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Abstract:We formulate structure from motion as a
Bayesian inference problem, and use a Markov chain
Monte Carlo sampler to sample the posterior on this prob-
lem. This results in a method that can identify both small
and large tracker errors, and yields reconstructions that
are stable in the presence of these errors. Furthermore, the
method gives detailed information on the range of ambigu-
ities in structure given a particular dataset, and requires
no special geometric formulation to cope with degenerate
situations. Motion segmentation is obtained by a layer of
discrete variables associating a point with an object. We
demonstrate a sampler that successfully samples an ap-
proximation to the marginal on this domain, producing a
relatively unambiguous segmentation.

1 Introduction

The Bayesian philosophy is that all information about
a model is captured by a posterior distribution obtained
using Bayes’ rule:

posterior o (likelihood x prior) = joint

where the likelihood is P(observationsiworld) and the
prior, w(world) is the probability density of the state of
the world in the absence of observations. When computa-
tional difficulties can be sidestepped, the Bayesian philoso-
phy leads to excellent and effective use of data (e.g. [3, 8]),
but computing with posteriors is difficult.

A standard method is to represent the posterior by draw-
ing a large number of samples from that distribution. For
example, if we wished to decide whether to fight or flee,
we would draw samples from the posterior and estimate
expected utilities for each decision (as sums of the utilities
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Figure 1: Red points show an overhead view of a single sample of
the 3D reconstruction obtained using 40 frames of 80 points in the hotel
sequence, rotated by hand to show the right-angled structure in the model
indicating that the structure is qualitatively correct; the cloud of green
points are samples of the position of a single point, scaled by 1000 to
show the (very small) uncertainty available in a single point measurement.

over the samples) and then choose the best. Sampling algo-
rithms are more general than random search for MAP in-
terpretations precisely because the results give an approx-
imate representation of the entire posterior. In this paper
we use a sampling method to compute a Bayesian solution
to a structure from motion problem. The method is able
to identify and discount tracker errors that significantly af-
fect the performance of factorisation methods. The sam-
pler works on an extremely large domain.

Notation: we write v for a vector, whose i’th compo-
nent is »; and M for a matrix whose i, j’th component is
M;;. Sampler jargon that may be unfamiliar is shown in



italics when first introduced.
1.1 Markov chain Monte Carlo

Markov chain Monte Carlo methods [7, 12] are the stan-
dard methods for sampling complex distributions. Assume
we wish to draw a sample with density function p(X).
A typical algorithm is the Metropolis-Hastings algorithm,
which would produce in this case a sequence of samples,
by taking a sample X; and using a stochastic proposal pro-
cess to suggest a revised version, X ;. The proposal process
has density function ¢(X;, X/) — i.e. the proposal density
for the new state can depend on the old state. We now
compute
p(XZ{)g(X;-‘, Xz) )
p(Xi)g(Xi, Xj)

and the new sample X, is chosen to be X with proba-
bility @ and X; otherwise. Because the acceptance proba-
bility is a ratio, we can use unnormalised posteriors, which
is often extremely convenient.

Assuming technical conditions on the proposal process
(e.0. [7, 11, 22, 23]), once sufficient iterations have com-
pleted, all subsequent X; are samples drawn from p(X);
the number of iterations required to achieve this is often
called the burn in time, and p(X) is known as the sta-
tionary distribution. These samples may or may not be
correlated; if this correlation is low, the method is said to
mix well. It is desirable to have an algorithm that burns in
quickly, and mixes well. Sampling has occasionally been
used in recognition-like applications (e.g. [1, 13, 20, 27]
— the idea dates to at least [14]), but is more commonly
seen in early vision applications (particularly segmentation
using MRF’s [17]; the usual application is to obtain an
MAP estimate). Gibbs samplers are quite widely used for
reconstruction [9, 10, 28]. The most substantial impact of
sampling algorithms in vision has been the use of resam-
pling algorithms in tracking. The best known algorithm
is known as CONDENSATION in the vision community [2]
and survival of the fittest in the Al community [15]. A nat-
ural variant on this algorithm is to represent the intermedi-
ate stages by an approximation derived from the samples

