
Clustering Art

Abstract

We extend a recently developed method [1] for
learning the semantics of image databases using text and
pictures. We incorporate statistical natural language
processing in order to deal with free text. We demonstrate
the current system on a difficult dataset, namely 10,000
images of work from the Fine Arts Museum of San
Francisco. The images include line drawings, paintings,
and pictures of sculpture and ceramics. Many of the
images have associated free text whose varies greatly,
from physical description to interpretation and mood.

We use WordNet to provide semantic grouping
information and to help disambiguate word senses, as
well as emphasize the hierarchical nature of semantic
relationships.  This allows us to impose a natural
structure on the image collection, that reflects semantics
to a considerable degree. Our method produces a joint
probability distribution for words and picture elements.
We demonstrate that this distribution can be used (a) to
provide illustrations for given captions and (b) to
generate words for images outside the training set.
Results from this annotation process yield a quantitative
study of our method.  Finally, our annotation process can
be seen as a form of object recognizer that has been
learned through a partially supervised process.

1. Introduction

It is a remarkable fact that, while text and images are
separately ambiguous, jointly they tend not to be; this is
probably because the writers of text descriptions of
images tend to leave out what is visually obvious (the
colour of flowers, etc.) and to mention properties that are
very difficult to infer using vision (the species of the
flower, say).  We exploit this phenomenon, and extend a
method for organizing image databases using both image
features and associated text ([1], using a probabilistic
model due to Hofmann [2]). By integrating the two kinds

of information during model construction, the system
learns links between the image features and semantics
which can be exploited for better browsing (§3.1), better
search (§3.2), and novel applications such as associating
words with pictures, and unsupervised learning for object
recognition (§4). The system works by modeling the
statistics of word and feature occurrence and co-
occurrence. We use a hierarchical structure which further
encourages semantics through levels of generalization, as
well as being a natural choice for browsing applications.
An additional advantage of our approach is that since it is
a generative model, it implicitly contains processes for
predict ing image components—words and
features—from observed image components. Since we
can ask if some observed components are predicted by
others, we can measure the performance of the model in
ways not typically available for image retrieval systems
(§4). This is exciting because an effective performance
measure is an important tool for further improving the
model (§5).

A number of other researchers have introduced
systems for searching image databases.  There are
reviews in [1, 3]. A few systems combine text and image
data. Search using a simple conjunction of keywords and
image features is provided in Blobworld [4]. Webseer [5]
uses similar ideas for query of images on the web, but
also indexes the results of a few automatically estimated
image features. These include whether the image is a
photograph or a sketch and notably the output of a face
finder. Going further, Cascia et al integrate some text and
histogram data in the indexing [6]. Others have also
experimented with using image features as part of a query
refinement process [7]. Enser and others have studied the
nature of the image database query task [8-10]. Srihari
and others have used text information to disambiguate
image features, particularly in face finding applications
[11-15].

Our primary goal is to organize pictures in a way that
exposes as much semantic structure to a user as possible.
The intention is that, if one can impose a structure on a
collection that “makes sense” to a user, then it is possible



for the user to grasp the overall content and organization
of the collection quickly and efficiently.  This suggests a
hierarchical model which imposes a coarse to fine, or
general to specific, structure on the image collection.

2. The Clustering Model

Our model is a generative hierarchical model, inspired
by one proposed for text by Hofmann [2, 16], and first
applied to multiple data sources (text and image features)
in [1]. This model is a hierarchical combination of the
assymetric clustering model which maps documents into
clusters, and the symmetric clustering model which
models the joint distribution of documents and features
(the “aspect” model). The data is modeled as being
generated by a fixed hierarchy of nodes, with the leaves
of the hierarchy corresponding to clusters. Each node in
the tree has some probability of generating each word,
and similarly, each node has some probability of
generating an image segment with given features. The
documents belonging to a given cluster are modeled as
being generated by the nodes along the path from the leaf
corresponding to the cluster, up to the root node, with
each node being weighted on a document and cluster
basis. Conceptually a document belongs to a specific
cluster, but given finite data we can only model the
probability that a document belongs to a cluster, which
essentially makes the clusters soft. We note also that
clusters which have insufficient membership are
extinguished, and therefore, some of the branches down
from the root may end prematurely.

