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Abstract

This paper describes a representation for people
and anmimals, called a body plan, which is adapted to
segmentation and to recognition in compler environ-
ments. The representation is an organized collection
of grouping hints obtained from a combination of con-
straints on color and texture and constraints on geo-
metric properties such as the structure of individual
parts and the relationships between parts.

Body plans can be learned from image data, us-
ing established statistical learning techniques. The ap-
proach is illustrated with two erxamples of programs
that successfully use body plans for recognition: one
example involves determining whether a picture con-
tains a scantily clad human, using a body plan built by
hand; the other involves determining whether a pic-
ture contains a horse, using a body plan learned from
tmage data. In both cases, the system demonstrates
excellent performance on large, uncontrolled test sets
and very large and diverse control sets.

Keywords: Object Recognition, Computer Vision,
Content based retrieval, Image databases, Learning in
vision

1 Introduction

The recent explosion in internet usage and multi-
media computing has created a substantial demand
for algorithms that perform content-based retrieval.
The vast majority of user queries involve determining
which images in a large collection depict some partic-
ular type of object. Typical current systems, reviewed
briefly along with user requirements in [10], abstract
images as collections of two dimensional coloured and
textured shapes; there is much work on user inter-
faces that support image recovery in this abstraction.
Instead, we see the problem as focussing interest on
poorly understood aspects of object recognition, par-
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ticularly classification and top-down flow of informa-
tion to guide segmentation.

Current object recognition algorithms cannot han-
dle queries as abstract as “find people,” because all
are based around a search over correspondence of geo-
metric detail, whereas typical content-based-retrieval
queries require abstract classification, independent of
individual variations. Because identifying 3D objects
requires representing shape properties of regions and
the relative spatial disposition of regions, existing con-
tent based retrieval systems perform poorly at this
task, because they do not contain codings of object
shape that are able to compensate for variation be-
tween different objects of the same type (e.g. several
dogs), changes in posture (how any flexible parts or
joints are arranged), and variation in camera view-
point; furthermore, because of the poor or absent
shape representation, combinations diagnostic for par-
ticular objects cannot be learned.

Building satisfactory systems requires automatic
segmentation of significant objects. Typical recent
systems for finding people or animals typically simplify
segmentation using either motion cues or a known or
simplified background (e.g. [15], which segments by
subtracting a known background). The automatic seg-
mentation literature has traditionally concentrated on
describing images as regions of coherent colour or tex-
ture, whereas the notion of segmentation appropriate
to our present application is: “find the image regions
that come from a single object of the required class,” a
process that is impossible without model information.
The present application requires segmentation in very
general images, and our approach attempts to mar-
shal as much model information as possible at each
segmentation stage.

2 Body plans

People and many animals can be viewed as an as-
sembly of nearly cylindrical parts, where both the in-
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Figure 1: The body plan used for horses. FEach cir-
cle represents a classifier, with an icon indicating the
appearance of the assembly. An arrow indicates that
the classifier at the arrowhead uses segments passed
by the classifier at the tail. Note that constraints exist
between groups, too; for example, a body-leg-neck clas-
sifier will attempt to form triples only out of pairs that
share the same body. While the topology was given in
advance, the classifiers were trained using image data
from a total of 38 images of horses. Classifiers use
measurements of the relative geometry of segments as
described in sectiony.

dividual geometry of the parts and the relationships
between parts are constrained by the geometry of the
skeleton and ligaments. These observations suggest
the use of a representation that emphasizes assemblies
of a constrained class of primitive; typical versions of
this idea appear in [3, 4, 2, 16]. Another version ap-
pears in [11], which represents people and animals by
cylinders at a variety of scales; they suggest finding a
person by finding a large extended cylinder, which is
then resolved into smaller cylinders forming limbs and
torso, and so on to fingers and toes. The approach
is impractical, not least because the models contain
little information to support segmentation and little
actual constraint.