(e.g. [16]).

a=min(l,

2 Maximum likelihood methods for struc-
turefrom motion

Accurate solutions to structure from motion are attrac-
tive, because the technique can be used to generate models
for rendering virtual environments (e.g. [5, 24]). Assume
m distinct views of n points are given. In the influen-
tial Tomasi-Kanade formulation of structure from motion,

Figure 2: Two (cropped) frames from the hotel sequence showing a sin-
gle sample reconstruction. Yellow squares correspond to measurements
with mask bit one (i.e. the measurement of that point in that frame is
believed correct); a white cross on a red background corresponds to mea-
surements with mask bit zero (i.e. the measurement of that point in that
frame is believed incorrect); red diamonds correspond to model predic-
tions. In the lower frame, at several locations the tracker has skipped
to another feature for unknown reasons. In each case the reconstruction
identifies the data point as being erroneous, and reprojects to a point in
a significantly different position from the (red) measurement reported by
the tracker and lying where a correct measurement would be as seen by
the position relative to the surface texture on the object.



Figure 3: We perturb the hotel sequence by replacing 5% of the data
points with draws from a uniform distribution in the image plane. The
Bayesian method, started as in section 3.1.1, easily discounts these noise
points; the figure shows the same frames in the sequence as in figure 2,
uncropped to show the noise but with a sample reconstruction indicated
using the same notation as that figure.

Figure 4: Left: the log-posterior for each of 100 samples taken after the
sampler has burnt-in (blue) compared with the log-likelihood of the start
point (red), for the hotel data set. Right: the same plot, but now for the
hotel data set with 5% of the points replaced with a draw from a uniform
distribution on the image plane. The smaller log-posterior is explained by
the larger number of points that must be assigned to noise.

these data are arranged into a 2m x n matrix of measure-
ments D which must factor as D = UV, where U rep-
resents the camera positions and V' represents point posi-
tions. An affine transform A is determined such that /.4
minimises a set of constraints associated with a camera,
and A~1V then represents structure. In practice, factorisa-
tion is achieved using a singular value decomposition. This
is a maximum likelihood method if an isotropic Gaussian
error model is adopted; for an anisotropic Gaussian error
model, see [18]. The formalism has been applied to vari-
ous camera models [21, 24, 26]; missing data points can be
interpolated from known points [24]; methods for motion
segmentation exist [4]; and methods for lines and similar
primitives are known [18]. There are noise estimates for re-
covered structure [18], but these assume that errors in the
estimates of structure are independent.

Maximum likelihood methods ignore the value of the
prior. For structure from motion, this means the method
does not allow any payoff between model error — the ex-
tent to which the recovered model violates the required
set of camera constraints — and measurement error — the
extent to which model predictions correspond to data ob-
servations. This means that the model cannot be used to
identify measurement problems and so is subject to recon-
struction errors caused by incorporating erroneous mea-
surements. This is a significant difficulty. Serious tracker
errors lead to wildly inaccurate reconstructions, because
the singular value decomposition of a matrix can change
sharply with small changes in the entries.

3 Bayesian structurefrom motion

It is useful to think of Bayesian models as generative
models (e.g. [14]). In a generative structure from motion
model, ¢/ and V' are drawn from appropriate priors. Then
D is obtained by adding noise to 2/ V. We assume that noise
is obtained from a mixture model; with some large proba-



Figure 5: The factorisation method is relatively unstable under noise.
We compare reconstructions obtained from the uncorrupted data set with
reconstructions obtained when 5% of the entries in D are replaced with
draws from a uniform distribution in the image plane; to represent the
factorisation method fairly, we use the start points obtained using the al-
gorithm of section 3.1.1 (which mask off suspect measurements). Top
shows a histogram of relative variations in distances between correspond-
ing pairs of points and bottom shows a histogram of differences in angles
subtended by corresponding triples of points. Note the scales — some
interpoint distances are misestimated by a factor of 3, and some angles
are out by /2.

bility, Gaussian noise is used, and with a small probability,
the measurement value is replaced with a uniform random
variable.

