To appear in the proceedings of CVPR 2005.

Skeletal Parameter Estimation from Optical Motion Capture Data

Adam G. Kirk James F. O'Brien David A. Forsyth
University of California, Berkeley

Abstract &

In this paper we present an algorithm for automatically
estimating a subject’'s skeletal structure from optical mo-
tion capture data. Our algorithm consists of a series of
steps that cluster markers into segment groups, determing
the topological connectivity between these groups, and lo-
cate the positions of their connecting joints. Our problem
formulation makes use of fundamental distance constraints
that must hold for markers attached to an articulated struc- |
ture, and we solve the resulting systems using a combinatio
of spectral clustering and nonlinear optimization. We have
tested our algorithms using data from both passive and ac-
tive optical motion capture devices. Our results show that
the system works reliably even with as few as one or two
markers on each segment. For data recorded from human|
subjects, the system determines the correct topology andkigure 1.  Automatic skeletal reconstruction for a human sub-
qualitatively accurate structure. Tests with a mechanical ject captured with active markers: The image on the left shows a
calibration linkage demonstrate errors for inferred segment photograph of the subject during the capture session. The image
lengths on average of only two percent. We discuss appli-on the right shows the reported marker positions corresponding
cations of our methods for commercial human figure ani- to when the picture was taken along with the kinematic skeleton
mation, and for identifying human or animal subjects based automatically constructed by our system.
on their motion independent of marker placement or feature
selection. from background, the systems use one of two methods for
increasing marker contrast. The more comrpassive sys-
1 Introduction temsvyork with mz_arker; m_ade of a strongly retro-reﬂective
material and an illumination source co-located with each
The termmotion captureébroadly refers to any of several camera.Active systemssuch as the one shown in the left-
techniques for recording the movements of a human, ani-hand side of Figura, use LED markers that pu|se in sync
mal, or other subject, and then using the recorded data folyjth the cameras’ digital shutters. In both types of system,
animating synthetic characters. Motion capture techniquesthe cameras are fitted with optical filters tuned to the wave-
have found widespread commercial use in the movie, tele-jength of the illumination source or LEDs. One significant
vision, and video game industries, as well as in other areasgifference between the systems is that the active markers
ranging from biomechanics studies to performance art.  can communicate unique identifications by modulating their
Currently, the most commonly used motion capture tech- py|ses, whereas passive systems must infer marker identity
niques employ optical methods to record a subject’s motion. from continuous observation. In practice, both types of op-
A set of markers are attached to the subject and then ob-jcal system can reliably generate accurate position data for
served by a number of cameras. The capture system inferghe markers with only occasional gaps caused by occlusions
the time-varying location in space of each marker by trian- o the subject exiting the capture region.
gulation based on the projection of the marker onto each  \ation capture systems output a set of point locations
camera’s image plane. High-end systems typically employ gyer time. This format does not explicitly capture the over-
aredundant array of many cameras to minimize marker 10Ss| structure of the subject being captured. Fitting an ar-
due to occlusions and to provide accuracy over large cap-iicylated model, or skeleton, to the data uses the skeleton’s
ture volumes. To facilitate the task of segmenting markers gy cture to simplify the representation of the motion. This
type of model facilitates recognizing the nature of a motion
Contact e-mail{akirk,job,dafl@eecs.berkeley.edu being performed as well as the identity of the subject. Pa-




rameterizing the data with such a model also makes motionrecognition purposes. For example, it would be extremely
editing and visualization more convenient. difficult to match clouds of points lying on the surface of

This paper describes an automatic method for inferring a@ person to a model of the individual, because the samples
kinematic model of the recorded subject directly from either may be taken at different points on the example and on the
passive or active optical motion capture data. Our methodmodel. Given points that are derived from an appropriate
works solely from the marker trajectories and does not re- structure (a kinematic tree), our method can be used to: (a)
quire any user intervention, nor does it require that the sub-determine which such points form a kinematic tree, where
ject assume any particular pose. Our method does assumghe rigid bodies are connected by rotational joints; (b) ob-
that the subject’s kinematics can be well approximated by tain a skeleton representation of the tree, suitable for match-
an articulated skeleton, but makes no other assumptiondng to object descriptions. As evidenced by the data plotted
about the topology or structure of that skeleton. Instead thein Figure5, this structure should considerably simplify ob-
method automatically infers an appropriate skeletal topol- ject matching.
ogy and structure from the motion of the markers. We have tested our method using data from a variety of

