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Abstract 
Color constancy is the skill by which it is possible to tell the color of an object even under a colored light. I inter- 
pret the color of an object as its color under a fixed canonical light, rather than as a surface reflectance function. 
This leads to an analysis that shows two distinct sets of circumstances under which color constancy is possible. 
In this framework, color constancy requires estimating the illuminant under which the image was taken. The estimate 
is then used to choose one of a set of linear maps, which is applied to the image to yield a color descriptor at 
each point. This set of maps is computed in advance. 

The illuminant can be estimated using image measurements alone, because, given a number of weak assumptions 
detailed in the text, the color of the illuminant is constrained by the colors observed in the image. This constraint 
arises from the fact that surfaces can reflect no more light than is cast on them. For example, if one observes 
a patch that excites the red receptor strongly, the illuminant cannot have been deep blue. 

Two algorithms are possible using this constraint, corresponding to different assumptions about the world. The 
first algorithm, Crule will work for any surface reflectance. Crule corresponds to a form of coefficient rule, but 
obtains the coefficients by using constraints on illuminant color. The set of illuminants for which Crule will be 
successful depends strongly on the choice of photoreceptors: for narrowband photoreceptors, Crule will work 
in an unrestricted world. The second algorithm, Mwext, requires that both surface reflectances and illuminants 
be chosen from finite dimensional spaces; but under these restrictive conditions it can recover a large number 
of parameters in the illuminant, and is not an attractive model of human color constancy. 

Crule has been tested on real images of Mondriaans, and works well. I show results for Crule and for the Retinex 
algorithm of Land (Land 1971; Land 1983; Land 1985) operating on a number of real images. The experimental 
work shows that for good constancy, a color constancy system will need to adjust the gain of the receptors it employs 
in a fashion analagous to adaptation in humans. 

1 Introduction 

People experience color as a surface property that is 
largely unaffected by the color of the illuminating light. 
This phenomenon is known as color constancy. The 
mechanisms of human color constancy and the circum- 
stances under which these mechanisms work are the 
subjects of extensive debate. Color constancy is a val- 
uable skill for machine vision, because it allows state- 
ments about surface properties that are invariant to 
viewing conditions. There is a wide and active literature 
on color constancy in humans and in machines, which 
is extensively reviewed in (Forsyth 1989b). 
The author acknowledges the support of the Rhodes Trust and of 
Magdalen College, Oxford. 

.- 

Apparently the oldest algorithm for color constancy 
is the coefficient rule, which is normally attributed to 
von Kries (von Kries 1878; see also West and Brill 1982; 
Worthey 1985; Worthey and Brill 1986). This algorithm 
adjusts the gain of each class of photoreceptor (for ex- 
ample, the red, green, and blue channels in a color 
camera) independently to obtain surface color descrip- 
tors. The factors by which the gains are adjusted are 
called the coefficients. Different authors use different 
hctors: for example, Brill and West (Brill and West 
1981) divide the output of each photoreceptor class by 
its output for a surface patch known to be white, and 
Land (Land and McCann 1971) chooses coefficients such 
that the geometric average of photoreceptor responses 
is constant for each class (Brainard and Wandell 1986). 
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6 Forsyth 

Adjusting gains is equivalent to regarding the camera 
output at each point in the image as a vector with one 
entry for each photoreceptor class, and multiplying this 
vector by a diagonal matrix, where the diagonal ele- 
ments are the coefficients, which do not change from 
point to point. 

The coefficient rule can fail when the spectral sensi- 
tivities of the photoreceptor classes are not disjoint be- 
cause in this case the photoreceptor measurements are 
not independent. Land (Land 1983) has observed that 
if some linear combination of photoreceptor spectral 
sensitivities is independent, it is possible to adjust this 
linear combination instead. To achieve this adjustment, 
one multiplies the camera output vector by a constant 
matrix (say A) which changes the basis to that in which 
the outputs are independent, by a diagonal matrix (say 
A), and then by A-'. The diagonal terms in A can 
again be chosen in a number of different ways. 

Recent research, for example (Sallstrom 19n; Buchs- 
baum 1980; Brill and West 1981; Brainard and Wandell 
1986; D'Zmura and Lennie 1986; Maloney 1986; 
Maloney and Wandell 1986; Wandell 1981, Gershon 
1988; and Ho et al. 1988), has modeled surface reflec- 
tances by a finite dimensional space of functions and 
illuminants by another finite dimensional space of func- 
tions. Surface reflectances and illuminants can then 
each be represented by a frnite coefficient vector, and 
the imaging process is an algebraic interaction between 
the surface reflectance coefficients and the illuminant 
coefficients. The richness and complexity of these inter- 
actions means that the coefficient rule is insufficient 
to model them. This has led to a belief that the coeffi- 
cient rule is an inappropriate technique for color con- 
stancy (Brainard and Wandell 1986). Despite this belief, 
this paper demonstrates that the coefficient rule has 
much to recommend it. 

Given a surface with a known illuminant, it is possi- 
ble to measure only a finite number of properties of 
its surface reflectance-at most, one property for each 
class of photoreceptor. As a result, it is neither correct 
nor helpful to see color constancy as a problem of meas- 
uring surface reflectance. Rather, color constancy pro- 
grams attempt to provide surface color descriptors that 
are unaffected by changes in the illuminant, and are 
not trivial (e.g., are always fixed at some value for every 
surface under every light). In this article, I use the ap- 
pearance of a patch under a canonical illuminant as a 
descriptor. According to this approach, color constancy 

involves predicting what an image would have looked 
like, had it been taken under the canonical illuminant. 
This requires determining what illuminant was in fact 
used. The illuminant information in turn specifies a 
map, taken from a set prepared in advance, which is 
applied to the image. The output of this map is the pre- 
dicted appearance of the image under the canonical 
illuminant-that is, the color descriptors. 

First, I use this approach to determine under what 
circumstances color constancy is possible. Then, to 
determine the illuminant, I use the observation that only 
a limited set of photoreceptor responses is possible 
under any given illuminant, because surfaces can reflect 
no more light than is cast on them. This leads to a con- 
straint on the illuminant, because observing a photo- 
receptor response is prima facie evidence that certain 
illuminants were not employed. For example, one will 
not observe a strong response from a red photoreceptor 
under a blue light, because to do so wou!d require that 
some surface reflect more red light than is actually fall- 
ing on it. In fact, if one observes a strong response from 
a red photoreceptor, then the illuminant cannot be blue. 
M algorithms result from this analysis, distinguished 

by the assumptions necessary for them to work. Crule 
is a simple algorithm that works for an infinite dimen- 
sional set of surface reflectances, given sufficiently 
strongly controlled illuminants. Crule forms descriptors 
using the coefficient rule, with a novel technique for 
choosing coefficients. A more complex algorithm, 
Mwext, arises in the case cf finite dimensional sets of 
surface reflectances. Restricting surface reflectances to 
a finite dimensional set means that the world is strongly 
constrained, so that this algorithm is able to recover 
a large number of parameters in the illuminant. Although 
Crule requires either a strong constraint on the illumi- 
nant or particular photoreceptor properties to succeed. 
Mwext requires unusual properties of both the illurni- 
nant and of surface reflectances. 

2 Preliminary Assumptions 

Many effects can confound color constancy in the real 
world. Surfaces receive light from other surfaces as well 
as from the primary source, so that the effective illunli- 
nant seen by one surface may differ considerably from 
that seen by another. Shadows create an ambiguity he- 
tween one patch, half of which is in shadow, and two 
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patches, one of which is darker than the other. If sur- 
faces are not at a fixed orientation to the light source, 
,t is not always possible to determine whether a patch 
is dark, or is oriented so that it receives little light. 

No present programs can resolve these ambiguities. 
Very little is known about how they could be resolved. 
Research on color constancy is commonly confined to 
considering a Mondriaan world, a world of flat, frontally 
presented collages of colored paper, where these ambi- 
guities do not occur. In this article, I consider only the 
Mondriaan world, because, although the problem of 
color constancy in this world is only marginally r-1 evant 
to building machines that can see, solving this problem 
is necessary before it will be possible to build sophisti- 
cated color constancy programs. 

A number of preliminary assumptions are necessary. 
These are detailed here. 

1. All surfaces are flat, and frontally presented and 
there are no significant mutual illumination effects. 
No shadowing occurs. 

