologists (the
authors of this article). The details of this experiment appeared in Kumar et al.
[2001] and we paraphrase this below.

Our experiment involved the construction of four taxonomies. Three were
drawn from predefined subtrees of Yahoo!: Government, Recreation & Sports,
and Science. The fourth “personal” taxonomy consisted of nodes of personal
interest to one of our ontologists. There were between 100 and 150 nodes in
each of the first three taxonomies, and 70 in the personal taxonomy, for a total
of 455 nodes. We built each node in the taxonomy three times: (1) We used a
“naive” query consisting essentially of the topic title, with (occasionally) some
simple alternatives. The intent was to simulate a near-automatic process that
gives a quick first cut at describing a node. (2) We used an “advanced text”
query consist of descriptive terms and example terms. The intent was to sim-
ulate a richer text query possibly using some domain knowledge, much as in a
commercial rule-based classifier. (3) We used one or more exemplary hubs and
authorities (see Section 3.1 for details about exemplary pages). This is the rich-
est form of description in our experiment—a combination of text and example
sites.

Our goal in designing these experiments was to benchmark each mode of
taxonomy construction, monitoring (1) wall clock time elapsed during the con-
struction of the taxonomy; (2) quality of resources found by each; (3) level of
exemplification; (4) investment in looking at results of text searches. Our sys-
tem was configured to log all the actions of our ontologists—these logs yield,
among other things, the wall clock time used in taxonomy construction, the
sequence of mouse clicks, the number of result pages viewed, etc.
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We collected user statistics evaluating the pages as follows. We enlisted 50
users willing to help in the evaluation of our results, and decided a priori that
each user could reasonably be expected to evaluate around 40 URLs. There-
fore, we needed to spread these 2000 total URL evaluations carefully across
the well over 50,000 URLSs contained in our taxonomy. We adopted a random
sampling approach as follows. First, we constructed the entire taxonomy in each
of the three modes of operation. After all three versions of the taxonomy were
constructed, we randomly sampled 200 nodes for evaluation, chosen uniformly
from all nodes. Thus each user would evaluate four topic nodes on average;
given the 40-URL limit on user patience, this suggests that each user can be
expected to view 10 URLs per topic node.

CLEVER returns 25 hubs and 25 authorities for each topic node in each
of the three modes of taxonomy creation, for a total of 150 URLs. Since we
wished to ask each user to evaluate a total of around 10, we subsampled as
follows. For a particular ordered list of URLs, we referred to the “index” of
a particular URL to mean its position in the list—the first URL has index
one, and so forth. Consider a topic node N. We chose a “high-scoring” index
h(N) uniformly from the indices between 1 and 3, and a “low-scoring” index
[(N) uniformly from the indices between 4 and 25. We then extracted the two
hub (respectively authority) pages at indices 2(IN) and /(IV) in the list of hubs
(respectively authorities), from the taxonomy constructed using naive queries.
This resulted in four URLs. We performed the same extraction for topic node N
in the advanced text and example modes of creation as well, resulting in a total
of 12 URLs. These samples contained some overlaps, however; in all the mean
number of distinct URLs extracted per node was about 10.2. From classical
statistics, the score we compute is an unbiased estimator of the actual scores
(cf. Feller [1968]).

We then asked each user to evaluate four topic nodes from our 200, cho-
sen randomly without replacement. Note that, as in Section 4.1, we did not
tell our users whether a particular URL was generated as a good hub or as a
good authority. The evaluation methodology also followed Section 4.1, with ad-
ditional ranking options of “unranked” (the initial value), and “unreachable.”
Pages ranked “unranked” (presumably because a user simply forgot to rank
this page) or “unreachable,” were not considered in the ranking. All other pages
were assigned scores as follows: “bad” = 0, “fair” = 1, “good” = 2, “fantastic” =
3. When we refer to scores in the following, we mean these values. As before,
when dealing with precision, we define pages ranked “good” or “fantastic” to be
relevant.

