Body Plans D.A. Forsyth Computer Science Division U.C. Berkeley Berkeley, CA 94720 daf@cs.berkeley.edu M.M. Fleck Department of Computer Science University of Iowa Iowa City, IA 52240 mfleck@cs.uiowa.edu #### Abstract This paper describes a representation for people and animals, called a body plan, which is adapted to segmentation and to recognition in complex environments. The representation is an organized collection of grouping hints obtained from a combination of constraints on color and texture and constraints on geometric properties such as the structure of individual parts and the relationships between parts. Body plans can be learned from image data, using established statistical learning techniques. The approach is illustrated with two examples of programs that successfully use body plans for recognition: one example involves determining whether a picture contains a scantily clad human, using a body plan built by hand; the other involves determining whether a picture contains a horse, using a body plan learned from image data. In both cases, the system demonstrates excellent performance on large, uncontrolled test sets and very large and diverse control sets. **Keywords:** Object Recognition, Computer Vision, Content based retrieval, Image databases, Learning in vision ## 1 Introduction The recent explosion in internet usage and multimedia computing has created a substantial demand for algorithms that perform content-based retrieval. The vast majority of user queries involve determining which images in a large collection depict some particular type of object. Typical current systems, reviewed briefly along with user requirements in [10], abstract images as collections of two dimensional coloured and textured shapes; there is much work on user interfaces that support image recovery in this abstraction. Instead, we see the problem as focussing interest on poorly understood aspects of object recognition, particularly classification and top-down flow of information to guide segmentation. Current object recognition algorithms cannot handle queries as abstract as "find people," because all are based around a search over correspondence of geometric detail, whereas typical content-based-retrieval queries require abstract classification, independent of individual variations. Because identifying 3D objects requires representing shape properties of regions and the relative spatial disposition of regions, existing content based retrieval systems perform poorly at this task, because they do not contain codings of object shape that are able to compensate for variation between different objects of the same type (e.g. several dogs), changes in posture (how any flexible parts or joints are arranged), and variation in camera viewpoint; furthermore, because of the poor or absent shape representation, combinations diagnostic for particular objects cannot be learned. Building satisfactory systems requires automatic segmentation of significant objects. Typical recent systems for finding people or animals typically simplify segmentation using either motion cues or a known or simplified background (e.g. [15], which segments by subtracting a known background). The automatic segmentation literature has traditionally concentrated on describing images as regions of coherent colour or texture, whereas the notion of segmentation appropriate to our present application is: "find the image regions that come from a single object of the required class," a process that is impossible without model information. The present application requires segmentation in very general images, and our approach attempts to marshal as much model information as possible at each segmentation stage. ### 2 Body plans People and many animals can be viewed as an assembly of nearly cylindrical parts, where both the in- Figure 1: The body plan used for horses. Each circle represents a classifier, with an icon indicating the appearance of the assembly. An arrow indicates that the classifier at the arrowhead uses segments passed by the classifier at the tail. Note that constraints exist between groups, too; for example, a body-leg-neck classifier will attempt to form triples only out of pairs that share the same body. While the topology was given in advance, the classifiers were trained using image data from a total of 38 images of horses. Classifiers use measurements of the relative geometry of segments as described in section4. dividual geometry of the parts and the relationships between parts are constrained by the geometry of the skeleton and ligaments. These observations suggest the use of a representation that emphasizes assemblies of a constrained class of primitive; typical versions of this idea appear in [3, 4, 2, 16]. Another version appears in [11], which represents people and animals by cylinders at a variety of scales; they suggest finding a person by finding a large extended cylinder, which is then resolved into smaller cylinders forming limbs and torso, and so on to fingers and toes. The approach is impractical, not least