2 .  There is a single illuminant, which does not vary 
over space. 

3. All surfaces are Lambertian, and all reflection is 
diffuse. A surface’s albedo varies with wavelength 
only, and this variation is described by a surface 
reflectance function. Surfaces do not fluoresce. 

4. Color constancy consists of two distinct problems. 
Firstly, the illuminant must be estimated in some 
way. Secondly, some statement about the properties 
of imaged surfaces must be obtained from that esti- 
mate and from the responses of the receptors. 

5. The product of any surface reflectance function, any 
illurninant function, and any photoreceptor sensitiv- 
ity can be integrated with respect to wavelength. 
Surface reflectance functions are never greater than 
one, nor less than zero. These are very weak 
assumptions. 

Many of these assumptions are violated in practice. 
Assumption 1 clearly does not apply to the real world. 
A body of work exists that attempts to relax assump- 
tion 2. This is discussed briefly in section 7. The wings 
of most butterflies and many birds, for example, violate 
assumption 3, because their color comes from inter- 
ference effects. Although surfaces are often assumed 
Lambertian in computer vision, there is very little in- 
fornation about the validity of this assumption in gen- 
eral--for a clear presentation of the available evidence, 
bee (Brelstaff 1988). Some recent work has used spec- 

ular components of reflected light to measure the illu- 
minant color (Lee 1986; Klinker et al. 1987); the idea 
is an old one, and earlier work is described in (Judd 
1960). This work encounters difficulties in the dynamic 
range of most cameras (when the aperature is suffi- 
ciently narrow that a specularity does not saturate the 
camera, it is often difficult to determine the color of 
objects to more than two or three bits), and with metals. 
Furthermore, it is not always obvious how surface 
color can be recovered when one knows the illuminant 
color. 

Further assumptions that constrain properties of the 
illuminant will become necessary as the analysis pro- 
ceeds. Although their precise statement requires the 
analysis of the following section, and is deferred until 
that section, the meaning of the assumptions is intui- 
tively reasonable and will be stated here. 

Illurninants are “reasonable.” For example, it is 
unreasonable to expect that one could predict the ap- 
pearance under white light of a surface that one has 
seen under monochromatic light. Furthermore, it 
must be possible to describe each member of the 
set of illurninants that one observes (e.g., with a 
parametrization). 
The photoreceptors are “reasonable,” given the sur- 
faces and the illuminants. For example, it is unrea- 
sonable to expect nontrivial color constancy when 
the illuminants do not excite the photoreceptors. 
Given an illuminant for which two patches are meta- 
mers (that is, evoke the same receptor responses), 
a color constancy algorithm need not predict that they 
will look different under a different light. Metamers 
are common in theory, because there are many 
degrees of freedom in illuminant and surface reflec- 
tance. In practice, physical constraints on surface 
reflectances suggest that metamerism is uncommon 
(Stiles et al. 1977; Maloney 1986). 
There is a variety of different colored objects in the 
image. The colors of these objects are not “unrea- 
sonably” distributed (that is, the scene does not con- 
sist of only shades of some color, for example), and 
there are “sufficient” different colors. Neither term 
can be made precise at this stage. This assumption 
is necessary because the constraints on the illuminant 
become very weak when there are few colors, and 
the process of estimating the illurninant is then prone 
to error. 
For any illuminant, a reasonable measurement of the 
photoreceptor outputs is possible. This is a property 
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of the sensor quantization system. Without this as- 
sumption, an illuminant could be chosen that is so 
deeply colored that some photoreceptor classes have 
poor effective resolution, because they are excited 
weakly or not at all by the illuminant. 

These assumptions are in practice strong. It is not 
always possible to ensure that images contain a wide 
variety of surface colors. Metamerism does occur. It 
is not always possible to control the surface reflectances 
and illurninants such that color constancy is possible. 
Further work is necessary to relax all these assumptions. 

3 The Color Constancy Equation 

In general in what follows, vector quantities are denoted 
by underlining, and vector components by subscripting. 

The set of observably distinct illuminant 
functions, parametrized by some parameter 
vector _r. 
The wavelength parameter. 
The illuminant function corresponding to 
the parameter f .  
The canonical illuminant. 
A set of surface reflectance functions. 
A surface reflectance. 
The number of receptors. 
The kth receptor sensitivity, where k = 0, 
. . ., L - 1. 
+l(X; f )  = pl(h)e(X; !), where 1 = 0, . . ., 
L - 1. This apparently arbitrary term clari- 
fies the development of the theory. 
A member of an orthogonal basis for the 
space spanned by all the @,(A; !), where 
m = 0, ..., L - 1. 
The vector whose components are +,(A; !), 
I =o, ..., L - 1. 
A function chosen from a set of functions, 
parametrized by f which takes the appear- 
ance of a surface under the canonical illumi- 
nant to its appearance under the light repre- 
sented by f .  

Two illuminants are “observably distinct” when, if 
one images all possible surface reflectances under these 
illurninants, one obtains two gamuts where are not ex- 
actly the same set. The response of the kth photorecep- 
tor, viewing a surface reflectances(X) with an illuminant 
e(X; t)  is 

where the integral is over some appropriate range of 
wavelengths. For linear receptors such as CCD cameras, 
observing a very broad class of surfaces without spec- 
ular reflection, this equation will correctly represent 
the output of the kth receptor. The position is more 
complex with human receptors, not the least because 
there is reason to believe that the sensitivity of receptors 
itself varies with the brightness and duration of expo- 
sure of a stimulus (see, for example, Bartleson 1977; 
Wyszecki and Stiles 1980), but at present I consider 
a situation where receptor sensitivity is a function of 
wavelength alone. This is a reasonable model for a CCD 
camera, and any departure from this model is likely 
to introduce unmanageable difficulties. I assume that 
the L classes of photoreceptors in the camera system 
have different, linearly independent spectral sensitiyies. 
If this is not the case, some of the receptors are redun- 
dant and can be ignored. It will appear from the analysis 
below that the choice of receptor spectral sensitivities 
can strongly affect color constancy. The illuminant 
parameter is written as a vector, although it is not obvi- 
ous that it is a vector. Two cases will emerge from the 
analysis below. In the first case, the set of illuminants 
is a finite-dimensional vector space. In the second case, 
it is a smooth manifold. 

The color of a surface will be described by its appear- 
ance under e(X; fl, the canonical illuminant. Note 
that many different surface reflectances cause the same 
receptor responses under the canonical illuminant. Thus, 
each descriptor refers to an equivalence class of surface 
reflectances. Color constancy then involves taking an 
image of a set of surfaces illuminated by some member 
of E, e(X; t),  and predicting its appearance had it been 
illuminated by e(X; fl. It is possible to do this by con- 
structing a function 2 that predicts the receptor re- 
sponses generated by some surface under colored lights, 
given the lighting parameter _t and the receptor responses 
generated by that surface under the canonical illumi- 
nant. Assume that the illuminant is known, and is given 
by I .  We then have 

- [I Z@; fb@) a; !) = 1 g<A; M A )  (1) 

for all s(X). In this way an operation on surface color 
is associated with an illuminant. 

Given this function, the descriptor for a patch in an 
image taken under a known illuminant, whose parameter 
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is !, can be found by computing its preimage in 
*(e; I) .  Figure I shows a gamut observed under white 
light. If represented green or blue light, - -  *(*; t )  would 
skew the gamut to those of figures 2 or 3, respectively. 
If *(-; _t) is bijective, then there is a single possible 
&<riptor for that patch. If not, some number of degrees 
of freedom in the descriptor will remain unconstrained. 
This case is easily detected in practice, because the 
gamut of receptor responses will have fewer than the 
maximum number of degrees of freedom.' This means 
that one or more of the photoreceptors is redundant. 
In this case if one ignores the redundant photoreceptors, 
the analysis below passes through (it will emerge that 
I is linear, so that no intersecting singular behavior is 
possible when it is not bijective). Since there are many 
different possible conventions for managing the unmeas- 
ured degrees of freedom, and because it does not affect 
the analysis, I do not deal with this case further. 