4.2.1 Results and Analysis. Table III shows the average values over the
top 25 results, broken down by mode of creation as well as taxonomy, in both
the average score and the precision metrics. The first conclusion, shown via our
user study and the timing results of our instrumented taxonomy creation tool,
is that an ontologist armed with the paradigm of iterative topic creation using
increasingly sophisticated forms of query can create a high-quality taxonomy
with a fairly quick turnaround time. The second high-level conclusion is that
the well-known benefits of relevance feedback appear to hold in the domain of
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Table III. Average Construction Time per Node and Average Score, Precision of top 25 Hubs and
Authorities, by Taxonomy

Advanced Exemplary Naive Advanced Exemplary
Taxonomy secs. secs. Avg. Score Prec. Avg. Score Prec. Avg. Score Prec.
Science 108.0 119.8 1.61 0.55 1.53 0.52 1.63 0.56
Recreation 192.4 239.6 1.64 0.61 1.68 0.64 1.70 0.63
Personal 157.5 214.0 1.03 0.30 0.91 0.31 1.41 0.48
Government 270.4 2224 1.45 0.51 1.44 0.50 1.42 0.48

hyperlinked document search. As a tertiary conclusion, we show that, at least
in the context of taxonomy creation, the traditional “advanced query” syntax
used by search engines does not provide significantly better results than more
naive queries. This might provide partial explanation for user dissatisfaction
with “advanced search” functions in most search engines.

An examination of the nodes shows that topics in the personal taxonomy
tend to be narrower in focus. For instance, some of the nodes are FOCS/
STOC, SIGMOD, WWW, Collaborative Filtering, Latent Semantic Index-
ing, Phrase Extraction, Kerberos, Smartcards. There are far fewer pages
about, for instance, the FOCS/STOC (theory) conferences than about the sport
of ice hockey. Interestingly, in this focused context we see the largest difference
between modes: exemplification improved performance by approximately 33%
over the purely textual approaches.

5. RELATED WORK

In this section we review some of the extensions to the basic HITS frame-
work. We also briefly survey PageRank and its derivatives, and other link-based
techniques.

In addition to CLEVER and its precursor [Chakrabarti et al. 1998a], there
have been several variants to the basic HITS algorithm that focus on inclusion
ofinformation drawn from the content of the page. Bharat and Henzinger [1998]
presented a number of different extensions to HITS to address the problem of
topic drift. The central theme in their work was to incorporate both hyperlink
and content information in the HITS matrices. Some of their heuristic improve-
ments included weighting pages based on how similar they are to a given query
topic and averaging the contribution of multiple links from any given site to a
specific page. Li et al. [2002] combined content analysis and four representative
relevance scoring methods to enhance the performance of HITS.

Other modifications to HITS have applied the underlying idea of hubs and
authorities to domains other than search. Dean and Henzinger [1999] and
Toyoda and Kitsuregawa [2001] HITS-based ideas to find and navigate related
pages. Kumar et al. [1999] and Reddy and Kitsuregawa [2001] applied the
hub/authority model in the context of community finding.

Several authors have explored applications of HITS in which the underlying
graph is modified in some way. Chakrabarti [2001] advocated the Document
Object Model (DOM) as a fine-grained model to represent Web pages and mod-
ified the HITS algorithm to work with the DOM representation. Farahat et al.
[2001] proposed a variant in which the input to HITS is modified to include
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long links; this is to improve the performance of HITS on certain tree-like Web
structures.

Other work has extended the HITS algorithm in fundamental ways, retain-
ing the basic model but modifying the mathematical formulation in various
directions. Ng et al. [2001] proposed an extension of HITS using multiple eigen-
vectors; their idea was to use multiple singular vectors of the adjacency matrix
for defining a subspace in the hub space on which the authority vectors were
projected. Recently, Tsaparas [2004] studied the HITS algorithm using nonlin-
ear operators; he showed that the MAX algorithm, previously considered by
Gibson et al. [2000] in the context of clustering categorical data, converges for
any initial configuration. Cohn and Chang [2000] proposed pHITS, a version
of HITS based on probabilistic models where a link is created by latent “top-
ics.” Hofmann [2000] also proposed an algorithm similar to pHITS. Achlioptas
et al. [2001] proposed a model for Web search and devised a provably good Web
search algorithm in this model based on spectral techniques.

A common form of link analysis is the PageRank algorithm used in the
Google search engine. Many extensions to this algorithm also apply to HITS. We
present a very brief discussion of the algorithm, in order to cover some related
work in this context.