The model is illustrated further in Figure 1. To the
extent that the sunset image illustrated is in the third
cluster, as indicated in the figure, its words and segments
are modeled by the nodes along the path shown. Taking
all clusters into consideration, the document is modeled
by a sum over the clusters, weighted by the probability
that the document is in the cluster. Mathematically, the
process for generating the set of observations D
associated with a document d can be described by
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where c indexes clusters, i indexes items (words or image
segments), and l indexes levels.   Notice that D is a set of
observations that includes both words and image
segments.

2.1. An Alternative Model

Note than in (1) there is a separate probability distribution
over the nodes for each document. This is an  advantage
for search as each document is optimally  characterized.
However this model is expensive in space, and documents
belonging mostly to the same cluster can be quite

different because their distribution over nodes can differ
substantially. Finally, when a new document is
considered, as is the case with the "auto-annotate"
application described below, the distribution over  the
nodes must be computed using an iterative process. Thus
for some  applications we propose a simpler variant of the
model which uses a cluster dependent, rather than
document dependent, distribution over the nodes.
Documents are generated with this model according to
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In training the average distribution, P l c( | ) , is maintained
in place of a document specific one; otherwise things are
similar. We will refer to the standard model in (1) as
Model I, and the model in (2) as Model II. Either model
provides a joint distribution for words and image
segments; model I by averaging over documents using
some document prior and model II directly.

The probability for an item, P i l c( | , ) , is conditionally
independent, given a node in the tree. A node is uniquely
specified by cluster and level. In the case of a word,
P i l c( | , )  is simply tabulated, being determined by the
appropriate word counts during training. For image
segments, we use Gaussian distributions over a number of
features capturing some aspects of size, position, colour,
texture, and shape. These features taken together form a

Sun
Sky
Sea
Waves

Higher level nodes emit
more general words and
blobs (e.g. sky)

Lower level nodes
emit more specific
words and blobs
(e.g. waves)

Moderately general
words and blobs
(e.g. sun, sea)

Figure 1. Illustration of t he generative process
implicit in the statistical model. Each document
has some probability of being in each cluster. To
the extent that it is in a given cluster, it is
modeled by being generated by sampling from
the nodes on the path to the root.



feature vector X. Each node, subscripted by cluster c, and
level l, specifies a probability distribution over image
segments by the usual formula.  In this work we assume
independence of the features, as learning the full
covariance matrix leads to precision problems. A
reasonable compromise would be to enforce a block
diagonal structure for the covariance matrix to capture the
most important dependencies.

To train the model we use the Expectation-
Maximization algorithm [17]. This involves introducing
hidden variables H d c,  indicating that training document d
is in cluster c, and Vd i l, ,  indicating that item i of document
d was generated at level l. Additional details on the EM
equations can be found in [2].

We chose a hierarchical model over several non-
hierarchal possibilities because it best supports browsing
of large collections of images. Furthermore, because some
of the information for each document is shared among the
higher level nodes, the representation is also more
compact than a similar non-hierarchical one. This
economy is exactly why the model can be trained
appropriately. Specifically, more general terms and more
generic image segment descriptions will occur in the
higher level nodes because they occur more often.

3. Implementation

Previous work [1] was limited to a subset of the Corel
dataset and features from Blobworld  [4]. Furthermore,
the text associated with the Corel images is simply 4-6
keywords, chosen by hand by Corel employees. In this
work we incorporate simple natural language processing
in order to deal with free text and to take advantage of
additional semantics available using natural language
tools (see §4). Feature extraction has also been improved
largely through Normalized Cuts segmentation [18, 19].
For this work we use a modest set of features, specifically
region color and standard deviation, region average
orientation energy (12 filters), and region size, location,
convexity, first moment, and ratio of region area to
boundary length squared.