We rely on the key fact that, in an articulated structure, OPtical motion capture sources, both active and passive. For
points fixed relative to one of the rigid segments in the struc- human subjects, the results show that a qualitatively good
ture will maintain a constant distance from other points on Skeleton can be constructed reliably without imposing sub-
that same segment and from the centers of the joints con-Stantial constraints on the recorded motion. Inferred skele-
necting the segment to the rest of the articulated structure {Ons for a single subject have low variance with regard to
Provided that the subject exercises each joint, and that onéJ€0metry and topology. Quantitative results obtained for a
of the segments attached by the joint have at least two mark/Mechanical linkage show that the estimated skeletal param-
ers and the other at least one marker, these constant-distanc@ers accurately reflect those of the recorded subject.
requirements supply enough constraints to uniquely fix the
location of the joint center. 2  Previous Work

Unlike prior approaches, our method does not operate by
first finding transformations between the coordinate frames
of each skeletal segment. Because there is no need to est
mate those transformations, our method works with as few
as one or two markers on each segment. Additionally, our

a_llgorlfthms do noltl mhegt thef |rllstat|)|llty of esélma_tlng rota- .,ssed in SectioB we have borrowed several well studied
tions from a small number of closely grouped points. techniques to address our particular goal.

~ The output produced by the method consists of an as-  geyeral computer graphics researchers have examined
signment of each marker to one of the segments in the kine+hjs specific problem of skeletal parameter estimation for
matic model, the topological connectivity between the seg-arious types of motion capture data. O’Brien and his col-
ments, the locations of the rotational joints connecting the leagues 9] devised an algorithm to estimate skeletons from
segments, and the locations of each marker in its Segmenty%agnetic motion capture data. Because magnetic systems
reference frame. An example of the skeleton constructedinciyde both position and orientation information, those au-
for a human subject appears on the right in Figlre thors are able to set up a linear system with the joint loca-
This information can serve a number of practical uses. tion for a given pair of bodies as the unknowns and where
The most obvious application is motion capture for anima- each frame of motion contributes a set of constraints. The
tion where it can replace the current, largely manual, cal- residual of the least-squares solution to that system can be
ibration procedures used with most systems. Because th&ised to determine whether of not two bodies are in fact
subject does not need to assume any special pose for outonnected by a joint, which in turn allows them to infer
process to work, it can also be used in situations where syshoth an appropriate skeleton topology and joint locations.
tems that require special poses would be impractical. Our method follows their general approach, however be-
In addition to animation uses, it applies to segmenta- cause optical systems cannot measure marker orientation,
tion and to recognition as well. Point reconstructions could we end up with substantially different, non-linear system
come from motion capture equipment, but they could also constraints that require different solution methods.
come from structure-from-motion procedures. Several pa- Other researchers have worked on skeleton fitting tech-
pers have demonstrated methodssfegmentingnotions of nigues for use with optical motion capture data. Silaghi and
distinct rigid bodies from image observations, and then re- colleagues 12] describe a partially automatic method for
constructing the points on the bodies separately (see, forinferring skeletons from motion. They solve for joint posi-
example, 2,4,14,15)). Structure from motion produces un- tions by finding the center of rotation in the inboard frame
structured point clouds in 3D, which are often then formed for markers on the outboard segment of each joint. This
into meshes which produce 3D modedsy.[5]). Such mod- process requires at least three markers on each segment in
els are useful for rendering, but can be difficult to match for order to estimate reference frames for each of the inboard

The task of determining an appropriate articulated skele-
ton for some recorded motion data is a specific instance
bf the general problem of fitting a generative model to
observed data. Numerous researchers in several different
fields have studied variations of this problem, and as dis-



. few frames are trimmed off the beginning and end of each
° e . ’ . marker's data segment, and any marker with a maximum
... R D AT number of consecutive frames less than one half second is

o 4 B : ignored. For active systems, a marker’s identity is consis-
. . ’ tent across gaps, but a passive system cannot tell a previ-
° . ously unseen marker from the reappearance of an old one.

. . o or As a result, passive system will very frequently generate

LV multiple marker identities for a single physical marker. For

aen et now, we assume that marker identities are constant, but we

- - - - - later discuss how to merge different marker identities in
Figure 2. These images show marker configurations typical of Sectiond

the data from an optical motion capture system. Each image cor-
responds to one frame for one of our human subjects.

oe®

3.1 Marker Segmentation
bodies. Their system requires substantial user interaction
and also suffers from errors introduced by unreliable seg-,
ment transformation estimates.