Now consider an orthonormal basis {&,(A), 0 5 m 
i L - I) for the space spanned by the component 
functions @[(A; fl of 2(A; fl. Without loss of gener- 
ality, assume that the L functions +p,(A; f) are linearly 
independent. If they are not, either the receptor spectral 
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Fig. 2. The convex hull of the gamut observed for a Mondriaan image 
under green light. Notice that there are significant differences between 
this gamut, and that of figures 1 and 3. The feasible set consists of 
maps taking this gamut to a subset of the gamut of figure 1. 

fig. 1. The convex hull of the gamut obtained by observing 180 color 
chips under white light. This formed the observed canonical gamut 
for the experimental work. Iff represents the green light for the gamut 
Showninfigure2, ~~:f)un~uldtakethissettoasupersetofthatgamut. 

Fig. 3. The convex hull of the gamut observed for a Mondriaan image 
under blue light. Notice that there are significant differences between 
this gamut, and those of figures 1 and 2. C d e  uses this skewing 
effect to infer possible illuminants. 
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sensitivities are not linearly independent or the canoni- 
cal illuminant has been poorly chosen. It is clear that 
such an orthonormal basis exists (apply the Gramm- 
Schmidt algorithm; see, for example, Eisenschitz 1966). 
Then there is a unique decomposition of both +,(A; f), 
and of +/(A; f )  in terms of this orthonormal basis: say, 

j=L-  I 

+,(A; t") = 2 alj4J;W 
j = O  

Since this basis {&(A), 0 5 m 5 L)  was introduced 
to span the space spanned by the functions +/(A; fl, 
it may be the case that +/(A; f )  does not belong to 
Span{&(A)}, and there will be a residue in the expan- 
sion of +/(A; f )  on this basis. Hence, for some matrix 
with 1, jth component r&), 

i=L-I  

i = l . - l  i = L - l  

i=L- 1 

= c r/;(!)+dk t") + F / ( k  I )  
i=O 

where F, is a residue orthogonal to all the $,,,(A). Sub- 
stituting into equation (l), we obtain 

j=L- 1 

;=0 
* n  (-?(A;  MA) A; 3 = 2 rnj(t) 

+ J FAA; t > s ( A )  dA 
( 2 )  

where qn(*; I )  is the nth component function of 

We may expand s(A) in terms of the basis {&,(A)}, 
as both E and S are subsets of a space of functions. 
Thus, there is a unique decomposition for any s(X): 

- w-; g. 

i=L- I 

s(A) = c Uj$ i (A)  + s*(A) 
i = O  

where s*(A) is a residue orthogonal to each of the &. 
Equation ( 2 )  becomes 

Equation 3 is fundamental to any analysis of color 
constancy. I call equation (3) the color constancy equa- 
tion, and refer to the term 1 F,(A; t)s*(A) dA as the 
residual term. This term is the only impediment to suc- 
cess on the part of a color constancy algorithm. 

In effect, the residual term is that part of the receptor 
response under the illuminant f resulting from proper- 
ties of the surface reflectance function that were not 
observed under the canonical illuminant. Thus, it is 
not possible to predict the residual term without a con- 
straint on surface reflectance functions, or knowledge 
of the illuminant. The simplest case occurs when either 
illuminants or surface reflectances are constrained so 
that the residual term is always zero. If the residual term 
satisfies some relation, color constancy may be possible 
with appropriate constraints on the surface reflectances 
and illuminants. This case is of little interest, and is 
not dealt with here, because the constraints required 
will be very strong. From now on, I assume that con- 
straints on the surface reflectances and the illuminants 
ensure that the residual term is zero. 

Now \ k ( p ;  I )  predicts the appearance of a surface 
under some light represented by f ,  given the responsep 
from the surface under the canonical light. Color con- 
stancy reqllires estimating f and applying q-'(*; f )  to 
the receptor responses observed. Equation (3) shows 
that constructing some nonlinear ?-I(-; _t) is errone- 
ous. The residual terms cannot be determined, or ac- 
counted for by nonlinearity in the form of this function 
without other strong assumptions about the form of sur- 
face reflectance functions. Thus, color constancy is pos- 
sible only in a world where these terms are constrained. 
Since I assume these terms are zero, \k-'(.; I )  is a 
linear map. 

Three alternative preconditions will cause the resid- 
ual term to be zero: 

1. There is a constraint on the illuminant, such that 
the residual terms are zero. In particular, for an) 
illuminant, parametrized by !, the residual term 
F,,(A; I )  = 0, for all n.  In a world where this is the 
case, one can build an algorithm that will work for 
an infinite dimensional set of surface reflectance 
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functions if t can be estimated. I show that one can 
in fact estimate _t and that this constraint naturally 
implies a version of the coefficient rule. 

- .  3 Surface reflectance functions are only L dimensional, 
and in particular are members of the space spanned 
by {$o(h), . . . , ~ $ - , ( h ) } .  In this case a more gen- 
eral mapping of the receptor responses will achieve 
color constancy. Constancy will be possible for an 
infinite dimensional space of illurninants in this case, 
but only a finite dimensional subset of the illumi- 
nants causes any response from the surface at all. 

3. In the third case, surface reflectances are M > L 
dimensional, where M is finite. In this case, we 
assume that the space of surface reflectances is 
spanned by 

{ @ O ( W ,  . , . ?  4 L - I ( M ,  #L(h), ’ ‘ . ?  + M - I ( M )  

where &(A), . . . dL- l (h)  are derived from the 
receptors and the canonical illuminant in the manner 
indicated. Now if every possible illuminant is a 
member of a finite dimensional space of functions 
such that for every ej(h) in some basis of the space 
(and hence for any basis) / p~(h)ej(X)$j(h) dh = 0 
for L 5 j < M and 0 I: k < L,  the residual terms 
will be zero. 

In what follows below, I refer to case 1 as a minimal 
assumption of the first kind, and to cases 2 and 3 being 
minimal assumptions of the second kind. This is because 
the distinction between the case 2 and case 3 assump- 
tions is not strong, whereas the distinction between the 
two kinds of minimal assumption is large. The minimal 
assumption of the first kind corresponds to assuming 
an infinite dimensional set of surface reflectances, and 
a strong constraint on illuminants described in section 
5.1. Minimal assumptions of the second kind corre- 
spond to requiring that surface reflectance functions be 
finite dimensional, with a weaker constraint on the illu- 
minants. These assumptions lead to an algorithm for 
color constancy that differs in its details depending on 
the assumptions employed. Since the minimal assump- 
tions of the second kind are stronger than those of the 
first kind, it is possible to recover more information 
from an image in a world that satisfies the second kind 
than in one that satisfies the first kind. Unfortunately, 
I t  is difficult to be convinced that minimal assumptions 
of the second kind are appropriate for real pictures. If 
none of these assumptions (or stronger ones) apply, 
color constancy is not possible. 

In fact, the results in section 6 suggest that it is suffi- 
cient to ensure that residual terms are always small with 
respect to the receptor responses, at least for minimal 
assumptions of the first kind. 

4 Recovering the Illurninant 

Assume that in the world in which the color constancy 
algorithm is going to work, the residual terms are zero. 
Thus, the illuminants and surface reflectances must be 
such that under any illuminant, one observes only the 
degrees of freedom in surface reflectance that one 
observes under the canonical illuminant. I assume that 
the world in which a color constancy program works 
contains only illuminants that have this property. In sec- 
tion 5, I discuss what illuminants this world could con- 
tain, but for now assume that the set of such illuminants 
is nontrivial. Equation 3 becomes 

This means that the gamut under some illuminant f is 
the image in a linear map of the gamut under the canon- 
ical illuminant. As a result, it is possible to use geo- 
metrical properties of the gamut to estimate which 
linear map was applied, and as a result to determine 
the illuminant. 

Intuitively, one observes only a limited number of 
colors under any given light, because a surface can 
reflect no more light than falls on it, and cannot reflect 
less than no light at all. That is, surface reflectance 
functions are never less than zero, nor greater than one. 
Thus, they form a bounded, closed, and convex subset 
of the space of all square integrable functions. Bounded- 
ness and closedness are obvious: convexity is true be- 
cause iff(h) and g(X) are two such functions, pf(h) 
+ (1 - p)g(X) must lie between zero and one for all 
h and for 0 I p I 1, and so this is a third such func- 
tion. If one were to image every possible surface reflec- 
tance under some illuminant, the resulting gamut would 
also be bounded, closed, and convex, because it is the 
image in a linear map of this subset? Define the canon- 
ical gamut to be the gamut obtained when one images 
every possible surface reflectance under the canonical 
illuminant. Assume that the canonical gamut is known. 