3.1 Data Set

We demonstrate the current system on a completely
new, and substantially more difficult dataset, namely
10,000 images of work from the Fine Arts Museum of
San Francisco. The images are extremely diverse, and
include line drawings, paintings, sculpture, ceramics,
antiques, and so on. Many of the images have associated
free text provided by volunteers. The nature of this text
varies greatly, from physical description to interpretation
and mood.   Descriptions can run from a short sentence to

several hundred words, and were not written with
machine interpretation in mind.

3.2 Scale

Training on an large image collection requires
sensitivity to scalability issues. A naive implementation
of the method described in [2] requires a data structure
for the vertical indicator variables which  increases
linearly with four parameters: the number of images, the
number of  clusters, the number of levels, and the number
of items (words and image segments).  The dependence
on the number of images can be removed at the expense
of programming complexity by careful updates in the EM
algorithm as described here. In the naive implementation,
an entire E step is completed before the M step is begun
(or vice versa). However, since the vertical indicators are
used only to weight sums in the M step on an image by
images bases, the part of   the E step which computes the
vertical indicators can be interleaved with the part of the
M step which updates sums based on those indicators.
This means that the storage for the vertical indicators can
be recycled, removing the dependency on the number of
images. This requires some additional   initialization and
cleanup of the loop over points (which contains a mix of
both E and M parts). Weighted sums must be converted
to means after all images have been visited, but before the
next iteration. The storage reduction also applies to the
horizontal indicator variables (which has a  smaller data
structure).  Unlike the naive implementation, our version
requires having both a "new" and "current" copy of the
model (e.g. means, variances, and word emission
probabilities), but this extra storage is  small compared
with the overall savings.

4. Language Models

We use WordNet [20] (an on-line lexical reference
system, developed by the Cognitive Science Laboratory
at Princeton University), to determine word senses and
semantic hierarchies. Every word in WordNet has one or
more senses each of which has a distinct set of words
related through other relationships such as hyper- or
hyponyms (IS_A), holonyms (MEMBER_OF) and
meronyms (PART_OF).  Most words have more than one

Figure 2: Four possible senses of the word “path”



sense.  Our current clustering model requires that the
sense of each word be established. Word sense
disambiguation is a long standing problem in Natural
Language Processing and there are several methods
proposed in the literature [21-23].  We use WordNet
hypernyms to disambiguate the senses.

For example, in the Corel database, sometimes it is
possible that one keyword is a hypernym of one sense of
another keyword.  In such cases, we always choose the
sense that has this property.  This method is less helpful
for free text, where there are more, less carefully chosen,
words.  For free text, we use shared parentage to identify
sense, because we assume that senses are shared for text
associated with a given picture (as in Gale et. al’s one
sense per discourse hypothesis [24]).

Thus, for each word we use the sense which has the
largest hypernym sense in common with the neighboring
words.  For example, figure 2 shows four available senses
of the word path.  Corel figure no. 187011 has keywords
path, stone, trees and mountains. The sense chosen is
path<-way<-artifact<-object.

 The free text associated with the museum data varies
greatly, from physical descriptions to interpretations and
descriptions of mood. We used Brill's part of speech
tagger [25] to tag the words; we retained only nouns,
verbs, adjectives and adverbs, and only the hypernym
synsets for nouns. We used only the six closest words for
each occurrence of a word to disambiguate its sense.
Figure 3 shows a typical record; we use WordNet only on
descriptions and titles. In this case, the word “vanity” is
assigned the furniture sense.

For the Corel database, our strategy assigns the correct
sense to almost all keywords. Disambiguation is more
difficult for the museum data. For example, even though
"doctor" and "hospital" are in the same concept, they have
no common hypernym synsets in WordNet and if there
are no other words helping for disambiguation it may not
be possible to obtain the correct sense.