because the models contain little information to support segmentation and little actual constraint. Much information is available to support segmentation and recognition: firstly, segments must be coherent, extended and have near parallel sides with an interior that appears to be hide or skin; secondly, because the 3D relationships between segments are con- Figure 2: Cylindrical algebraic decomposition allows us to project a decision surface to come up with lower dimensional decision boundaries on subspaces of the original feature space. In the case illustrated in this diagram, good points (which lie behind the decision surface) are marked with circles and bad points with triangles. A subset of the singular set of projection onto the B-C plane defines a new classifier, less exact than the original, but capable of reducing the number of data points the original must inspect, and likely to increase efficiency, because it uses only two feature values. Similarly, this classifier is projected onto the B and C axes separately, to define simpler decision boundaries. strained, there are relatively few assemblies of 2D segments. As a result, it is possible to tell whether a person or animal is present by determining whether there is an assembly of image segments that (a) have the right colour and texture properties and (b) form an assembly that could be a view of an acceptable configuration. A body plan is a sequence of grouping stages, constructed to mirror the layout of body segments in people and animals. To tell whether a picture contains a person or an animal, our program attempts to construct a sequence of groups according to the body plan. For example, in the case of horses (using the plan given in figure 1) the program first collects body, neck and leg segments; it then constructs pairs that could be views of a body-neck pair, or a body-leg pair; from these pairs, it attempts to construct triples and then quadruples. At each stage of the plan, a predicate is available which tells whether a group could correspond to some view of the segments described. For a sufficiently large collection of segments, the fact that such predicates are non-trivial follows from the existence of kinematic constraints on mammalian joints. There are two major alternatives for constructing these predicates: (1) For each significant type of joint, use the detailed literature on joint biomechanics to compute a test based on mean joint kinematic parameters. This strategy is subject to spurious precision; the algorithms required to construct the resulting sets are complex; and the only mechanism for accounting for individual variation is averaging parameters, which may not be sufficient. (2) Use a statistical learning technique to infer an approximate representation of possible configurations from a variety of example views, producing a classifier that could, given an assembly, tell whether it represented a possible view. The advantage of this approach is that techniques for building effective classifiers quite efficiently are well established (e.g. [14]), and that variations from individual to individual could be captured with a sufficiently large data set. Statistical learning theory is notoriously unconcerned with the computational efficiency of the classifiers constructed (the introduction in [8] is fairly typical). This is a serious problem: telling whether an image contains a horse, for example, appears to require groups of at least four straight ribbons, and searching over all groups of four straight ribbons is impractical for typical images. However, a body plan can be viewed as a sequence of classifiers, where each predicate is a classifier for some sub-assembly. Building classifiers for various sub-assemblies ensures that only very few groups are tested at the final stage. The hierarchical structure has the advantage that, if is not possible to add segments to an assembly, there is still a working hypothesis about the identity of the assembly. 3 Learning a body plan It is widely believed that learning will be useful in computer vision; there are no successful applications to date. Much of the difficulty appears to stem from attempts to learn entire representations from contours or segmented regions with no a priori information given. While this approach can be used to improve the efficiency of user browsing (e.g. [12]), it has little to offer recognition of general objects in general contexts, for quite good reasons. Rigorous statistical principles for learning have been established over the last 20 years; good introductions appear in [14, 8]. Classifiers are given as decision boundaries in feature spaces, which are often represented by parametric classes of implicit functions. In particular, learning is founded on two principles: that samples of a distribution provide a representation that converges quite quickly in probability to that distribution, and that formalising the effects of changes in parameter on a decision boundary using the Vapnik-Chervonenkis dimension results in a prediction of the