There is a linear map, k(.; I) corresponding to each 
illuminant t ,  which takes the appearance of a surface 
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under the canonical illuminant to its appearance under 
the illuminant f.  By assumption, this map is bijective. 
Given a picture of a set of surfaces, the gamut of this 
picture is a subset of the image of the canonical gamut 
in some bijective linear map. Color constancy requires 
determining what the map was, and applying the inverse 
map. Consider these inverse maps. By definition, no 
observation that originated in a point outside the canon- 
ical gamut corresponds to a surface reflectance. We can 
then immediately rule out any inverse map that takes 
the observed gamut to a proper superset of the canonical 
gamut, because this implies that some surface reflec- 
tance does not lie in the canonical gamut when imaged 
under the canonical illuminant. 

This process leaves a feasible set of linear maps, any 
of which might be the inverse of the map associated 
with the illuminant that formed the image. The minunal 
assumption made corresponds to a further constraint 
on this feasible set, because it is effectively a constraint 
on the form of the illuminant. These constraints are ex- 
plored below, in section 5. The feasible set is the set 
of linear maps that satisfy both the gamut constraint 
and the constraints resulting from the minimal assump- 
tions. The feasible set is thus the set of inverse maps 
corresponding to the illuminants under which the pic- 
ture could have been taken. An estimator can be used 
to choose the most likely inverse map within this set. 

Thus, an algorithm for performing color constancy 
has this form: 

1. Construct the canonical gamut, by observing as 
many surfaces as possible under a single given light. 
This light will be the canonical illuminant, and sur- 
face color is defined to mean the color that the surface 
has when observed under this light. The canonical 
gamut can be approximated by taking the convex hull 
of the union of the gamuts obtained by these obser- 
vations. Call the canonical gamut C. 

2. To construct the feasible set for any patch imaged 
under a constant illuminant: 

Form the convex hull of the gamut observed. Call 
this gamut D. 
Form the set of the L-by-L matrixes, M, of rank 
L such that M(D) C C. The particular minimal 
assumption under which the color constancy algo- 
rithm is operating determines a subset of this set, 
which is the feasible set. 

3. Within this feasible set, use some estimator to 
choose that map most likely to correspond to the 
illuminant. 

4. Apply the chosen map to the receptor responses to 
obtain color descriptors. The color descriptors are 
an estimate of the appearance of the surfaces in the 
original image under the canonical light. 

Which minimal assumption is chosen dramatically 
affects the feasible set. In the next section, I analyze 
these effects and show how the feasible set can be com- 
pletely determined. 

5 The Structure of the Feasible Set 

By assumption, the color constancy algorithm encoun- 
ters only illuminants with particular properties. In this 
section, I show which illuminants possess these prop- 
erties, and demonstrate that the restrictions on illumi- 
nant properties result in restrictions on the linear maps 
associated with the illuminants. For minimal assump- 
tions of the first kind, only a small class of linear maps 
need be considered, and the algorithm can recover few 
degrees of freedom in the illuminant. For minimal 
assumptions of the second kind, the number of degrees 
of freedom in the illuminant that the algorithm can 
recover depends on geometric properties of the gamut, 
but is surprisingly large. 

5.1 Minimal Assumptions of the First Kind 

Assuming that for all f ,  F,(h, f )  = 0 implies, by equa- 
tion 2, that for some r 9 ( f ) :  

Recall that ?(A; f )  is the vector with components 
+/(A; f )  = pl(h)e(h; f ) .  Define a vector-valued func- 
tion, e(h) such that .(A; f )  = e(h; !)e@). Then for a 
matrix R ( ! )  having I ,  jth component r 9 ( f ) ,  we have 

e ( M k  _t) = R(t)e(h)e(k f') 
Assume that R has full rank; if it doesn't, one may 

ignore classes of receptors until the diminished system 
has full rank, and proceed. If e(h; t )  = 0, then either 
e(h; E >  = 0 or p(A) = 0. This caseis of little interest 
because it means that either the scene is not illuminated. 
or the surfaces reflect none of the illuminating light. 
Recall that e(h; I), and e(h; f') are scalar-valued func- 
tions, and consider 
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Then this requires for all X that p(h)  is an eigenvector 
of R(_t). But R ( f )  is a function of f alone and has at 
most L distinct eigenvectors, so the components of e(X) 
must be chosen such that p(X)  is for any h an eigenvec- 
tor of R. This is possible because p(X) represents the 
spectral sensitivity of the sensors, and can be chosen. 
Since the eigenvectors of R(_t) are fixed by the choice 
of sensors, the form of R ( f )  is restricted. This gives 
the form of the illuminants for which the algorithm will 
work. 

For p(X) to be an eigenvector of R for all A, there 
must exist functions k,(X), such that 

i=L-1 

where 

support ( k , ( ~ ) )  n support (k,(x)) = 0, i # j 

and the g, are arbitrarily chosen, linearly independent 
vectors. The terms 5, will be the L eigenvectors of 
R(r ) .  These are a result of the choice of receptor. If 
the-eigenvectors 5 are not chosen to be linearly inde- 
pendent, then the receptor sensitivities arising will not 
be linearly independent. 

Given that the eigenvectors of R are fixed, there are 
L free linear parameters for R, that is, its eigenvalues. 
This means that if minimal assumptions of the first kind 
apply, the map that achieves constancy consists in form 
ol' a change of basis, a diagonal scaling, and another 
change of basis. In particular, these changes of basis 
are fixed in advance by the choice of receptors. Further- 
more, there exist choices of receptors for which this 
algorithm cannot work, because they do not have the 
form given above. 

Intuitively, for such a scheme to perform, color con- 
stancy requires a strong property of the illuminant. 
Consider some X = &; then 

In particular, as a result of the expansion of p and the 
fact that the supports of the coefficient functions are 
disjoint, there is some 0 I i < L such that 

e ( b )  = M d S i  

A Novel Algorithm for Color Constancy 13 

(no summation over i ) .  Then we have 

where p i  is the eigenvalue associated with 5;. From 
this equation, one obtains 

This is true over the support of ki(X). Thus, minimal 
assumptions of the first kind require that over the sup- 
port of each kj(X),  e(X; c)le(h; _t) is constant, where 
these regions are given by the choice of receptor spec- 
tral sensitivity. This is a strong requirement on the 
illuminant. 

Thus, minimal assumptions of the first kind mean 
that the feasible set consists of all those linear maps 
that satisfy the gamut restriction and whose eigenvectors 
are fixed. Since the feasible set is defined, the algorithm 
is specified. I call this algorithm Crule, for the fact 
that it involves a coefficient rule. The common belief 
that a coefficient rule is insufficiently general to achieve 
color constancy originates in the requirement that sur- 
face reflectances be finite dimensional. Assuming that 
surface reflectances belong to a finite dimensional set 
corresponds to a minimal assumption of the second 
kind, given that the illuminant functions are also con- 
strained. Minimal assumptions of the second kind are 
treated in section 5.2. 

From the point of view of machine vision, these 
results are encouraging. If one chooses receptors with 
disjoint, narrow-band sensitivities, the illuminant will 
be effectively constant over the support of the receptor. 
Furthermore, because the sensitivities are disjoint, the 
receptor sensitivities will be eigenvectors of a diagonal 
matrix, and the receptor gains can be adjusted indepen- 
dently. Such a system could achieve a very high degree 
of color constancy for all real surfaces under almost 
all real lights if the receptors responded to a sufficiently 
narrow band of wavelengths. 

The color constancy equation and the above analysis 
allows insight into the quality of the results reported 
by McCann, McKee, and Taylor (1976). Failures from 
a color constancy system are to be expected as a result 
of the nature of the problem, and the results that they 
show for the algorithm they use are extremely good. 
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Recall, however, that McCann, McKee, and Taylor used 
as an illuminant a weighted sum of narrowband lights, 
such that each receptor effectively responded to only one 
light. With this form of illuminant, in all circumstances 
the map taking receptor responses under one light as com- 
pared to those under another such light has only small 
off-diagonal terms, and that since the lights employed 
are within a linear map of one another, the residual is 
always zero (i.e., the minimal assumption of the first 
kind is always satisfied), so that constancy may be 
achieved by independent scaling of receptor responses. 
This experiment does not fully test the Retinex algo- 
rithm, because theory shows it should work well in an 
experiment of this sort. The performance of the algo- 
rithm under more general lights remains untested. 