Much information is available to support segmen-
tation and recognition: firstly, segments must be co-
herent, extended and have near parallel sides with an
interior that appears to be hide or skin; secondly, be-
cause the 3D relationships between segments are con-

Figure 2: Cylindrical algebraic decomposition allows
us to project a decision surface to come up with lower
dimensional decision boundaries on subspaces of the
original feature space. In the case illustrated in this
diagram, good points (which lie behind the decision
surface) are marked with circles and bad points with
triangles. A subset of the singular set of projection
onto the B-C plane defines a new classifier, less exact
than the original, but capable of reducing the num-
ber of data points the original must inspect, and likely
to increase efficiency, because it uses only two feature
values. Simalarly, this classifier is projected onto the
B and C azxes separately, to define simpler decision
boundaries.

strained, there are relatively few assemblies of 2D seg-
ments. As a result, it is possible to tell whether a
person or animal is present by determining whether
there is an assembly of image segments that (a) have
the right colour and texture properties and (b) form
an assembly that could be a view of an acceptable
configuration.

A body plan 1s a sequence of grouping stages, con-
structed to mirror the layout of body segments in peo-
ple and animals. To tell whether a picture contains a
person or an animal, our program attempts to con-
struct a sequence of groups according to the body
plan. For example, in the case of horses (using the
plan given in figure 1) the program first collects body,
neck and leg segments; it then constructs pairs that
could be views of a body-neck pair, or a body-leg pair;
from these pairs, it attempts to construct triples and
then quadruples.

At each stage of the plan, a predicate is available
which tells whether a group could correspond to some
view of the segments described. For a sufficiently large



collection of segments, the fact that such predicates
are non-trivial follows from the existence of kinematic
constraints on mammalian joints. There are two ma-
jor alternatives for constructing these predicates: (1)
For each significant type of joint, use the detailed lit-
erature on joint biomechanics to compute a test based
on mean joint kinematic parameters. This strategy is
subject to spurious precision; the algorithms required
to construct the resulting sets are complex; and the
only mechanism for accounting for individual varia-
tion is averaging parameters, which may not be suffi-
cient. (2) Use a statistical learning technique to infer
an approximate representation of possible configura-
tions from a variety of example views, producing a
classifier that could, given an assembly, tell whether
it represented a possible view. The advantage of this
approach is that techniques for building effective clas-
sifiers quite efficiently are well established (e.g. [14]),
and that variations from individual to individual could
be captured with a sufficiently large data set.
Statistical learning theory is notoriously uncon-
cerned with the computational efficiency of the classi-
fiers constructed (the introduction in [8] is fairly typi-
cal). This is a serious problem: telling whether an im-
age contains a horse, for example, appears to require
groups of at least four straight ribbons, and searching
over all groups of four straight ribbons is impracti-
cal for typical images. However, a body plan can be
viewed as a sequence of classifiers, where each pred-
icate is a classifier for some sub-assembly. Building
classifiers for various sub-assemblies ensures that only
very few groups are tested at the final stage. The hi-
erarchical structure has the advantage that, if is not
possible to add segments to an assembly, there is still a
working hypothesis about the identity of the assembly.

3 Learning a body plan

It is widely believed that learning will be useful in
computer vision; there are no succesful applications to
date. Much of the difficulty appears to stem from at-
tempts to learn entire representations from contours or
segmented regions with no a prior: information given.
While this approach can be used to improve the effi-
ciency of user browsing (e.g. [12]), it has little to offer
recognition of general objects in general contexts, for
quite good reasons.

Rigorous statistical principles for learning have
been established over the last 20 years; good introduc-
tions appear in [14, 8]. Classifiers are given as decision
boundaries in feature spaces, which are often repre-
sented by parametric classes of implicit functions. In
particular, learning is founded on two principles: that
samples of a distribution provide a representation that

converges quite quickly in probability to that distri-
bution, and that formalising the effects of changes in
parameter on a decision boundary using the Vapnik-
Chervonenkis dimension results in a prediction of the
future risk of using the classifier that also converges
in probability.

As a result, it is in priniciple possible to produce a
classifier that results in low risk both on the training
set (known as empirical risk) and predicted for future
use; typically such classifiers are trained using a large
number of samples compared to the V-C dimension of
the class of decision boundaries used. An important
principle is to keep the V-C dimension of the class
of decision boundaries used as small as possible, in-
volving both thoughtful selection of features, and the
incorporation of as much a priori knowledge as possi-
ble; this point alone justifies representations in terms
of primitives.