future risk of using the classifier that also converges in probability. As a result, it is in priniciple possible to produce a classifier that results in low risk both on the training set (known as *empirical risk*) and predicted for future use; typically such classifiers are trained using a large number of samples compared to the V-C dimension of the class of decision boundaries used. An important principle is to keep the V-C dimension of the class of decision boundaries used as small as possible, involving both thoughtful selection of features, and the incorporation of as much a priori knowledge as possible; this point alone justifies representations in terms of primitives. We train body plans to achieve a minimum of risk on the training set (the criterion is usually known as *empirical risk*). In general, the individual classifiers in a body plan cannot be trained separately using this criterion, because determining the effect of a change in a given classifier's parameters on overall risk requires knowing (a) what later classifiers will do with the assembly the given classifier accepts and (b) what the distribution of assemblies leaving earlier classifiers looks like. However, if we take the view that individual classifiers in a body plan are defined by sub-assemblies of the main group, it becomes possible to train all classifiers simultaneously to get a minimum of empirical risk. This is achieved by constructing an augmented feature vector, where each example generates the feature vector consisting of all data that all the classifiers will see. A single classifier is then trained on this augmented feature vector; once the classifier has been trained, by projecting its decision boundary onto the features associated with each separate assembly, we obtain the sub-classifiers. The process can be described formally using the following notation: the final assembly is a group of k elements; there is a function f_i which computes the feature vector associated with a group of i elements (as section 4 indicates, this function will change with the number of elements but is independent of the elements themselves); the j'th example is g_j^{k1} ; and the l'th subgroup of i elements drawn from g_j^{k1} is g_j^{il} . Now consider the augmented feature vector for example j given by: $$\mathbf{v}_j = (f_1(g_j^{11}), f_1(g_j^{12}), \dots f_2(g_j^{21}), \dots f_i(g_j^{il}), \dots f_k(g_j^{k1}))$$ and write the projection of this vector onto the space spanned by the terms corresponding to $f_i(g_j^{il})$ as $\pi_{il}(\mathbf{v}_j)$. The elements of this vector are the feature vectors for all *i*-fold combinations taken from the group. Assume that a classifier is trained to obtain a minimum of empirical risk on a set of such vectors, yielding a decision surface S=0. Now consider a point in the space $\pi_{il}(\mathbf{v}_j)$; a classifier for sub-assemblies should accept this point if, by attaching any other assemblies, it was possible to obtain a group for which S >= 0, and should reject it otherwise. But such a classifier can be obtained by projecting S into this space; the singular set under this projection forms a set of possible components for the decision boundary, which must be sorted to ensure that the criterion described holds (see figure 2). This procedure is well known (though complicated) for S algebraic, where it is known as cylindrical algebraic decomposition [1]. By constructing this decomposition of S, we obtain a set of sub-assembly classifiers that achieves the same empirical risk as S does, but is potentially computationally more efficient. The difficulty of cylindrical algebraic decomposition suggests that using classifiers that project well is wise. Classifiers that have decision boundaries that consist of unions of axis-aligned boxes are known to have low V-C dimension, perform well ([8], chap. 20), and project particularly easily. #### 4 Describing shape Marking regions that could be the outline of cylinders is well understood; we use colour and texture properties, documented in greater detail in [9] to identify image regions which could be skin or hide. A version of Canny's [7] edge detector, with relatively high smoothing and contrast thresholds, is applied to these areas to obtain a set of connected edge curves. Pairs of edge points with a near-parallel local symmetry [5] are found by a straightforward algorithm, and sets of points forming regions with roughly straight axes ("straight ribbons," after [6]) are found using an algorithm based on the Hough transformation. For describing assemblies of ribbons, the ribbons are abstracted as oriented rectangles, whose width is given by the average width along the ribbon, and whose length and axis come from the ribbon spine. Because this approximation is extremely coarse, it hides individual variations in segment cross-section (caused by, say, well defined musculature) and focuses on the coincidence properties of segments. One advantage of cylindrical or near cylindrical segments is that scaled orthography is a quite acceptable camera