Furthermore, McCann, McKee, and Taylor did not 
note the Retinex algorithms’ requirement that some aver- 
age of surface reflectances remains constant, because 
they tested it on only one Mondriaan. In section 6, I 
demonstrate this flaw in the Retinex algorithm, which 
was originally observed by Brainard and Wandell (1986). 

5.2 Minimal Assumptions of the Second Kind 

When either minimal assumption of the second kind 
is justified, the arguments employed above no longer 
apply. Intuitively, the fact that this kind of assumption 
is stronger than the first kind suggests that more param- 
eters in the illuminant can be recovered than could be 
with the first kind. In fact, using this approach one can 
recover a surprisingly large number of parameters in 
the illuminant. 

The gamut of an image of all possible surfaces, taken 
under some unknown illuminant, is the image in a 
linear map of the canonical gamut. The number of illu- 
minant parameters that can be recovered is the number 
of degrees of freedom of this linear map that can be 
computed simply by observing the gamut. This number 
depends on geometric properties of the gamut itself. 
For example, consider the set of vectors in R3 whose 
length is less than, or equal to, one. By observing its 
image in a linear map operating on R3, one may make 
assertions about the shear components of the map, but 
not about the rotation components. 

For the purposes of the analysis that follows. no dis- 
tinction need be drawn between the two cases of mini- 
mal assumptions of the second kind. Although in the 
second case the dimension of the space of surface 

reflectances is higher, the illuminants have been chosen 
such that only an L-dimensional subset of the space of 
surface reflectances ever causes a receptor response. 
The second kind of assumption implies that the space 
of surface reflectances is finite dimensional, and the 
dimension of the subspace whose effects appear in the 
receptor responses is at most L. If it is less than L, some 
of the receptors are redundant and may be discarded. 
so that the case where the dimension of this space is 
precisely L is the only interesting case. 

To formalize these intuitions, define Gs[C] to be the 
set of bijective linear maps on RL that map a subset 
C of RL to itself. Gs[C] is clearly a subgroup of GL(L). 
where GL(L) is the group of bijective linear maps oper- 
ating on RL. Call Gs(C] the linear similarity group of 
the set. Denote by A(C) the image of C in the linear 
map A .  Then 

A E Gs[C] Y A(C) = C 

PROPOSITION. For C C RL, and F, G E G&L, R ) ,  

F(C) = G(C) e G = FA 

for some A E Gs[C] 

Proof: (See appendix 11.) 

PROPOSITION. For C C RLF E Gl(L),  Gs[C] and 
Gs[F(C)] are isomorphic. 

Proof: (See appendix 11.) 

The important point here is that one cannot tell if 
members of the linear similarity group of some set have 
operated on it by observing the image of that set in a 
linear map. It cannot “lose linear similarities. ” 

Now recall that the gamut is the image of the canoni- 
cal gamut in some bijective linear map. Clearly, for 
F E GL(L) and A in Gs[C] ,  it is impossible to tell the 
map F from the map F 0 A by observing only the image 
of C in these maps. Furthermore, we can distinguish 
F and G if and only if there is no A E Gs[C] such that 
F = G 0 A .  Thus, there is a correspondence between 
the maps we can distinguish and the collection of cosets 
defined by the right action of Gs[C] on GL(L). This 
collection is a manifold only if Gs[C] is closed in GL(L) 
(Boothby 1986, p. 94). Assume that this is the case. 
as the most likely candidates for Gs[C] are either a finite 
discrete group of rotations. or a one-parameter rotation 
group. Then the collection of cosets can be written 35 
GL(L)/Gs(C]. 
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The set of maps taking the canonical gamut to a 
,Llperset of the observed gamut is a subset of GL(L). 
call this set 5 ,  and write e for the canonical gamut. 
3 needs to be collapsed to represent the distinctions 
in the illuminant that can actually be drawn. The wisest 
,tr;ttegy is in constructing the system to determine one 
,,.presentative of each right coset of Gs[C?] in GL(L) 
cc)rresponding to a legitimate illuminant (call this a 
c.osct leader). Then the set of matrixes corresponding 
to the observable constraint set is obtained by replacing 
,.a& member of 5 by its coset leader. This is likely 
lo be computationally laborious, but can be simplified 

This discussion, in conjunction with section 4, gives 
complete specification for a color constancy algo- 

rithm, since the set of linear maps that can be distin- 
cuished is determined. I call this algorithm Mwext, 
because it is the natural extension of Maloney and 
Wandell’s work, with physical realizability incorporated. 
However, the way that this algorithm has been defined 
liieans that it can recover more parameters in the illu- 
Ininant than did Maloney and Wandell, for the same 
number of receptors. 

Now the number of illuminant parameters that can 
be recovered is exactly the dimension GL(L)IGs[C], 
which may be rather large. Theorem 9.2 of (Boothby 
1986. p. 166) states that for Lie groups (the groups in- 
volved are Lie groups) G and H ,  H a closed subgroup 
of G, G/H has a unique structure as a differentiable 
manifold, and the dimension of G/H is dim (0 - dim 
(4. Thus, if the linear similarity group is a discrete 
group, the dimension of the manifold of observably dis- 

I tinct illuminants is L2, and if the linear similarity group 
is a one-parameter subgroup, the dimension is L2 - 1. 
This is an embarrassme2t of parameters for a model 
of the human vision system. People do not recover 
either 9 or 8 parameters in the illuminant. 

This formalism, apart from determining exactly how 
many parameters are distinguishable in the illuminant, 
clarifies aspects of Maloney and Wandell’s algorithm 
(Maloney and Wandell 1986; Maloney 1986; Wandell 
1987). of which it is in some sense a natural generaliza- 
tion. Maloney and Wandell (1986) formulated a color 
constancy technique using finite dimensional linear 
models of illuminant and surface reflectance. The math- 
emtical details of this algorithm are in Maloney’s thesis, 
(k~aloney 1984). The description given here is some- 
what more abstract than the one Maloney presents, but 
has the advantage of compactness. 

a sensible choice of coset leaders. 

Maloney and Wandell represent surface reflectance 
functions by RN, and have M receptors, M > N. They 
use a linear sensor and require that no two unequal sur- 
face reflectances produce the same receptor response 
under any light. Then talung an image corresponds to 
applying an injective linear map F, F : RN + R’. In 
particular, if F(S) denotes the image of the set S in the 
map F; the gamut observed is F(RN). It is possible to 
distinguish between maps F that take RN to distinct 
N-dimensional subspaces through the origin in RM. 
Maloney (1986) discusses the case where there are two 
degrees of freedom in surface reflectance, and three 
receptors. Under these conditions, he can recover either 
two degrees of freedom in surface reflectance and one in 
the illuminant or one in surface reflectance and two in the 
illuminant. The asymmetry is due to a scaling ambiguity 
between surface lightness and illuminant brightness. 

I shall discuss this particular example for simplicity, 
although with little difficulty both the number of recep- 
tors and the number of degrees of freedom in the sur- 
face reflectance functions may be changed, as long as 
there are more receptor bases than surface reflectance 
bases. Recall that they do not require physical plausi- 
bility of surface reflectances, so the set of representa- 
tions of surface reflectance functions becomes a space, 
E,,, = Rz x (0). 

The linear similarity group of a two dimensional 
linear subspace of R3 is the group of matrixes M which, 
in some basis, have the form 

. . .  

. . .  
0 0 .  

such that der (M) # 0. Again, this is easily seen to 
be a group which, using the notation above, is denoted 
Gs[C,,,]. In particular, the dimension of this (Lie) sub- 
group considered as a differentiable manifold is 7 
(count the dots!). Thus, it is possible to recognize as 
distinct objects only maps corresponding to distinct 
points on GL(3)/Gs[CW] (this is an object known as a 
Grassmannian (Boothby 1986), felicitously named after 
Hermann Grassmann, a pioneer in color vision). To 
recover a representation of surface reflectance, there- 
fore, there must be only one illuminant corresponding 
each point in GL(3)/Gs[E,,,]. The dimension of GL(3) 
is 9, and so it is possible to distinguish 9 - 7 = 2 
dimensional manifold of illuminants. Hence, Maloney 
and Wandell’s approach requires a priori constraint on 
both illuminant and surface reflectance. 
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Mwext can recover more parameters in surface re- 
flectance than Maloney and Wandell did, for the same 
number of receptors. Maloney and Wandell point out 
that their approach is incapable of uniquely determin- 
ing surface lightness. This is as a result of the linear 
similarity: 

k O O  
O k O  
O O k  

(where k # 0) of the plane. Since the canonical gamut 
does not have this similarity, it is possible for Mwext 
to recover surface lightness. This, however, depends 
on the assumption that there are many different colors 
in the image. If the image contains only very dark colors, 
for example, the brightness of the illurninant will be 
poorly constrained, and Crule will report surface light- 
ness incorrectly. 