The first step of our method clusters markers into groups
at represent body segments. These are the rigid compo-
. . nents of the resulting skeleton. For instance, given an ap-
The method of Ringer and Lasenti], like ours, works 5 iate input motion of a human arm, our algorithm will

V.Vith di;tance constraints although they still rely on rota- segment the data into two sets, one representing the upper
tion estimates. They assume that the skeletal topology S, anq the other the lower arm. This grouping occurs be-
known beforeh_and and use heuristics to test multiple POSSi-.4use the motion of upper arm markers can be well approxi-
ble marker assignments. mated with a rigid body transformation, whereas the motion

Similar problems have also been studied in the biome- ot 5 set of markers spanning both the upper and lower arm
chanics and robotics literatures. A few specific examples of .50t pe expressed as a rigid body transformation. In an

methods for inferring information about a human subject’s ;4aq) rigid body, the points on the body do not move with re-

skeletal anatomy from the motions of bone or skin mounted gect tg each other over time, and in particular the standard
markers can be found irl{13 16]. Karan and Vukobra-  geyiation of distances between points on a rigid body over
tovic have published a survey of calibration by parameter ime is zero. Therefore, to determine marker groups, our
estimation for robotic devices] method clusters based on the standard deviation in distance
over time between all pairs of markers.
3 Methods Using all frames to compute the standard deviation in
) ] distance between two markers can be expensive and the

Our skeleton inference procedure contains three stageseomputation will be unduly influenced by the sporadic er-
During the first stage, our method groups together markersyors in optical motion data where a marker's position may
that roughly move as a single rigid body. We refer to these jymp several inches for short periods. To address the speed
groups as marker groups. The second stage determines thgsye, our method calculates this quantity only over a jit-
topology and joint positions of the skeleton by solving for tered uniform sampling of frames. In our implementation,
the location of a rotational joint between all pairs of marker these samples are selected over all possible frames at inter-
groups and selecting only the joints with low fit residuals. a5 of one half second, plus or minus a few thirtieths of a
This fit process produces a “noisy” skeleton, meaning thatsecond. This jitter ensures that any periodic errors do not
the joints connected to a single segment may translate withaffect the segmentation. In particular, let us define a cost
respect to each other. To correct, we have an optional thirdmatrix. 4. such that element;; is the standard deviation
stage that performs a least squares fit to find the single opti-, distance between markeisand j for a particular sam-
mal length of each segment and offsets for the markers. pling of frames. This dataset is segmented intgroups

The input obtained from an optical motion capture sys- ysing spectral clustering], wheren is input by the usér
tem consists_of the_three-dimensio_nal position for each  \ye make the process resistant to sporadic jump errors in
marker over time. (Figur@ shows typical examples.) The  the marker positions using a variation of the RANSAC pro-
marker positions are given a.t.d|screte points in time called ;gqyre 8]. Rather than using one sampling of frames, we
frames Not all marker positions are reported for every fing marker groups by clustering multiple times using sev-
frame: occlusions and other factors can cause the motiongrq) gifferent samplings. From among these multiple clus-
capture system to lose track of a marker for some time pe-terings, our algorithm selects the one which minimizes the
riod, creating gaps. The data for a given marker typically gym standard deviation of distances over all marker pairs

contains large errors just before the system loses track ofin each group, for all clusterings. To avoid penalizing large
that marker and for a short period after the marker is re-

discovered. To eIir.n.inate proble_ms with “gho_st” marke(s 1Alternatively, the system’s eigen-gap provides a reasonable way to
and erroneous position data during those periods, the firstdetermine an appropriate number of groups.




marker groups, the standard deviation within a group is nor- a nor b are empty, and that the motion exercises at least two

malized by the number of markers in the group. of the three rotational degrees of freedom at the joint.
To determine the topology of the skeletam. how the
3.2 Fitting Skeletons marker groups are connected, our method uses an approach