model for all practical views. Further- Figure 3: Body plans are robust to changes in aspect; the top row shows hide pixels for images taken from the test set, and the bottom row shows corresponding horse groups. Note that the grouper finds horse groups appropriately, despite the change from lateral to three-quarters view. Robustness to more extreme changes in aspect - for example, an overhead view or a head and shoulders view - will require extra groups. more, because even significant amounts of foreshortening (as in a three-quarter view of a horse body) are no worse than the considerable uncertainty in the location of the ends of segments, modelling the effects of the camera as plane Euclidean actions with isotropic scaling is acceptable. Shape measurements for segment groups are then obtained using a canonical frame (as in, say, [17]). A distinguished segment - usually a body segment - is chosen to have its center of gravity at the origin, and is rotated and flipped so that (a) it is axis aligned and (b) other segments lie in particular quadrants. Any measurement in such a frame is invariant; in these frames, the variations between shapes is surprisingly small. #### 4.1 The effects of aspect Variations in appearance with changes in viewpoint are a primary difficulty in object recognition. Body plans are intrinsically relatively robust to these effects, as our experimental results show (see figure 3 and figure 6). This robustness comes from two main sources: firstly, the underlying primitives have no significant view-variation in appearance; secondly, the kinematics of the assemblies are such that complex inter-primitive occlusions are not possible, suppressing a rich source of difficulties For example, foreshortening between a lateral and a three-quarter view of a horse is of the same order of magnitude as the noise in obtaining the length of The response ratio, (percent incoming Figure 4: test images marked/percent incoming control images marked), plotted against the percentage of test images marked, for various configurations of the naked people finder. Labels "A" through "H" indicate the performance of the entire system of skin filter and geometrical grouper together. The label "skin" shows the performance of the skin filter alone. The labels "a" through "h" indicate the response ratio for the corresponding configurations of the grouper; because this number is always greater than one, the grouper always increases the selectivity of the overall system. The cases differ by the type of group required to assert that a naked person is present. The horizontal line shows response ratio one, which would be achieved by chance. The response ratio increases, and the recall decreases, as the geometric complexity of the groups required to identify a person increases, suggesting: (1) finding a sufficiently complex geometric group yields the object (2) that the body plan used omits important geometric structures. segments, and so has no effect on the classifier; similarly, the layout of a frontal view and a lateral view is basically the same. In the horse example, views that are notably absent are head-and-shoulders views and overhead views; the approach would fail to isolate horses in such images. Similarly, the plan used to recognise people emphasizes girdles, and lacks appropriate groups for lateral views; as a result, it is ineffective on such views. In both cases, the deficit can be dealt with by adding classifiers to the body plan. We have no results on how many such classifiers are required; the considerable robustness of the present implementations suggests that relatively few are required. Experimental results We have built two systems to demonstrate the approach. The first can very accurately tell whether an image contains a naked person; the second can tell whether an image contains a horse. In each case, the approach involves pure object recognition; there is no attempt to exploit textual cues or user interaction. Protocol It is hard to assess the performance of a system for which the control group is properly all possible images. The only appropriate strategy to reduce internal correlations in the control set appears to be to use large numbers of control images, drawn from a wide variety of sources. To improve the assessment, we used large sets of control images drawn from a total of seven sources. In information retrieval, it is traditional to describe the performance of algorithms in terms of recall and precision. The algorithm's recall is the percentage of test items marked by the algorithm. Its precision is the percentage of test items in its output. Unfortunately, the precision of an algorithm depends on the percentage of test images used in the experiment: for a fixed algorithm, increasing the density of test images increases the precision. In our application, the density of test images is likely to vary and cannot be accurately predicted in advance. To assess the quality of our algorithm, without dependence on the relative numbers of control and test images, we use a