6 Experimental Results 

Very few experimental demonstrations of color constancy 
programs have been described in the literature. Pub- 
lished tests exist for Maloney and Wandell?s (1986) algo- 
rithm working on synthetic images only (Maloney 1984). 
With the exception of results published on one Mon- 
driaan image by McCann, McKee, and Taylor (1976), 
no published account of the color CoIlStancy performance 
of the Retinex algorithm on real data exists. Brainard 
and Wandell (1986) tested their model of the Retinex 
algorithm on synthetic data. Gershon?s algorithm (Ger- 
shon 1988) has been demonstrated on a single real im- 
age. This result is flawed by the fact that there was only 
a single object on a black background in the image. 
Brill (1979) implies that he had a color constancy algo- 
rithm that worked on real pictures, but I have been 
unable to find details of this work elsewhere in the liter- 
ature. Buchsbaum?s paper (Buchsbaum 1980) does not 
disclose whether the results he presents originate in real 
or in synthetic images. 

61 Preliminary Information 

All images were taken with a monochrome CCD camera 
with its gain control defeated. Three separate exposures 
of each image were made using Kodak Wratten filters 
(no.?s 29,47B, and 58)  for color separation, and a sharp 

near infrared cut filter, which is essential as a result 
of the pronounced near infrared sensitivity of CCD 
cameras. The lenses used were conventional photo- 
graphic lenses. The CCD camera appears to measure 
no chromatic aberration, probably because its pixels 
are large with respect to any fringes. The illuminants 
used were two 5OOW photographer?s lamps of unknown 
color temperature, and a warm white appearance. The 
illuminants were colored by the use of translucent col- 
ored plastic filters hung in front of the bulbs. At no 
stage have the properties of these filters been measured. 
I refer to the light provided by these lamps as ?white 
light,? and to colored illuminants by the conventional 
color names of the plastic filters used. 

Neutral density filters were used to weight the separa- 
tion filters so that the aperture of the lens did not need 
to be adjusted between exposures. I chose the weights 
so that images closely resembled the objects imaged 
when displayed on the screen of a Sun workstation. 
Choosing weights on the basis of the overall appearance 
of the image appears to distribute the errors in the color 
displayed evenly, making it easier to compare objects 
with images. A number of other strategies for choosing 
weights are possible. For example, one might choose 
the set of weights that led to a bright white patch causing 
the same response in all three separations, although 
monitor nonlinearities can cause this approach to skew 
the color of darker patches. 

In fact, the choice of weights is not particularly impor- 
tant in demonstrating color constancy. A color constant 
algorithm should produce near constant, nontrivial, 
color descriptors for objects, when presented with well- 
populated scenes imaged under widely varying lights. 
It is possible to tell whether an algorithm can do this 
without ever knowing how the color descriptors pro- 
duced by the algorithm relate to surface color as people 
see it. Dealing with an algorithm on such abstract terms 
is unattractive, however, and a choice of weights that 
makes the image look recognizable avoids this problem. 
Color constancy, or any lack of it, is easily recognized 
from the descriptors. 

For this series of experiments, I used Mondriaans 
made of Color-aid papers (a set of 202 papers, with 
standard colors, available from the Color Aid corpora- 
tion3) and recorded the colorimetric description (sup 
plied by the manufacturers of the paper, in terms of their 
own color space) of each patch for comparison and 
calibration. The patches that comprised each test Mon- 
driaan were chosen from a shaken bag, to provide some 
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raI1&mmess in the structure of their gamut. Each Mon- 
Jrlaan contained 60 patches of paper. Figures 1-3 show 
the gamuts of images of these Mondriaans taken under 
different colored lights, and confirm the claim that the 
CamUt is skewed by colored lights. 

6.2 Implementation Details 

Crule is simple to implement. Since the support of the 
photoreceptor spectral sensitivities is nearly disjoint, 
the matrixes in the feasible set can be approximated 
ivith diagonal matrixes. 

A canonical gamut can only be approximated. The 
gamut of any set of observations of a finite set of sur- 
faces consists of a cloud of points. Since we know that 
[he canonical gamut is convex, we can approximate it 
by the convex hull of this cloud of points. I refer to this 
polyhedron as the observed canonical gamut. The ob- 
served canonical gamut was formed by imaging 180 of 
the set of 202 Color-aid papers under white light. 

Although the gamut that we observe in an image is 
just a cloud of points, every point in the convex hull 
of this gamut corresponds to a real surface reflectance. 
This is because the canonical gamut is convex, and the 
observed gamut is just a sampling of the image of the 
canonical gamut in a linear map. As a result, we can 
consider the convex hull of this gamut. I shall call this 
polyhedron the observed gamut. 

The feasible set consists of those diagonal maps that 
take the observed gamut to a subset of the observed 
canonical gamut. The observed gamut is convex, the 
observed canonical gamut is convex, and the maps are 
linear. As a result, any map that takes every vertex of 
the observed gamut to a point inside the canonical 
gamut, takes the observed gamut to a subset of the 
canonical gamut, and therefore lies in the feasible set. 

We wish to construct the set of diagonal maps that 
take every vertex of the observed gamut to a point inside 
the observed canonical gamut. To do this, for each ver- 
tex of the observed gamut, we form the set of maps 
that take this vertex to a point inside the canonical 
gamut, and intersect these sets. In turn, the set of maps 
that take a single vertex p of the observed gamut to a 
Point inside the observed canonical gamut is a convex 
Polyhedron, which I shall refer to as nZ,. For a proof 
that X p  is a convex polyhedron, see appendix I. 

The vertices of nZ, consist of those maps that take 
a vertex, p ,  of the observed gamut, to a vertex of the 
observed canonical gamut (proved in appendix I). Be- 

cause the maps are diagonal, the vertices of %,, (and 
hence nZP itself) are easily computed for any p .  The 
final implementation works as follows: 

The convex hull of the observed gamut is computed. 
For each vertex p of this hull, 312, is computed. 
Intersect all the sets computed in this way. This proc- 
ess is relatively simple, because the sets are convex 
polyhedra in three dimensions. The result is the feasi- 
ble set. 
Within the feasible set, apply an estimator to choose 
the map most likely to achieve color constancy. Apply 
this map to the image, to obtain the color descriptors. 

This algorithm is relatively simple to implement, but 
intersecting the convex hulls requires care as 3D convex 
hulls are rather difficult to manipulate. Explicitly inter- 
secting the hulls is an unwise technique to use, as it 
tends to generate clouds of hull points nearly on the 
same plane, with attendant difficulties of representation 
and computation. The problem is better approached 
using cuboid approximations (see Cameron 1989; 
Woodwark and Quinlan 1984). 

The estimator used simply chose the map that gave 
the gamut with the largest volume. This means that the 
image of the mapping of the gamut of the original pic- 
ture will fit inside the gamut obtained under the canon- 
ical illuminant (because we have chosen a map in the 
constraint set), and will be the “largest” such image. 
The parameters corresponding to this map ar’e easily 
found by noting that a diagonal linear map takes a vol- 
ume to that volume multiplied by the trace of the map. 
Thus, the feasible set is simply searched for the map 
with the largest trace. 

This discussion implicitly assumes that the observed 
gamut is a good approximation of the gamut that would 
have been seen if every possible surface reflectance 
were shown under the illuminant. If the observed gamut 
does have this property, then the feasible set will be 
small. If it doesn’t, the feasible set can be large, and 
the estimator is more likely to err. This case occurs 
when the surface reflectances in the scene are not well 
distributed-for example, when the scene contains only 
shades of one or two colors. 