We train body plans to achieve a minimum of risk
on the training set (the criterion is usually known as
empirical risk). In general, the individual classifiers in
a body plan cannot be trained separately using this
criterion, because determining the effect of a change
in a given classifier’s parameters on overall risk re-
quires knowing (a) what later classifiers will do with
the assembly the given classifier accepts and (b) what
the distribution of assemblies leaving earlier classifiers
looks like.

However, if we take the view that individual clas-
sifiers in a body plan are defined by sub-assemblies of
the main group, it becomes possible to train all clas-
sifiers simultaneously to get a minimum of empirical
risk. This is achieved by constructing an augmented
feature vector, where each example generates the fea-
ture vector consisting of all data that all the classi-
fiers will see. A single classifier is then trained on this
augmented feature vector; once the classifier has been
trained, by projecting its decision boundary onto the
features associated with each separate assembly, we
obtain the sub-classifiers.

The process can be described formally using the
following notation: the final assembly is a group of k
elements; there is a function f; which computes the
feature vector associated with a group of i elements
(as section 4 indicates, this function will change with
the number of elements but is independent of the el-
ements themselves); the j'th example is gfl; and the
I’th subgroup of 7 elements drawn from gfl is g;:l.

Now consider the augmented feature vector for ex-
ample j given by:

vi = (filgi"), filg)?), - Salgdh), - Fildd), - Felgfh))



and write the projection of this vector onto the space
spanned by the terms corresponding to f; (g;l) as
mi1(vj). The elements of this vector are the fea-
ture vectors for all :-fold combinations taken from the
group. Assume that a classifier is trained to obtain
a minimum of empirical risk on a set of such vectors,
yielding a decision surface S = 0.

Now consider a point in the space m;;(v;); a classi-
fier for sub-assemblies should accept this point if, by
attaching any other assemblies, it was possible to ob-
tain a group for which S >= 0, and should reject it
otherwise. But such a classifier can be obtained by
projecting S into this space; the singular set under
this projection forms a set of possible components for
the decision boundary, which must be sorted to ensure
that the criterion described holds (see figure 2).

This procedure is well known (though complicated)
for S algebraic, where it is known as cylindrical alge-
braic decomposition [1]. By constructing this decom-
position of S, we obtain a set of sub-assembly classi-
fiers that achieves the same empirical risk as S does,
but is potentially computationally more efficient. The
difficulty of cylindrical algebraic decomposition sug-
gests that using classifiers that project well is wise.
Classifiers that have decision boundaries that consist
of unions of axis-aligned boxes are known to have low
V-C dimension, perform well ([8], chap. 20), and
project particularly easily.

4 Describing shape
Marking regions that could be the outline of cylin-

ders is well understood; we use colour and texture
properties, documented in greater detail in [9] to iden-
tify image regions which could be skin or hide. A
version of Canny’s [7] edge detector, with relatively
high smoothing and contrast thresholds, is applied to
these areas to obtain a set of connected edge curves.
Pairs of edge points with a near-parallel local symme-
try [5] are found by a straightforward algorithm, and
sets of points forming regions with roughly straight
axes (“straight ribbons,” after [6]) are found using an
algorithm based on the Hough transformation.

For describing assemblies of ribbons, the ribbons
are abstracted as oriented rectangles, whose width
is given by the average width along the ribbon, and
whose length and axis come from the ribbon spine. Be-
cause this approximation is extremely coarse, it hides
individual variations in segment cross-section (caused
by, say, well defined musculature) and focuses on the
coincidence properties of segments.

One advantage of cylindrical or near cylindrical seg-
ments is that scaled orthography is a quite accept-
able camera model for all practical views. Further-

-

Figure 3: Body plans are robust to changes in aspect;
the top row shows hide pizels for images taken from
the test set, and the bottom row shows corresponding
horse groups. Note that the grouper finds horse groups
appropriately, despite the change from lateral to three-

quarters view. Robustness to more extreme changes in
aspect - for example, an overhead view or a head and
shoulders view - will require extra groups.

more, because even significant amounts of foreshort-
ening (as in a three-quarter view of a horse body) are
no worse than the considerable uncertainty in the lo-
cation of the ends of segments, modelling the effects of
the camera as plane Euclidean actions with isotropic
scaling is acceptable. Shape measurements for seg-
ment groups are then obtained using a canonical frame
(as in, say, [17]). A distinguished segment - usually a
body segment - is chosen to have its center of gravity
at the origin, and is rotated and flipped so that (a)
it is axis aligned and (b) other segments lie in par-
ticular quadrants. Any measurement in such a frame
is invariant; in these frames, the variations between
shapes is surprisingly small.