Given marker groups for each segment in the kinematic similar to that in O’Brieret a_\l.[9]. In this stage, our method
skeleton, our algorithm must also determine the skeleton’sr€ats marker groups (which represent body segments) as
topology and the locations of the connecting joints. Both Ndes in a graph, and joints are possible edges. Because
are determined by minimizing the same quantity, called the the topology of the skeleton is unknown, any pair of marker
joint cost. A joint between two segments in an articulated 9"0uPs could possibly be connected by a rotational joint.
skeleton should maintain a constant distance from the mark-1 h€ €dge weight between any two nodes is the correspond-
ers in marker groups for both segments. For a set of markerdnd joint cost. Therefore, marker groups that should not be
on two body segments and a joint, we define the joint cost connected, such as the markers on the hand and the foot,

to be the mean variance in distance between the joint and/ill have a high joint cost. To determine the optimal skele-
each marker. ton, our method computes the minimum spanning tree of

Given two bodies, the optimal joint position minimizes this graph. _
the joint cost for connecting them. The optimal skeleton  Theoretically, the marker group segmentation step (Sec-
topology is the one which minimizes the sum of joint costs tion 3.1) could be skipped. Instead of trying to model ro-
over all connected segments. Our strategy for finding the tational joints between pairs of marker groups, our method
optimal skeleton is to first find the joint costs for all seg- could try to model rotational joints connecting all posslble
ment pairs by solving a nonlinear optimization that finds 9roups of markers. However, there would be a combinato-
the optimal joint position, and then second, to find the op- rial explosion in 'Fhe _number of possible joints, so marker
timal topology by solving for a minimal spanning tree. To 9roup segr_nentat!on is used to make the problem tractgple.
avoid excessive computational costs we only solve the all-  In the discussion above, we assumed that the positions
pairs joint optimization approximately, then once we know for all possible joints were found for all frames. The posi-
the skeleton topology we solve for just those joints more tions of10|nt§ that were not included in the optimal sk_eleton
accurately. were then discarded. Rather than waste computation, our
As stated above, we define the cost of placing a joint Method drastically subsamples the number of frames given
between two marker groups, andb,, to be the mean vari- {0 the optimization procedure when determining topology.
ance in distance between each marker and the joint posi-This procedure sllghtly_ affects the r_eS|duaI, however in our
tion at each frame. Because the position of the joint is €xPeriments the resulting topology is the same as when the
not known, our method optimizes to find the position that method uses all frames. Once the topology is known, we
minimizes this cost. Unfortunately, the trivial solution to Solve the full optimization to find the joint position at all
this minimization is to place the joint infinitely far away, frames. However, now our method only runs the optimiza-
making the variance in the distance between the joint andtion procedure for joints that are known to exist.
each marker zero. To keep the joint close to the marker ~When determining topology, a small average length term
groups a small distance penalty is added to the cost funcWas added to the optimization criteria to keep the joints
tion. If we denote the location of a marker at a given close to the skeleton. This is because incorrect joints could
frame asm; and the location of a joint at that frame as have otherwise been assigned a low joint cost by placing
¢y, then the average distance between a marker and a jointhem at infinity. Because there are no incorrect joints in the
isd(c.m) = 1 3~ ey — my|, where|m| is the number  second pass, this small average length term can be dropped.
f Interestingly, we found that with input motions that do not
of frames in which markem appears. The variance in dis- fully exercise all degrees of freedom, leaving the length
tance is thew (c,m) = - >(|lcy —my| —d)*. Thejoint  term in can improve results. This length term amounts to
f a prior on the joint position that states the joint is close to

costis then the mean position of the markerstin andb,,.

. 1 7
Qaup = mcln m Z 0’(C7 m) + Oéd(C, m)
a Ol meb,Ub, 3.3 Fitting Rigid Bodies

where« is a small coefficient weighting the average dis- Due to noise in the input data, the joint positions found in
tance penalty andh,| is the number of markers in group Section3.2 contain noise. Often times it is useful to find a
a. This formula averages only over the number of frames true rigid body skeleton, both as a means of parameterizing
that each marker appears in to avoid sensitivity to droppedthe data and obtaining an estimate of noise in the input data.
frames. To find the position of a joint at each frame, our al- We present a method to project the joint and marker posi-
gorithm optimizes for: using the nonlinear conjugate gra- tions onto a rigid body skeleton. This is done one marker
dient method 11]. A solution will be fully determined pro-  group at a time. This stage begins by collecting all the
videda andb together contain at least three markers, neither frames in which all the markers in a group appea, if