The priors on &/ and V are obtained from constraints
on camera structure. Tomasi and Kanade set the origin of
the point coordinate system at the center of gravity of the
points, and so their &/ and V have dimension 2m x 3 and
3 x n respectively. We do not fix the origin of the co-
ordinate system, and represent points in homogenous co-
ordinates, so our &/ and V have dimensions 2m x 4 and
4 x n respectively. We assume a scaled orthographic view-
ing model with unknown scale that varies from frame to
frame. This yields a set of constraint equations

cU,v)=0
which contains elements of the form

(1) =Y (tigm j)?

3 3
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Figure 6: The Bayesian method is stable under noise. We compare re-
constructions obtained from the uncorrupted data set with reconstructions
obtained when 5% of the entries in D are replaced with draws from a uni-
form distribution in the image plane. Top shows a histogram of relative
variations in distances between corresponding pairs of points and bottom
shows a histogram of differences in angles subtended by corresponding
triples of points. Note the significant increase in stability over the factori-
sation method; relative errors in distance are now of the order of 10% and
angular errors are of the order of 7 /40.

(expressing the fact that the camera basis consists of ele-
ments of the same length),

3
:1

J

(expressing the fact that the camera basis elements are per-
pendicular), and

Uj74 -1
(from the homogenous coordinates). A natural prior to use
is proportional to

—CT U, V)CU,V)
2

exp
Tconstraint®

This prior penalises violations of the constraints quite
strongly, but allows constraint violations to be paid off one
against the other. An alternative is to insist that the prior
is uniform if the constraints are all satisfied and zero oth-
erwise; this approach is numerically more complex to im-
plement.



We can now write a posterior model. We introduce a
set of discrete mask bits, one per measurement, in a ma-
trix M; these mask bits determine by which noise model
a measurement is affected. A mask bit will be 1 for a
“good” measurement (i.e. one affected by isotropic Gaus-
sian noise), and 0 for a “bad” measurement (i.e. one which
contains no information about the model). We introduce a
prior on M, w(M), which is zero for matrices that have
fewer than k£ non-zero elements in some row or column,
and uniform otherwise; this prior ensures that we do not
attempt inference for situations where we have insufficient
measurements.

The likelihood P(D|U, V', M) is then proportional to

e [~ 1% (di = 35 witvi;)*mi

V2
2O-meas

+ wnoise(l - mzy)
i,J

and the posterior is proportional to:

-CT C
Tconstraint

Notice that the maximum of the posterior could well not
occur at the maximum of the likelihood, because although
the factorisation might fit the data well, the ¢/ factor may
satisfy the camera constraints poorly.

3.1 Samplingthe posterior

This formulation contains both a discrete and a continu-
ous component. To sample continuous variables, we use a
method due to [6] (and described in detail in [19]), which
appends a set of independent Gaussian random variables p
of no external significance to the state variables q to obtain
a posterior of the form ezp(—®(q)—(1/2)p? p). The neg-
ative log of this posterior has the form of the Hamiltonian
for a particle in an energy field. We now use two types of
proposal move: advance time for this particle; and choose
new momenta (which can be done by Gibbs sampling, be-
cause each p; is independent of every other, and of the state
variables). This method moves to maxima of the posterior
about as fast as gradient descent, and then samples around
the maxima. If the state is far from a maximum, then the
state moves down the energy field, gathering momentum,
which is then thrown away by the second type of move, so
the particle will tend to get trapped in maxima and explore
them.

For discrete variables, we draw a sample from the
full conditional for that discrete variable. For a posterior
p(v, s) with a discrete variable v which takes values 0 and
1 and a set of variables (both discrete and continuous) s,
the full conditional on v is Prob{d = 0O|s = s}, which is

given by:
p(oa SO)
p(01 SO) + p(11 SO)

If there are many discrete variables, we sample each in turn
using this strategy; sampling proceeds in a random order to
ensure the chain is reversible [7].

Prob{d =0|s = so} =

311 Startingthesampler

The sampler’s state is given by (U, V, M). In the exam-
ples, m = 40 and n = 80. This means the domain of the
sampler is then 25400 copies of :1%4°. This space is far too
large to allow the sampler to blunder around in the hope
of encountering a peak in the posterior. Furthermore, the

tions between the discrete and the continuous variables
are complex; for small errors, a sampler started at a ran-
dom point burns in relatively quickly, but for large errors,
the burn in can be very slow.