4.1 The effects of aspect

Variations in appearance with changes in viewpoint
are a primary difficulty in object recognition. Body
plans are intrinsically relatively robust to these effects,
as our experimental results show (see figure 3 and fig-
ure 6). This robustness comes from two main sources:
firstly, the underlying primitives have no significant
view-variation in appearance; secondly, the kinematics
of the assemblies are such that complex inter-primitive
occlusions are not possible, suppressing a rich source
of difficulties

For example, foreshortening between a lateral and
a three-quarter view of a horse is of the same order
of magnitude as the noise in obtaining the length of
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Figure 4. The response ratio, (percent incoming

test images marked/percent incoming control images
marked), plotted against the percentage of test images
marked, for various configurations of the naked people
finder. Labels “A” through “H” indicate the perfor-
mance of the entire system of skin filter and geometri-
cal grouper together. The label “skin” shows the perfor-
mance of the skin filter alone. The labels “a” through
“h” indicate the response ratio for the corresponding
configurations of the grouper; because this number is
always greater than one, the grouper always increases
the selectivity of the overall system. The cases differ by
the type of group required to assert that a naked person
1s present. The horizontal line shows response ratio
one, which would be achieved by chance. The response
ratio increases, and the recall decreases, as the geo-
metric complezity of the groups required to identify a
person increases, suggesting: (1) finding a sufficiently
complex geometric group yields the object (2) that the
body plan used omits important geometric structures.

segments, and so has no effect on the classifier; sim-
ilarly, the layout of a frontal view and a lateral view
is basically the same. In the horse example, views
that are notably absent are head-and-shoulders views
and overhead views; the approach would fail to isolate
horses in such images.

Similarly, the plan used to recognise people empha-
sizes girdles, and lacks appropriate groups for lateral
views; as a result, it is ineffective on such views. In
both cases, the deficit can be dealt with by adding
classifiers to the body plan. We have no results on how
many such classifiers are required; the considerable ro-
bustness of the present implementations suggests that
relatively few are required.

5 Experimental results
We have built two systems to demonstrate the ap-

proach. The first can very accurately tell whether an
image contains a naked person; the second can tell
whether an image contains a horse. In each case, the
approach involves pure object recognition; there is no
attempt to exploit textual cues or user interaction.

5.1 Protocol

It is hard to assess the performance of a system
for which the control group is properly all possible
images. The only appropriate strategy to reduce in-
ternal correlations in the control set appears to be to
use large numbers of control images, drawn from a
wide variety of sources. To improve the assessment,
we used large sets of control images drawn from a total
of seven sources.

In information retrieval, it is traditional to describe
the performance of algorithms in terms of recall and
precision. The algorithm’s recall is the percentage of
test items marked by the algorithm. Its precision is
the percentage of test items in its output. Unfortu-
nately, the precision of an algorithm depends on the
percentage of test images used in the experiment: for
a fixed algorithm, increasing the density of test im-
ages increases the precision. In our application, the
density of test images is likely to vary and cannot be
accurately predicted in advance.

To assess the quality of our algorithm, without de-
pendence on the relative numbers of control and test
images, we use a combination of the algorithm’s recall
and 1ts response ratio. The response ratio is defined
to be the percentage of test images marked by the al-
gorithm, divided by the percentage of control images
marked. This measures how well the algorithm, acting
as a filter, is increasing the density of test images in

its out}&lt set relatlve to its input set.
ked humans
The basic structure of our system is described in [9],

which describes the body plan used; the experimen-
tal results given here are new and much more com-
prehensive. The system segments human skin using
colour and texture criteria, assembles extended seg-
ments, and uses a simple, hand built body plan to sup-
port geometric reasoning. A prefilter excludes from
consideration images which contain insufficient skin
pixels.

Performance was tested using 565 target images of
naked people collected from the internet and by scan-
ning or re-photographing images from books and mag-
azines. There was no pre-sorting for content; however,
only images encoded using the JPEG compression sys-
tem were sampled as the GIF system, which is also of-
ten used for such images, has poor color reproduction
qualities. Test images were automatically reduced to



fit into a 128 by 192 window, and rotated as neces-
sary to achieve the minimum reduction. The system
was controlled against a total of 4302 assorted control
images, containing some images of people but none of
naked people.