5. Testing the System

We applied our method to 8405 museum images, with
an additional 1504 used as held out data for the
annotation experiments. The augmented vocabulary for
this data had 3319 words (2439 were from the associated
text, and the remainder were from WordNet).  We used a
5 level quad tree giving 256 clusters. Sample clusters are
shown in Figure 5. These were generated using Model I.
Using Model II to fit the data yielded clusters which were
qualitatively at least as coherent.

5.1. Quality of Clusters

Our primary goal in this work is to expose structure in
a collection of image information.  Ideally, this structure
would be used to support browsing.  An important goal is
that users can quickly build an internal model of the
collection, so that they know what kind of images can be
expected in the collection, where to look for them.  It is
difficult to tell directly whether this goal is met.

However, we can obtain some useful indirect
information.  In a good structure, clusters would “make
sense” to the user.  If the user finds the clusters coherent,
then they can begin to internalize the kind of structure
they represent. Furthermore, a small portion of the cluster
can be used to represent the whole, and will accurately
suggest the kinds of pictures that will be found by
exploring that cluster further.

In [1] clusters were verified to have coherence by having
a subject identify random clusters versus actual clusters.
This was possible at roughly 95% accuracy.  This is a
fairly basic test; in fact, we want clusters to “make sense”
to human observers.  To test this property, we showed 16
clusters to a total of 15 naïve human observers, who were
instructed to write down a small number of words that
captured the sense of the cluster for each of these clusters.
Observers did not discuss the task or the clusters with one
another. The raw words appear coherent, but a better test
is possible. For each cluster, we took all words used by
the observers, and scored these words with the number of
WordNet hypernyms they had in common with other
words (so if one observer used “horse”, and another
“pony”, the score would reflect this coherence).  Words
with large scores tend to suggest that clusters are “make
sense” to viewers.  Most of our clusters had words with
scores of eight or more, meaning that over half our
observers used a word with similar semantics in
describing the cluster.  In figure 4, we show a histogram
of these scores for all sixteen clusters; clearly, these
observers tend to agree quite strongly on what the clusters
are “about”.

Figure 3: a typical record associated with an
image in the Fine Arts Museum of San Francisco
collection.



5.2. Auto-illustration

In [1] we demonstrated that our system supports “soft”
queries. Specifically, given an arbitrary collection of
query words and image segment examples, we compute
the probability that each document in the collection
generates those items. An extreme example of such search
is auto-illustration, where the database is queried based
on, for example, a paragraph of text. We tried this on text
passages from the classics. Sample results are shown in
Figure 6.

5.3. Auto-annotation

In [1] we introduced a second novel application of our
method, namely attaching words to images. Figure 7
shows an example of doing so with the museum data.

6. Discussion

Both text and image features are important in the
clustering process. For example, in the cluster of human
figures on the top left of figure 5, the fact that most
elements contain people is attributable to text, but the fact
that most are vertical is attributable to image features;
similarly, the cluster of pottery on the bottom left exhibits
a degree of coherence in its decoration (due to the image
features; there are other clusters where the decoration is
more geometric) and the fact that it is pottery (ditto text).
Furthermore, by using both text and image features we
obtain a joint probability model linking words and
images, which can be used both to suggest images for
blocks of text, and to annotate images.  Our clustering
process is remarkably successful for a very large
collection of very diverse images and free text
annotations.  This is probably because the text associated

(1) structure, landscape (2) horse (3) tree (4) war

(5) people (6) people (7) people (8)figure,animal,porcelain

(9) mountain, nature (10) book (11) cup (12) people

(13) plate (14) portrait (15)people, religion (16)people, art, letter

Figure 4.  Each histogram corresponds to a cluster and shows the score (described in the text) for the 10
words with highest score used to describe that cluster by human observer in that cluster.  The scales for the
histograms are the same, and go in steps of 2; note that most clusters have words with scores of eight or
above, meaning that about half of our 15 observers used that or word with similar semantics to describe the
cluster.  Number of total words for each cluster varies between 15-35.



with images typically emphasizes properties that are very
hard to determine with computer vision techniques, but
omits the “visually obvious”, and so the text and the
images are complementary.