The values of ¢/ and V depend strongly on M. If M
has a 1 in a position corresponding to a significant tracker
error, then that error can strongly affect the values of ¢/
and V. This effect slows down the convergence of the sam-
pler, because incorrect values of the continuous parameters
mean that many data points lie a long way from the values
predicted by the model, so that there is little distinction be-
tween points that correspond to the model and points that
do not.

We start the sampler at a fair initial estimate of the
mode. We obtain an initial value for the mask A1® by sam-
pling an independent distribution on the bits that tends to
deemphasize points which are distant from corresponding
points in the previous and next frames. In particular, the i,
J’th bit of M? is 0 with probability

1 —exp (_OA”)

1+ exp <%)

where Ayj = (i j — dig15)° + (digm,j — digms1,)° +
(diyj — di_lyj)Q + (di-l—m,j — dH_m_lyj)z. Since this is
a problem where the quantity of data swamps the num-
ber of parameters in the model, the choice of ¢, is fairly
unimportant; the main issue is to choose the value to be
small enough that large tracker errors are masked almost
certainly.
The /¢ and V? that maximise

Z {(dij - Zufkvij)2m?j}
ij k

are then obtained by a sweep algorithm which fixes
U (resp. V) and solves the linear system for V



(resp. U), and then swaps variables; the sweeps con-
tinue until convergence (which is guaranteed). We
now compute an affine transformation .4 such that
CT(U* A, A" V)C(U A, A~1V?) is minimised; then
U = UA and V¢ = A=1ve. We now draw a sam-
ple from the full conditional on each bit in the mask ma-
trix, given ¢/* and V* to obtain AM® The start state is then
(U*, vV, M?).

3.2 Results

While no convergence diagnostic is available, it is clear
from the number of measurements marked good and the
quality of fit that the sampler has burntin (figure 4). A sam-
pler started as described above burns in within 100 samples
(which can be drawn in about 1 hour a Macintosh com-
puter using Matlab). Results are obtained using the hotel
dataset, courtesy of the Modeling by Videotaping group in
the Robotics Institute, Carnegie Mellon University.

Figure 1 illustrates the kind of information a sampler
can produce. Notice that the estimate of variation in in-
ferred point position is obtained without geometric analy-
sis; if a dataset is obtained by a camera translating in its
plane, the sampler will return a set of samples with sub-
stantial variance perpendicular to that plane without fur-
ther ado. Figure 2 illustrates tracker errors identified by a
sampler; these errors are in the hotel data set as distributed.

321 Stability

Reconstructions cannot be compared on the basis of accu-
racy, because “ground truth” is not available. However, we
can demonstrate the Bayesian method is significantly more
stable under tracker errors and noise.

In the 40 frames used, six point measurements in nine
frames are affected by small tracker errors as shown in fig-
ure 2. These (very small) errors affect the reconstruction
obtained using the factorisation method because the fac-
torisation of a matrix is a function of all entries.

Because the reconstruction is in some unknown scaled
Euclidean frame, reconstructions are best compared by
comparing angles subtended by corresponding triples of
points, and by comparing distances between correspond-
ing points scaled to minimize the errors.

To compare the stability of the methods, we now in-
troduce larger tracker errors; a small percentage of data
points, randomly selected, are replaced with draws from
a uniform distribution on the image plane. If these points
are included in the factorisation, the results are essentially
meaningless. To provide a fair comparison, we use factori-
sations obtained using the method of section 3.1.1 (these
are the start points of our sampler). These reconstruc-
tions are guaranteed to ignore large error points but will
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Figure 7. Log-posterior values for every fiftieth sample of the approx-
imation to P (t) drawn by our sampler. The variation in values suggests
that the sampler explores its domain effectively.

ignore a significant percentage of the data. In compari-
son, the sampler quickly accretes all points consistent with
its model, and so gives significantly more stable measure-
ments (cf [25], which uses maximum likelihood to identify
correspondences).