combination of the algorithm's recall and its response ratio. The response ratio is defined to be the percentage of test images marked by the algorithm, divided by the percentage of control images marked. This measures how well the algorithm, acting as a filter, is increasing the density of test images in its output set, relative to its input set. 5.2 Naked humans The basic structure of our system is described in [9], which describes the body plan used; the experimental results given here are new and much more comprehensive. The system segments human skin using colour and texture criteria, assembles extended segments, and uses a simple, hand built body plan to support geometric reasoning. A prefilter excludes from consideration images which contain insufficient skin pixels. Performance was tested using 565 target images of naked people collected from the internet and by scanning or re-photographing images from books and magazines. There was no pre-sorting for content; however, only images encoded using the JPEG compression system were sampled as the GIF system, which is also often used for such images, has poor color reproduction qualities. Test images were automatically reduced to fit into a 128 by 192 window, and rotated as necessary to achieve the minimum reduction. The system was controlled against a total of 4302 assorted control images, containing some images of people but none of naked people. Figure 4 graphs response ratio against response for a variety of configurations of the grouper. The recall of a skin-filter only configuration is high, at the cost of poor response ratio. Configurations G and H require a relatively simple configuration to declare a person present (a limb group, consisting of two segments), decreasing the recall somewhat but increasing the response ratio. Configurations A-F require groups of at least three segments. They have better response ratio, because such groups are unlikely to occur accidentally, but the recall has been reduced. The selectivity of the system increases, and the recall decreases, as the geometric complexity of the groups required to identify a person increases, suggesting that our representation used in the present implementation omits a number of important geometric structures and that the presence of a sufficiently complex geometric group is an excellent guide to the presence of an object. #### 5.3 Horses The horse system segments hide using colour and texture criteria and then assembles extended segments using a body plan to support the geometric reasoning. This body plan, which is shown schematically in figure 1 was learned using a bounding box classifier, that was projected as described above to yield appropriate subclassifiers; the topology of the body plan was given in advance. The body plan uses geometric measurements in a canonical frame to describe segment groups. Each classifier is a bounding box classifier - segment groups are accepted if they lie in an axis aligned bounding box, and are rejected otherwise. With appropriate measurements in the canonical frame - for example, length and orientation of a vector from segment center of gravity to segment center of gravity - this classifier is natural. The body plan is trained by computing an augmented feature vector, as described in section 3, and constructing a bounding box classifier that achieves minimum risk, assuming that false positives carry no risk (an assumption that simplifies training the classifier, and appears to be justified by the tight constraint placed on the groups). This box is then projected onto the feature spaces defined by the subgroups, and the resulting boxes define the individual assemblies in the body plan. This approach makes training extremely simple, and yields an effective representation. The classifier was learned using a total of 102 acceptable groups, drawn from 38 images; the risk associated with Figure 5: The response ratio, (percent incoming test images marked/percent incoming control images marked), plotted against the percentage of test images marked, for various configurations of the horse finder. Labels "A" through "J" indicate the performance of the entire system of hide filter and geometrical grouper together; each label corresponds to a different value of the robustness parameter described in the text, where the parameter value increases from "A" to "J" in even steps. The label "hide" shows the performance of the hide filter alone. The labels "a" through "j" indicate the response ratio for the corresponding configurations of the grouper alone; because this number is always greater than one, the grouper always increases the selectivity of the overall system. The horizontal line shows response ratio one, which would be achieved by chance. The grouper displays relatively low recall, but the groups are clearly extremely distinctive. a false negative was assumed to be zero, so that the classifier is simply the bounding box of this set. Performance was tested using 100 target images selected from CD 113000 ("Arabian horses") in the Corel stock