 We mention some of many loose ends.  Firstly, the
topology of our generative model is too rigid, and it
would be pleasing to have a method that could search
topologies.  Secondly, it is still hard to demonstrate that
the hierarchy of clusters represents a semantic hierarchy.
Our current strategy of illustrating (resp. annotating) by
regarding text (resp. images) as conjunctive queries of
words (resp. blobs) is clearly sub-optimal, as the elements
of the conjunction may be internally contradictory; a
better model is to think in terms of robust fitting. Our
system produces a joint probability distribution linking
image features and words.  As a result, we can use images
to predict words, and words to predict images.  The
quality of these predictions is affected by (a) the mutual
information between image features and words under the
model chosen and (b) the deviance between the fit
obtained with the data set, and the best fit. We do not
currently have good estimates of these parameters.
Finally, it would be pleasing to use mutual information
criteria to prune the clustering model.
   Annotation should be seen as a form of object
recognition.  In particular, a joint probability distribution
for images and words is a device for object recognition.
The mutual information between the image data and the
words gives a measure of the performance of this device.
Our work suggests that unsupervised learning may be a
viable strategy for learning to recognize very large
collections of objects.
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Figure 5.  Some sample clusters from the museum data. The theme
of the upper left cluster is clearly female figurines, the upper right
contains a variety of horse images, and the lower left is  a
sampling of the ceramics collection. Some clusters are less perfect,
as illustrated by the lower right cluster where a variety of images
are blended with seven images  of fruit.



large importance attached fact old dutch century more command whale ship was per son
was divided officer word means fat cutter time made days was general vessel whale
hunting concern british title old  dutch official present rank such more good american
officer boat night watch ground command ship deck grand political sea men mast way
professional superior

“The large importance attached to the
harpooneer's vocation is evinced by the fact,
that originally in the old Dutch Fishery, two
centuries and more ago, the command of a
whale-ship was not wholly lodged in the
person now called the captain, but was
divided between him and an officer called the
Specksynder.  Literally this word means Fat-
Cutter; usage, however, in time made it
equivalent to Chief Harpooneer. In those
days, the captain's authority was restricted to
the navigation and general management of the
vessel; while over the whale-hunting
department and all its concerns, the
Specksynder or Chief Harpooneer reigned
supreme. In the British Greenland Fishery,
under the corrupted title of Specksioneer, this
old Dutch official is still retained, but his
former dignity is sadly abridged. At present
he ranks simply as senior Harpooneer; and as
such, is but one of the captain's more inferior
subalterns.  Nevertheless, as upon the good
conduct of the harpooneers the success of a
whaling voyage largely depends, and
since …“

Figure 6. Examples of auto-illustration using a passage from Moby Dick , half of which is reproduced to the right
of the images. Below are the words extracted from the passage and used as a conjunctive probabilistic query.

Associated Words
KUSATSU SERIES STATION TOKAIDO TOKAIDO
GOJUSANTSUGI PRINT HIROSHIGE

Predicted Words (rank order)
tokaido print hiroshige object artifact series
ordering gojusantsugi station facility
arrangement minakuchi sakanoshita maisaka a

Associated Words
SYNTAX LORD PRINT ROWLANDSON

Predicted Words (rank order)
rowlandson print drawing life_form person
object artifact expert art creation animal
graphic_art painting structure view

Associated Words
DRAWING ROCKY SEA SHORE

Predicted Words (rank order)
print hokusai kunisada object artifact huge
process natural_process district
administrative_district state_capital rises

Figure 6. Some annotation results showing the original image, the N-Cuts segmentation, the associated words, and the
predicted words in rank order. The test images were not in the training set, but did come from the same set of CD’s used
for training. Keywords in upper-case are in the vocabulary. The first two examples are excellent, and the third one is a
typical failure. Some of the words make sense given the segments, but the semantics are incorrect.