4 Bayesian motion segmentation

We describe a segmentation method for the case of a
maximum of two objects; extending this to the case of an
unknown number of objects is straightforward. We require
a new vector of discrete variables t, one per point (i.e. one
per column of D). These variables take three values, al-
locating the column to noise, object one or object two re-
spectively. Write n,,;s. for the number of columns allo-
cated to noise and ns;¢c¢5 TOr the total number of objects
(which can be zero, one or two). The state of the sampler
is now given by (t,Uy, V1, M1,Usz, Va, M3). The likeli-
hood is obtained by evaluating equation 1 for each object
separately.

The prior on M and M, is as before. Priors onZ/; and
U, are as before. We multiply by a further prior term that
penalizes large numbers of noise columns and splitting a
single object into two components:

F(nnoisea nobjects) X exXp (_wnoise”noise - wobjectnobjects)

4.1 Sampling for segmentation

The discrete component of the domain of this poste-
rior is extremely large (of the order of 3222™"). An ap-
propriate strategy partitions the variables. First, we sam-
ple an approximation to the marginal on (t, M;, M5),
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Figure 8: Two frames from our segmentation test sequence, which is
obtained from 30 frames showing 40 of the tracked points of the hotel
data set. We created a second (red) object by rotating the first one at a
constant angular speed about its centroid.

Pyiserere(ts M1, Mz). We now use this set of samples
as a proposal mechanism for a sampler on the full poste-
rior. Section 3 has established that, given a segmentation is
correct, structure and motion can be recovered. We focus
here on sampling (t, M1, M3).

A fair approximation to Py, ..,.(t, M1, M>) can be
obtained by solving for a maximum likelihood solution for
structure and motion given t, and then evaluating the pos-
terior at that point. The maximum likelihood solution is
obtained using the method of section 3.1.1. We now build
an MCMC sampler, where each proposal involves mutation
of some of the discrete variables (followed by the maxi-
mum likelihood solution to evaluate the approximation to
the posterior). We require that each there be at least five
columns of D associated with a given object. We use the
following kinds of proposal move:

¢ Add a column of D to an object;
¢ Remove a column of D from an object;
e Swap a pair of points between two objects;

e Swap a random number of points between an object
and noise;

o Mutate M, or M5 by setting or clearing bits;
¢ Remove an object, making all of its points into noise;

o If there is only one object or none, create a new one,
randomly choosing 5 points from noise;

o Merge the two objects into one;

If only one object is present, splitit randomly into two
objects, each with 5 points or more.

We omit calculations of accept probabilities for lack of
space.
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Figure 9: Our approximation to P (t) is relatively unambiguous. For
each point, we compute the marginal probability that that point is as-
sociated with object one, noise, or object two. There are no samples
where points from one object are confused with points from the other.
Top left shows points from the first object, where the saturation is chosen
according to the probability that they are noise (whiter means a point is
more likely to be noise); top right shows points from the second object,
shaded similarly. Bottom left shows a histogram of the probabilities that
points from object one are allocated to that object (as opposed to noise;
in no samples are points from different objects mixed) bottom right a
histogram of the probabilities that points from object two are allocated to
that object.

4.2 Results

Figure 8 illustrates our data set for this experiment. The
chain mixes relatively well, as figure 7 indicates. The sta-
tionary distribution of the chain is relatively unambigu-
ous; for every sample, all points allocated to object one
originate with a single object and all allocated to object
two originate with the other object. For most points, the
marginal probability that that point is noise is low (fig-
ure 9).

5 Discussion

The output of a properly built sampler is an excellent
guide to the inferences which can be drawn and to the am-
biguities in a dataset. No independence assumptions are
required to obtain this information. The sampler is robust
to substantial noise; furthermore, we are not required to use
specialised methods when the camera motion is degenerate
— if, for example, the camera translates within a plane, the
effect will appear in scatter plots that vary widely along the
axis perpendicular to the plane.

The samplers described are superior to current methods



because they are robust and give a detailed representation
of ambiguity, but are fairly slow. Current work is studying
an incremental algorithm that appears to offer substantial
speedups.
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