photo library, and 1086 unrelated control images from the Corel stock photo library. All test and control images fit into a 128 by 192 window. A hide filter, modelled on the skin filter described in [9], but using different parameter settings, marks pixels that are likely to be hide. Images which contain insufficient hide pixels are excluded from consideration, leaving 85 test images and 260 control images. Ribbon finding for horse images is complicated by the need to find legs, which are relatively narrow. Looking for narrow ribbons can generate very large numbers of local symmetries, to the point where ribbon grouping is overwhelmed. This occurred for a total of 13 test images and 116 control images that had already passed the hide filter, an unusually large number. Performance of the hide filter is estimated including these images; performance of the grouper is estimated excluding these images and excluding images used for learning (a total of 34 test images); and overall performance is estimated by multiplying the two separate recall and precision figures. This is the fairest approach to estimating performance in this case, where the difficulty is clearly an implementation error, and the training set is usually better excluded in estimating performance. For the case of people, the classifier asserts a person is present if a sufficiently complex geometric group is present. In the case of horses, a considerable improvement in performance can be obtained by noting that, if a sufficiently large set of segments is passed to the final classifier (for example, for an image of a horse in front of a fence, where many ribbons must be found), it is likely to mark a horse erroneously. Thus, for a picture to be marked as containing a horse, we require that (a) at least one body-leg-leg-neck group be present and (b) that the ratio of the number of such groups to the number of groups presented to the final stage, be larger than a parameter, which for convenience we call the robustness parameter. For a good choice of the robustness parameter, the system displays a recall of 15% and a response ratio of 23; while the recall is relatively low, the response ratio is very high, meaning that the system effectively extracts image semantics. The effects of ribbon finding difficulties make it hard to represent the result set exactly, but figure 6 shows the images recovered for this case. Note the horses returned are in a variety of aspects, for a large control set there are very few control images returned (the high response ratio ensures this) and that one of the control images returned contains an animal that looks a lot like a horse. As figure 5 shows, increasing the robustness parameter leads to decreased recall, but better response ratio; we envisage a user setting a value according to whether they require many test images, but are tolerant of false positives, or would prefer a more focussed set of responses. Figure 6 shows the set of horse images and control images marked for the most selective setting of the parameter. The parameter essentially attempts to compensate for the relatively impoverished descriptions of image primitives; better descriptions of image primitives might lead to ribbons associated with fencing and the like being suppressed before they reach the final classifier. Table 1 shows the body plan is efficient. Figure 6: All images returned from a control set of 1086 and a test set of 100 images, for the horse query with robustness parameter set to the most selective value. The first line of horse images comes from the training set; the rest from the test set. A further four control images could be expected to come from the images that passed the hide filter, but overwhelmed the ribbon finding algorithm. The test images recovered contain horses in a wide range of aspects; one control image contains an animal that might reasonably pass for a horse. # 6 Discussion and Conclusions We have demonstrated a representation for people and animals in terms of primitives and their geometric relations. The representation provides grouping information at the image level; we have demonstrated that this representation can be learned from examples, and is extremely efficient compared to computationally more naive classifiers. The representation is robust to variations in aspect, and is effective at quite abstract recognition queries because it emphasizes within-class similarities of structure over geometric detail. These results are good, taking into account the abstraction of the query and the generality of the control images; for example, a group of 1000 control and 100 test images (a realistic test) presented to the horse program would result in about 15 test images and 7 control images returned, meaning the program is a practical, but not perfect, tool for extracting semantics. Much remains to be done. The description of primitives is impoverished, and incorporates no shading information. In particular, the main differences between, say, leopards and horses is in the appearance of their