6 3  Results 

Crule’s performance has been tested on three Mon- 
driaans each of sixty chips of colored paper, each viewed 
under six different lights. The Brainard and Wandell 



18 Forsyth 

model of the Retinex algorithm (Brainard and Wandell 
1986) was implemented for comparison. Both algorithms 
achieve roughly the same degree of constancy, with the 
Retinex algorithm perhaps slightly outperforming the 
Crule algorithm, when tested on a single Mondriaan 
viewed under many different lights. Color figures 1 
through 6 show the inputs for each algorithm. Although 
the images appear widely skewed in color, during the 
imaging it was possible for human observers to give 
reasonable color names to the Mondriaan patches. 
Color figures 7 through 12 show the outputs from Crule 
for the given images. The images are similar in color, 
suggesting that Crule is capable of good color constan- 
cy. However, the output for an image taken under red 
light, shown in color figure 8, shows that Crule per- 
formed poorly on this image. In color figure 9, the out- 
put of Crule for red light has been omitted because the 
algorithm failed as badly. This is a quantization effect, 
discussed more fully in section 7. 

Notice that Crule has performed rather more poorly 
on the third Mondriaan than on the other two. This 
is because the third Mondriaan has a narrower range 
of colors in it, so that the illuminant is less well 
constrained. 

Figures 4 through 6 show the receptor responses ob- 
served for a set of color chips, selected from the first 
Mondriaan to give a fair impression, under six different 
lights. These are widely scattered, demonstrating how 
strongly illuminant color can skew receptor responses. 
Figures 7 through 9 show the descriptors computed by 
Crule for the same set of chips, from images taken 
under six different lights. The descriptors are far less 
widely scattered, indicating that Crule is capable of 
good color constancy. 

Color figures 13 through 18 show the outputs of the 
Retinex algorithm, on the same images, for comparison. 
The Retinex algorithm is also susceptible to the quan- 
tization effect mentioned above, as color figures 13 and 
15 show. On the whole, for the case of a single Mon- 
driaan and a set of different lights, the Retinex algorithm 
appears to out perform Crule. However, the Retinex 
algorithm depends on a geometric average of surface 
color remaining constant, and is confounded when, for 
example, red borders are appended to a Mondriaan to 
change this average (see color figure 19). Large failures 
in constancy can be caused in this way, as color figure 
20 demonstrates. This figure compares the performance 
of Crule and the Retinex algorithm on an image of the 
first Mondriaan to their performance when red borders 

have been attached to the Mondriaan, both viewed 
under white light. Because the Retinex algorithm is sen. 
sitive to the spatial average of surface color, a change 
in this average skews its surface color descriptors. This 
causes the slight green cast to the output of the Retinex 
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Fig. 4. This and the next five figures demonstrate the performancr 
of Crule for 10 chips, selected to give a fair impression. This and 
the next two figures show the receptor responses for 10 chips, under 
six different lights. Each column represents a chip and is labela 
with a color name for each chip under incandescent light. This figun 
shows the responses for the camera’s red channel. The response under 
white light is plotted as a “W,” under blue-green light as an “A,’ 
under blue light as a “B,” under green light as a “G,” under purplr 
light as a “P,” and under yellow light as a “Y.” See section 6.1 for 
the meaning of the color names for the illuminants. Note the wide 
spread of responses, which will make it difficult to use these value< 
to describe chips. The precise color name, in the Color Aid cor 
pation’s scheme, for each chip is as follows. The chip labeled white 
is white. red is RO-Hue, yellow is Y-Tl, blue is BGB-S3, violet i: 
VRV-S1. blue-grey is GYG-S1, brown is OYO-S1, orange is YO-l2 
and grey is grey. 
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Fig. 9. This figure shows the descriptors in the blue channel, output 
by Crule, using the same conventions as figure 4. Again, the descrip- 
tors are clustered, indicating a high degree of color constancy. 

Red Remrd 

for the Mondriaan with red borders in color figure 20. 
This effect can be made very large by increasing the 
size of the borders, or by comparing images with dif- 
ferent colored borders. Since Crule does not depend 
on the spatial extent of a color, the borders do not affect 
its descriptors. 

A statistical analysis is desirable, because images may 
conceal misbehavior on the part of the algorithms. 
There is no standard measure of color constancy. The 
analysis shown uses the median Euclidean distance of 
the outputs from the average (over the different lights) 
output, for each chip. This median is then normalized 
by the Euclidean magnitude of the outputs. Clearly, this 
statistic measures clustering, and will be zero for every 
chip for a perfect color constancy algorithm; and as 
the algorithm delivers increasingly poor performance, 
the statistic will increase. Normalization is necessary 
to prevent an algorithm improving its apparent perform- 
ance by multiplying its outputs by a small number. 

The graphs in figures 10 through 12 show the cumula- 
tive distribution for this statistic, for two separate images 
of sixty chips under six different lights (white, green, 
blue-green, yellow, and purple). The results for both 
Cruleand Retinex under red light were skewed for reasons 
described in section 7, and were omitted from this analy- 
sis. The graphs plot the statistic for descriptors computed 
from images of the first Mondriaan, and the statistic for 
descriptors computed for images of the first Mondriaan 
with and without red borders. The red borders skew 
the descriptors computed by the Retinex algorithm, and 
the second plot for the Retinex algorithm reflects this 
substantially larger scatter in its descriptors. This can 
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Fig. 10. Cumulative distribution of the statistic described in the text 
for sixty descriptors computed by Crule, operating on images of the 
first Mondriaan without borders (plotted as a solid line), and on images 
of the first Mondriaan both with and without borders (plotted as a 
dashed l ie) .  The statistic measures the scatter of the descriptors com- 
puted for the chips in images under different lights-the larger the 
statistic, the wider the scatter, and the poorer the algorithm. Note 
that adding colored borders to the Mondriaan imaged does not signif- 
icantly affect the descriptors that Crule computes, as expected. 

be made very large, by appending large borders, or by 
testing the Retinex algorithm on one scene with green 
borders, one with red borders, and one without borders. 
This effect is a basic property of any algorithm that 
assumes that some spatio-temporal average of surface 
color is constant. Other algorithms with this flaw in- 
clude those of Buchsbaum (1981) and Gershon (1988). 
This skewing effect can happen easily in real images: 
for example, one does not expect the average surface 
color of a view of a forest in spring to be the same as 
that of the same view, taken in autumn. 

Crule does not have this flaw, but if one considers 
descriptors for only one image under many lights, the 
Retinex algorithm performs better than Crule, because 
in this case the average surface color is trivially con- 
stant. This may be alleviated by computing the feasible 
set to higher accuracy; at present, the descriptors com- 
puted by the new algorithm may have errors as large 
as 2% of full range simply as a result of the scheme 
adopted for computing 3D convex hulls, which makes 
computing the feasible set to high accuracy expens ive  
in space. 
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Fig. 11. Cumulative histogram of the statistic described in the text 
for the outputs of the Retinex algorithm operating on images of the 
first Mondriaan without borders (plotted as a solid line), and on im- 
ages of the first Mondriaan both with and without borders (plotted 
as a dashed line). The statistic measures the scatter of the descriptors 
computed for the chips in images under different lights-the larger 
the statistic, the wider the scatter, and the poorer the algorithm. Adding 
colored borders to the Mondriaan imaged affects the descriptors com- 
puted, as expected. Using larger borders would increase the scatter 
of the descriptors. Adding green borders to one image, and red ones 
to another, would increase it further still. The cause of the effect 
is described in the text. 

7 Discussion 

Crule is simple to implement, and works well for real 
pictures. Crule is successful because the constraint on 
surface reflectance is true for all surfaces, and strongly 
constrains the colors possible in an image? Representing 
surface color using a feasible set has considerable attrac- 
tion. This representation follows easily from a feasible 
set representation of the illurninant. Simply, a particular 
pixel can have arisen only under certain lights, and cor- 
responding to each feasible light is the surface color 
that will generate that pixel value under that light. Thus. 
there is a feasible set of surface colors corresponding 
to each pixel. Given that a feasible set of surface colors 
can be achieved at a very early stage of visual process- 
ing, it seems reasonable to maintain this representation 
until the last possible moment. If we do this, other 
sources of v i sua l  i n fo rma t ion  may prov ide  cues that 
reduce the size of the feasible set-shape and surface 
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I.,Y. 12. Cumulative histogram of the statistic described in the text 
lor the first Mondriaan. The statistic measures the scatter of the 
dc\criptors for the chips in images under different lights-the larger 
ihc \tatistic, the wider the scatter. In this case, the statistic is computed 
tor the receptor responses, so that one can confirm that both Crule 
.md the Retinex algorithm can produce descriptorj that are an improve- 
mcnt on  the receptor responses alone. 

color. for example, are deeply entwined by mutual illu- 
mination effects (Gershon et al. 1986; Forsyth and 
Zisserman 1989; Forsyth and Zisserman 1990; Ho et 
31. 1989). 