a marker in group, went missing at fram¢, that frame markers. In this stage we assumés greater tham’, oth-
is not used in solving for the projection. Using the method erwise correspondence is already known. Tieset,p;,
described by Hornd], we compute the rigid-body transfor-  consists of all frames in which markeérappears. Again,
mations that best mutually align the marker and joint loca- each frame contains the position data plus a flag indicating
tions for that segment. If all the frames are lined up using existence for all markers in that frame. In some sense, set
their respective transformations, there will appear severalp,; consists of all known correlations between markand
small clouds of points representing each of the markers andall other markers. Note that in most cases any two sets will
joints connected to the body segment. The average positiorhave some markers in common. Since we know there‘are
of each cloud of points is the model of the true offset of the physical markers, we would like to cluster thessets into
marker or joint. These offsets are all defined with respect torn’ clusters, each of which represents a physical marker. Of
the average position of the markers and joints connected tocourse, clustering requires a measure of distance between
each body segment. Because the topology of the skeletoriwo sets. We define the distance betwegmandp;, D;;,
has already been determined, simply connecting the bodyto be the minimum distance between markeasidj in all
segments based on the offsets from each segment center repairs of poses. Again, a pose is defined to be invariant to
sults in the correct rigid body skeleton. global rotation and translation. To compute this distance
As mentioned previously, estimating rotation matrices our method takes each pair of frames, ong;ilmnd one in
from groups of markers suffers from marker noise and re- p;, and determines the rotation and translation that line up
quires at least three markers per segment. However, oncéhe markers found in both frames. In other words
a rigid body skeleton is fitted to the data, rotations can be
found using inverse kinematics (IK). Since the rigid body Di; = aemizfle v M0 — Amy|
skeleton and the offset of each marker from the segment PiPEps
is known, IK finds the rotations that minimize the distance where A constitutes the rotation and translation that aligns
from the marker position on the segment and the input data.frameb with framea based on the set of markers that ap-
pear in both frames, ana; , is the position of market
4 Marker Correspondence at framea. Because poses don't change much in consec-
. ) , . utive frames, rather than compare every frame our method
The previous section described how to generate articu-gamples frames from each set at a constant interval. Once
lated skeletons, however it a§sumed 'known.corresp'ondenC@ne samples with the minimum distance between markers
between markers. When using passive optical motion cap-; ang ; are found, our method searches all pairs of frames
ture systems, correspondence information may be inCOm-5,0,ng those samples for the optimal alignment. This is
plete. Passive systems use markers that do not relay idengone purely for efficiency, and in all of our experiments has
tities to the cameras. However, because the systems capsrgqyced the same answer as comparing all pairs of frames.
ture at fairly high rates, markers often do not move much Ny that we have distances between all sets, spectral clus-
between consecutive frames and identities can be trackeqering B8] is used to cluster the virtual markers into ac-
from frame to frame. If the system temporarily loses track (5| markers. Assuming preprocessing has eliminated ghost
_of a marker, it will give the marker a new_label, treat_mg itas markers, if markef and markerj appear in the same frame
if the actor placed a new marker on the|r_ body. This Means ey should not be clustered together. Therefore; dind
that, although the actor only wore alc.ertaln number of mark- p; have any frames in common, the clustering algorithm is
ers, the system often reports a significantly larger number of yi55ed to prevent those markers being grouped together. As
markers in the data. Our algorithm performs better the more yegcriped in §], distances are converted to affinities using
we know about each marker, so it is beneficial to infer these 5 g5ussian distribution. In the case of overlapping sets, the
correspondences. affinity is set to zero, and a repulsion matrix is used to indi-

Our method for determining marker correspondence caie the sets should not be clustered togettigr Note that
over frames is based on the observation that portions of anhe method will fail if all markers are lost simultaneously,

actor’s body will often pass through similar configurations ., example if the actor steps out of the capture volume.
at different times. This means that any particular configu-

ration (minus the global rotation and translation) is likely

to appear at some other frame in the data. The distance® Re€sults

between any two markers in matching poses provides an es- \We tested our method on multiple human datasets, how-
timate of the log likelihood that those markers are actually ever lack of ground truth measureméntseans that eval-

the same. _ _ _ uating performance on this data is difficult. To provide a
Our method begins by grouping the data intosets, 5 _ o
wheren is the total number of markers reported by the sys- \\C% % THCTE (R0 S o rone. Ourtests do show hat
tem. In our methOd’ the number of physical markﬂfs . the computed limb lengths agree with crude hand measurements to within
equals the maximum number of markers appearing in a sin-yo inches, which is consistent with our ability to correctly measure the

gle frame. This assumes preprocessing has eliminated ghogbint locations.