Figure 4 graphs response ratio against response for
a variety of configurations of the grouper. The recall
of a skin-filter only configuration is high, at the cost of
poor response ratio. Configurations G and H require
a relatively simple configuration to declare a person
present (a limb group, consisting of two segments),
decreasing the recall somewhat but increasing the re-
sponse ratio. Configurations A-F require groups of at
least three segments. They have better response ratio,
because such groups are unlikely to occur accidentally,
but the recall has been reduced. The selectivity of the
system increases, and the recall decreases, as the ge-
ometric complexity of the groups required to identify
a person increases, suggesting that our representation
used in the present implementation omits a number
of important geometric structures and that the pres-
ence of a sufficiently complex geometric group is an
excellent guide to the presence of an object.

5.3 Horses

The horse system segments hide using colour and
texture criteria and then assembles extended segments
using a body plan to support the geometric reason-
ing. This body plan, which is shown schematically
in figure 1 was learned using a bounding box classi-
fier, that was projected as described above to yield
appropriate subclassifiers; the topology of the body
plan was given in advance. The body plan uses geo-
metric measurements in a canonical frame to describe
segment groups. Each classifier i1s a bounding box
classifier - segment groups are accepted if they lie in
an axis aligned bounding box, and are rejected other-
wise. With appropriate measurements in the canon-
ical frame - for example, length and orientation of a
vector from segment center of gravity to segment cen-
ter of gravity - this classifier is natural.

The body plan is trained by computing an aug-
mented feature vector, as described in section 3, and
constructing a bounding box classifier that achieves
minimum risk, assuming that false positives carry no
risk (an assumption that simplifies training the classi-
fier, and appears to be justified by the tight constraint
placed on the groups). This box is then projected onto
the feature spaces defined by the subgroups, and the
resulting boxes define the individual assemblies in the
body plan. This approach makes training extremely
simple, and yields an effective representation. The
classifier was learned using a total of 102 acceptable
groups, drawn from 38 images; the risk associated with
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Figure 5: The response ratio, (percent incoming

test images marked/percent incoming control images
marked), plotted against the percentage of test images
marked, for various configurations of the horse finder.
Labels “A” through “J” indicate the performance of
the entire system of hide filter and geometrical grouper
together; each label corresponds to a different value of
the robustness parameter described in the text, where
the parameter value increases from “A” to “J” in even
steps. The label “hide” shows the performance of the
hide filter alone. The labels “a” through “” indicate
the response ratio for the corresponding configurations
of the grouper alone; because this number s always
greater than one, the grouper always increases the se-
lectivity of the overall system. The horizontal line
shows response ratio one, which would be achieved by
chance. The grouper displays relatively low recall, but
the groups are clearly extremely distinctive.

a false negative was assumed to be zero, so that the
classifier is simply the bounding box of this set.
Performance was tested using 100 target images
selected from CD 113000 (“Arabian horses”) in the
Corel stock photo library, and 1086 unrelated control
images from the Corel stock photo library. All test
and control images fit into a 128 by 192 window. A
hide filter, modelled on the skin filter described in [9],
but using different parameter settings, marks pixels
that are likely to be hide. Images which contain in-
sufficient hide pixels are excluded from consideration,
leaving 85 test images and 260 control images.
Ribbon finding for horse images is complicated by
the need to find legs, which are relatively narrow.
Looking for narrow ribbons can generate very large
numbers of local symmetries, to the point where rib-
bon grouping is overwhelmed. This occurred for a
total of 13 test images and 116 control images that



had already passed the hide filter, an unusually large
number. Performance of the hide filter is estimated
including these images; performance of the grouper is
estimated excluding these images and excluding im-
ages used for learning (a total of 34 test images);
and overall performance is estimated by multiplying
the two separate recall and precision figures. This is
the fairest approach to estimating performance in this
case, where the difficulty is clearly an implementation
error, and the training set is usually better excluded
in estimating performance.