pelts; clearly, segmenting leopards from general backgrounds requires further work. Some promising | $\overline{n_4}$ | $\overline{n_c}$ | $\overline{n_c}/\overline{n_4}$ | $\overline{(n_c/n_4)}$ | |------------------|------------------|---------------------------------|------------------------| | 2,500,000 | 511 | 0.0002 | 0.006 | Table 1: Body plans are efficient; the number of segment groups handled by the final classifier is very much less than the total number of four segment groups. Efficiency of body plans can be measured in two ways; n_4 is the number of four segment groups in an image, n_c is the number of calls to the final classifier of the body plan, and an overbar denotes the mean over all test and control images that could be presented to the grouper. (n_c/n_4) tends to underestimate the efficiency, because it penalises images where there are very few groups. Clearly, by either statistic, body plans are a significant improvement over simple classifiers, at no cost in empirical risk. lines of attack on this problem are sketched in [10]. The present system involves one classifier for horses, and another for people. While the structure of the classifiers contains many teasing analogies, it is not yet obvious how one uses these similarities to build a single process that, as ribbons are accreted into an assembly, can tell a horse from a person, while using the same underlying set of activities. The emphasis on within-class similarities over individual variations is useful at early stages of classification, but much potentially valuable information has been thrown away; for example, the variation in width along a ribbon should give information about such matters as underlying musculature, which should be helpful in identifying a segment. As our results show, even in the present quite primitive form, body plans enhance model information by organising it into a form that aids segmentation and grouping, and simplifies learning; the result is a representation that is clearly capable of extracting semantic information from an image for two difficult and abstract cases. # Acknowledgements We thank Joe Mundy for suggesting that the response of a grouper may indicate the presence of an object and Jitendra Malik for many helpful suggestions. Portions of this research were supported by the National Science Foundation under grants IRI-9209728, IRI-9420716, IRI-9501493, under a National Science Foundation Young Investigator award, an NSF Digital Library award IRI-9411334, and under an instrumentation award CDA-9121985. ### References - Arnon, D.S.; Collins, G.E.; McCallum, S. "Cylindrical algebraic decomposition. I. The basic algorithm." SIAM Journal on Computing, 13, 4:865-77, 1984. - [2] Connell, Jonathan H. and J. Michael Brady "Generating and Generalizing Models of Visual Objects," Artificial Intelligence 31/2, pp. 159-183, 1987 - [3] Binford, T.O., "Visual perception by computer," Proc IEEE Conf. Systems Control, 1971. - [4] Binford, T.O., "Body-centered representation and perception," Proceedings Object Representation in Computer Vision., Hebert, M. et al. (eds), Springer Verlag, 1995. - [5] Brady, J. Michael and Haruo Asada (1984) "Smoothed Local Symmetries and Their Implementation," Int. J. Robotics Res. 3/3, 36-61. - [6] Brooks, Rodney A. (1981) "Symbolic Reasoning among 3-D Models and 2-D Images," Artificial Intelligence 17, pp. 285-348. - [7] Canny, John F. (1986) "A Computational Approach to Edge Detection," *IEEE Patt. Anal. Mach. Int.* 8/6, pp. 679-698. - [8] Devroye, L., Gyorfi, L., and Lugosi, G., A probabilisitic theory of pattern recognition, New York: Springer, 1996. - [9] M.M. Fleck, D.A. Forsyth and C. Bregler, "Finding naked people," Proc. European Conf. on Computer Vision, Edited by: Buxton, B.; Cipolla, R. Berlin, Germany: Springer-Verlag, 1996. p. 593-602 - [10] Forsyth, D.A., Malik, J., Fleck, M.M., Greenspan, H., Leung, T., Belongie, S., Carson, C. and Bregler, C., "Finding pictures of objects in large collections of images," Proc. 2'nd International Workshop on Object Representation in Computer Vision, April, 1996. - [11] Marr, D., and Nishihara, H.K., "Representation and Recognition of the Spatial Organization of Three-Dimensional Shapes", Proc. Roy. Soc. B, B-200, 269-294, 1977 - [12] Minka, T.P.; Picard, R.W., "Interactive learning with a "Society of Models"." CVPR-96, 447-452, 1996 - [13] Picard, R.W. and Minka, T. "Vision texture for annotation," J. Multimedia systems, 3, 3-14, 1995. - [14] Vapnik, V., The nature of statistical learning theory, Springer-Verlag, 1996. - [15] Wren, C., Azabayejani, A., Darrell, T. and Pentland, A., "Pfinder: real-time tracking of the human body," MIT Media Lab Perceptual Computing Section TR 353, 1995. - [16] Zerroug, M. and Nevatia, R., "Three-dimensional partbased descriptions from a real intensity image," Proceedings of 23rd Image Understanding Workshop, 1994. - [17] Zisserman, A., Forsyth, D.A., Mundy, J.L., Rothwell, C.A., and Liu, J.S., "3D Object Recognition using Invariance," Artificial Intelligence, 78, 239-288, 1995.