Consider the matrix M where M;; = 1/d;. Here d; is the outdegree of page
i, and specifies the exact number of out-links on it. This matrix is also known
as the Markov matrix related to the graph defined by A. Unlike the HITS
family of algorithms, the PageRank algorithm computes the the eigenvector
of A\M + (1 — 1) -(1/n). Here n is the number of pages (nodes) in the entire
graph, and [1/n] represents the matrix with each entry 1/n. The motive for the
PageRank algorithm comes from the “random surfer model.” Imagine a random
surfer, who follows links out of a page at random with probability A and once
in a while (with probability 1 — A) jumps to an entirely new random page on
the web distributed uniformly among all pages. The principal eigenvector of
AM +(1—2)-1 measures how often such a surfer would visit each page i if he or
she were to continue browsing for an infinitely long time. Brin and Page [Brin
and Page 1998] posited that this quantity can be used as a static estimate of
page quality. As stated before, the implementation of PageRank in the Google
system is query-independent; the PageRank scores provide a static ranking of
all Web pages, and this ranking is used with many other factors to produce the
final output for a particular query.

Page et al. [1998] extended the basic PageRank algorithm by modifying the
random jump step to favor pages selected by the user. Haveliwala [2002] used
a similar idea to devise a topic-sensitive version of PageRank. For a given set
of topics, he computed a topic-specific PageRank value by appropriating choos-
ing the random jump distribution. Then, given a query, the final weight of
the document was set to be a weighted combination of topic-specific PageR-
ank values, where the weights were determined by how relevant the query
was to each of the topics. A more sophisticated and computationally efficient
version of a similar algorithm was proposed by Jeh and Widom [2003]. In
the topic-sensitive PageRank variant proposed by Richardson and Domingos
[2002], a different jump distribution was used for different topics. Tomlin [2003]
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described a method that was a generalization of PageRank to rank Web sites
using traffic information. The Web page traffic levels were modeled using en-
tropy maximization principles and the traffic was subject to the conservation
constraints. The total flow that arrived at a page gave rise to the TrafficRank
of a page.

There are other approaches to link analysis that either combine ideas from
HITS and PageRank, or proceed in yet other directions. The SALSA (Stochastic
Approach for Link Structure Analysis) system of Lempel and Moran [2000,
2001] combines ideas from both HITS and PageRank. Define two matrices,
W = [w;] where w;; = a;;/d;, where d; is the outdegree of i, and W' = [wlfj]
where w;.j = a;i/d;, whered is the indegree of j; here A = [a;;]is the adjacency
matrix used in HITS. It is easily verified, that both W and W’ are stochastic,
and thus represent Markov chains. Consequently, H = WW'and A = W'W too
are stochastic. Salsa uses the principal (left) eigenvectors of H and A to rank
pages as hubs and authorities, respectively. Lempel and Moran [2000, 2001]
argued that SALSA mitigates the problem of topic drift and is less susceptible
to spamming than HITS; on the other hand, SALSA is also query-dependent like
HITS. Rafei and Mendelzon [2000] considered a hybrid of SALSA and PageRank
where at each step, with probability 1 — §, they performed a SALSA step and,
with probability §, they jumped to a page uniformly chosen at random. A similar
algorithm, termed randomized HITS, was also proposed by Ng et al. [2001].

Ding et al. [2002] proposed several ranking algorithms which were interme-
diate between HITS and PageRank; HITS and PageRank were two extreme
ends in this ranking framework. Comparative studies and evaluation of link-
based algorithms were done by many including Borodin et al. [2001, 2006] and
Langville and Meyer [2005].

For more detailed surveys of link analysis methods in information retrieval,
we refer the reader to Borodin et al. [2001, 2006], the thesis of Tsaparas [2003],
a survey by Kleinberg and Tomkins [1999], a survey article by Langville and
Meyer [2005], and a useful hub available online at http://www-users.cs.umn.
edu/"desikan/research/linkanalysis/listofpapers.html.

6. CONCLUSIONS

In this article, we have given a detailed description of the CLEVER search
system. The system includes a broad set of extensions to the underlying HITS
framework in which it was developed. We motivated and described these exten-
sions in detail, and then provided results from two user studies to show that
the resulting system gives high-quality results on real-world Web ranking prob-
lems. From these results, we draw two conclusions. First, link-based ranking
schemes can provide dramatic improvements over purely content-based tech-
niques for Web data. And second, such link-based schemes are most effective
when augmented with textual information.
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