For the case of people, the classifier asserts a person
is present if a sufficiently complex geometric group is
present. In the case of horses, a considerable improve-
ment in performance can be obtained by noting that,
if a sufficiently large set of segments is passed to the
final classifier (for example, for an image of a horse in
front of a fence, where many ribbons must be found),
it is likely to mark a horse erroneously. Thus, for a
picture to be marked as containing a horse, we re-
quire that (a) at least one body-leg-leg-neck group be
present and (b) that the ratio of the number of such
groups to the number of groups presented to the final
stage, be larger than a parameter, which for conve-
nience we call the robustness parameter.

For a good choice of the robustness parameter, the
system displays a recall of 15% and a response ratio of
23; while the recall is relatively low, the response ratio
is very high, meaning that the system effectively ex-
tracts image semantics. The effects of ribbon finding
difficulties make it hard to represent the result set ex-
actly, but figure 6 shows the images recovered for this
case. Note the horses returned are in a variety of as-
pects, for a large control set there are very few control
images returned (the high response ratio ensures this)
and that one of the control images returned contains
an animal that looks a lot like a horse.

As figure 5 shows, increasing the robustness param-
eter leads to decreased recall, but better response ra-
tio; we envisage a user setting a value according to
whether they require many test images, but are toler-
ant of false positives, or would prefer a more focussed
set of responses. Figure 6 shows the set of horse images
and control images marked for the most selective set-
ting of the parameter. The parameter essentially at-
tempts to compensate for the relatively impoverished
descriptions of image primitives; better descriptions
of image primitives might lead to ribbons associated
with fencing and the like being suppressed before they
reach the final classifier. Table 1 shows the body plan
is efficient.

Figure 6: All images returned from a control set of
1086 and a test set of 100 images, for the horse query
with robustness parameter set to the most selective
value. The first line of horse images comes from the
training set; the rest from the test set. A further four
control images could be expected to come from the im-
ages that passed the hide filter, but overwhelmed the
ribbon finding algorithm. The test images recovered
contain horses in a wide range of aspects; one control
tmage contains an animal that might reasonably pass
for a horse.

6 Discussion and Conclusions

We have demonstrated a representation for people
and animals in terms of primitives and their geomet-
ric relations. The representation provides grouping
information at the image level; we have demonstrated
that this representation can be learned from examples,
and is extremely efficient compared to computation-
ally more naive classifiers.

The representation is robust to variations in as-
pect, and is effective at quite abstract recognition
queries because it emphasizes within-class similarities
of structure over geometric detail. These results are
good, taking into account the abstraction of the query
and the generality of the control images; for example,
a group of 1000 control and 100 test images (a realistic
test) presented to the horse program would result in
about 15 test images and 7 control images returned,
meaning the program is a practical, but not perfect,
tool for extracting semantics.

Much remains to be done. The description of prim-
itives is impoverished, and incorporates no shading
information. In particular, the main differences be-
tween, say, leopards and horses is in the appearance of
their pelts; clearly, segmenting leopards from general
backgrounds requires further work. Some promising
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Table 1: Body plans are efficient; the number of seg-
ment groups handled by the final classifier is very
much less than the total number of four segment
groups. FEfficiency of body plans can be measured in
two ways; ng s the number of four segment groups
i an image, n. s the number of calls to the final
classifier of the body plan, and an overbar denotes the
mean over all test and control tmages that could be
presented to the grouper. (nc/n4) tends to underesti-
mate the efficiency, because it penalises images where
there are very few groups. Clearly, by either statistic,
body plans are a significant improvement over simple
classifiers, at no cost in empirical risk.

lines of attack on this problem are sketched in [10].

The present system involves one classifier for horses,
and another for people. While the structure of the
classifiers contains many teasing analogies, it is not
yet obvious how one uses these similarities to build
a single process that, as ribbons are accreted into an
assembly, can tell a horse from a person, while using
the same underlying set of activities. The emphasis
on within-class similarities over individual variations
is useful at early stages of classification, but much po-
tentially valuable information has been thrown away;
for example, the variation in width along a ribbon
should give information about such matters as under-
lying musculature, which should be helpful in identi-
fying a segment.

As our results show, even in the present quite prim-
itive form, body plans enhance model information by
organising it into a form that aids segmentation and
grouping, and simplifies learning; the result is a repre-
sentation that is clearly capable of extracting seman-
tic information from an image for two difficult and
abstract cases.
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