| Trial | Result (cm)[ Error (cm) | Error (%) |
1 34.29 0.19 0.6
2 33.35 -0.75 2.2
3 33.72 -0.38 1.1
4 33.60 -0.50 1.5
5 34.49 0.39 1.2
6 35.39 1.29 3.8
7 34.64 0.54 1.6
8 34.80 0.40 1.2
9 34.54 0.44 1.3

Table 1. Reconstructed length for middle segment in aluminum
rod linkage, actual length 34.1 cm

Figure 4. Aluminum rod linkage connected with universal joints,
tracked using nine active markers

movement in the wrist degrees of freedom. In these cases,
Figure 3. Reconstructed skeleton overlaid on video frame. This We found that we could append a calibration motion of the
figure allows rough visual assessment showing that the correctsame actor, allowing us to reconstruct the position of the
topology has been recovered and that joint locations are approx-wrists in the walking motion.

imately correct. The accompanying video shows motion clips from two
different subjects. The first clip was obtained on the Phas-
guantitative analysis of our method’s performance, we con- eSpace active system, the second on the Vicon passive sys-
structed a three-link chain of aluminum rods connected by tem. In both cases, we ran computations on the raw marker
universal joints, pictured in Figurd. We captured this data. For the data from the active system, the skeletal re-
model using a PhaseSpace active capture system and wergonstruction appears to correspond well to video of the sub-
able to reconstruct the length of the middle rod to a mean ject despite noise in the form of jitter and occasional jumps
length of 34.31 centimeters (0.21 centimeters too long) with in the marker positions. Lighting conditions with the pas-
standard deviation 0.65 centimeters. The average error pesive system precluded recording a comparison video, but
trial was 0.58 centimeters with a standard deviation of 0.32 visual inspection shows that the reconstructed skeleton has
centimeters. These values are within the accuracy limits ofthe proper topology and appropriate proportions. That data
the motion capture system. See Tabfer complete results.  is slightly cleaner so that the motion of the skeleton ex-

We reconstructed human skeletons using data sets gathDibits 1ess jitter, except near the end when the motion cap-
ered from both a PhaseSpace active motion capture systentmure system completely Io_ses track of the subjects lower-left
and from a Vicon passive motion capture system. The re-&rm. However, that missing data does not prevent our sys-
sults are visually plausible, as seen in Fighiend Figures. tem from reconstructing the skeleton, which allows the in-
In these experiments we had several subjects, both male anif€rSe kinematics routine to do a plausible job of filling in
female. Between thirty to forty markers were placed on the the missing data.
subjects in various configurations. These markers were po- To illustrate the ability of our method to identify sub-
sitioned on the body such that they were able to capturejects, we compared segment lengths from the reconstructed
the rigid motions of a particular body segment. In particu- skeletons of four different subjects. The motions used as
lar, markers on the back could not be placed on the shoul-input to this experiment were either calibration or dance
der blades, due to the translational motion in the shouldermotions, both of which exercise all major joints of the
joint. Each subject then performed a calibration motion in body. The reconstructed skeletons all had the same topol-
which they exercise each joint through the full range of mo- ogy, nhamely that shown in Figure and Figure3, which
tion. This type of motion produced the best reconstructions. allows a direct comparison of geometry. In Fig&rthe re-

We also reconstructed skeletons from more typical motions,constructed lengths of the back (hips to neck) and upper arm
such as walking or dancing. Often times we were unable to(shoulder to elbow) segments are compared for several sub-
segment out the hands in walking motion, due to the lack of jects. Note that the samples for each subject do not overlap
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Figure 5. Plot of reconstructed back length versus mean recon- 7]

structed upper arm length for different subjects: This example
illustrates the ability of our method to recognize subjects based

on reconstructed skeletons. Similar plots result using other body 8]
parts.

and tend to group together. A subject’s proportions could
possibly be used to help distinguish between individuals.

6 Summary ©]
This paper described an automatic method for estimat-

ing skeletal parameters from noisy point data. Our method

is able to determine the overall topology of the motion cap- [10]

ture subject, the length of each segment in the skeleton, the

assignment of markers to segments in the skeleton, and the

relative location of each marker with respect to the segment [11]

to which it is assigned. From this information our method is

able to reconstruct orientation over time for each segment. [12]

Estimating this quantity directly from markers is an unsta-

ble process; by fitting a skeleton to the data our method

provides a much more stable means of finding orientation.
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