Crule will produce color descriptors for two color 
images, of the kind used by, for example Land (Land 
1959a; Land 1959b). In these experiments Land took 
zlides of a series of scenes. One slide was exposed only 
in the red band, the other only in the green band, so 
that h r  each scene he had a red slide and a green slide. 
The red separation was inserted in a slide projector cast- 
ing red light, and the green separation in a projector 
casting white light. The two slide images were shown 
in register to an audience, which reported a wide range 
of colors. Naive colorimetric methods would predict 
that the images would contain only a range of shades 
ofpink. This effect was not in fact first noticed by Land; 
the history of this effect is well presented in (Judd 1960). 

It would be a definite advantage if Crule was able 
to reproduce this property. A simple geometric argument 
hupgests that this is the case. The gamut of a two-color 
Image is on a triangular planar patch in surface receptor 
’Pace, with one corner at the origin, one corner at the 
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“brightest white” point, and one corner at a “deep red” 
point. We can reasonably expect to be able to construct 
a map that takes this into a larger patch within the 
gamut. 

Two color images were constructed from conventional 
color imges, by mapping the green and blue compo- 
nents to r times the original green component, and the 
red component to the sum of r times the original green 
and s times the original red components, where 0 5 r, 
s I 1. These receptor responses model the receptor 
responses expected from the slide experiment. 

Crule has been run on such images. The result is 
shown in color figure 21. No claim is made that this 
result is quantitatively similar to human performance, 
only that the algorithm can infer a broad gamut from 
a two-color image. This is obviously the case, although 
the images display in neither the original data nor in 
the photographs quite the breadth of gamut that Land 
describes (he talks of “lovely color photographs” (Land 
1959a, p. 120). Green patches are conspicuous by their 
absence, as are yellow patches. 

Both Crule (color figure 8) and the Retinex algorithm 
(color figures 13 and 15) performed very poorly on im- 
ages taken under red light. This failure is explained as 
follows. There is very little information in the input data 
either in the green or in the blue channels, because to 
keep the camera from saturating in the red channel, 
the aperture had to be closed. It would clearly be unfair 
to attempt to demonstrate the effectiveness of an algo- 
rithm for color constancy that employs the coefficient 
rule, and then to adjust the aperture separately for each 
color exposure, for that would presuppose a constancy 
algorithm. Equally, if this is not done, consrunq is im- 
paired by measurement errors. 

The constancy algorithm is connected to its receptors 
by a quantizing system with constant quantization thresh- 
olds. As a result, under red light, the signal on the green 
channel has a dynamic range of about three bits. The 
constancy algorithm is thus more ignorant of what the 
green transducer is measuring, than it is about what 
the red transducer is measuring, and its constancy is 
impaired. The human vision system faces a similar 
problem, in that the operating range of human photo- 
receptors is very much greater than the signaling capac- 
ity of the nerve channels (Barlow and Mollon 1982). 
In humans, this problem is accounted for by a process 
known as adaptation, which is described in more detail 
elsewhere (for example, Bartleson 1977; Beck 1972; 
Wyszecki and Stiles 1982). The effect of adaptation is 
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to use a spatio-temporal average of the receptor’s inputs 
to adjust its gain so that it can measure effects over a 
wide dynamic range. The color constancy of a machine 
vision system could be significantly improved by a sim- 
ilar approach. One might, for example, use a low band- 
width control loop to ensure that the spatio-temporal 
average of the video signal is constant, by adjusting the 
integrating time of the CCD camera. By supplying the 
integrating time information to the color constancy 
system, one could improve its performance on deeply 
colored lights. 

This work had not addressed the case where the illu- 
minant varies over space. The Retinex algorithm, and 
algorithms that devolve from it (Horn 1974; Blake 1985; 
Brelstaff and Blake 1987; Funt and Drew 1988) repre- 
sent the only existing implemented techniques for dealing 
with this problem. These algorithms work by declaring 
a spatial frequency threshold, and asserting that changes 
below this threshold are due to lighting effects, and 
changes above it arise from surface color effects. It is 
unclear how well such a technique will work for other 
than Mondriaan images. There is every reason to be- 
lieve that illuminant effects occur at high spatial fre- 
quencies (Gilchrist 1983). This suggests that complex 
processes are necessary to determine whether a change 
in an image occurred as a result of a change in surface 
color or a change in lighting, before color constancy 
programs can work successfully in any but very con- 
strained worlds. 

8 Conclusion 

By analyzing the circumstances under which color con- 
stancy is possible, I have developed a color constancy 
algorithm, Crule, and have demonstrated that it achieves 
color constancy on real images of Mondriaan’s. Crule 
estimates the illuminant in colored pictures using a sys- 
tem of constraints. These contraints derive from phys- 
ical restrictions on the form of surface reflectance 
functions. 

The performance of Crule on real images compares 
favorably with that of the Retinex algorithm of Land 
(Land and McCann 1971) when run on single Mondriaan 
images. However. changing the spatial average of sur- 
face reflectance disrupts the color constancy of the 
Retinex algorithm, but does not affect Crule. I have 
shown that Crule can mimic qualitatively Land’s (Land 
1959a; Land 1959b) work on two-color images. This 

experimental work lead us to see chromatic adaptatior, 
as a measurement strategy employed by humans, anc 
to realize that machines require a similar strategy to 
perform accurate constancy. 

Although this algorithm gives very good results, its 
success at computing surface color depends very much 
on the unrealistic assumptions that underly the Mon- 
driaan world. These may fail in the real world: for 
example, illuminants change quickly spatially (Gilchrist 
1983). It is clear that surface color algorithms in vision 
systems will need to be able to cope with more interest- 
ing objects than flat, frontally presented surfaces. There 
is much scope for further work. 
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Notes 

This assumes that there is always a wide variety of surface reflec 
tances in the scene. 
Koenderink (1987) observes that Luther (1921) and Nyberg (1918 
were aware of this result. 
Address: 37 East 18th SI., New York. NY 10003. 
This constraint has been successfully exploited by Kawata et a1 
(1987) in a system that segments microscope images, based on d y  
concentrations. 
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Appendix I 

PROPOSITION. The set of maps that take a single vertex 
p of the observed gamut to a point inside the observed 
canonical gamut, e,, is a convex polyhedron, X,, 
whose vertexes are the maps that take p to the vertexes 

Proof: Iff(p) E e, and g(p) E e,, then so is (1 - 
p ) f ( p )  + pg(p)  for 0 I p I 1, by the convexity of 
e,. Thus, 3np is convex. Clearly the maps that take 
p to some vertex of e, are on the boundary of Xp. 
Consider the vertexes, v,, of a face of e,, and maps 
Fi(p),  with Fi(p) = vi. Clearly F, lies on the boundary 
of X p .  Furthermore, if the set (1 - p)vi + pv,, V p  
E [0, 11 is an edge of e,, then (1 - p)F, + Pj lies 
on the boundary of X p .  One shows that the boundary 
of X p  consists of plane faces, edges, and vertexes in 
this way. Thus, X p  is a convex polyhedron. 

of e,. 

Appendix I1 

PROPOSITION. For C C RL, and E G E Gl(L, R) 
F(C) = G(C)  @ G = FA 

for some A E Gs[C], where Gs[C] is the linear similarit! 
group of C. 

Proof: 
F and G are bijective, by definition. Then 

is clearly true. Now E G E G L ( t ) ,  and so 

G = FA 

and for some A.  In fact, 

A = F - I G  

but since F(C) = G(C), and F and G are bijective. 
F-'G(C) = E. Thus =j is true. 

PROPOSITION. For C C RL, F E GL(L), Gs[C] and 
Gs[F(C)] are isomorphic. 

Proof: Considerf : Gs[C] ---* Gs[F(C)] corresponding 
in the natural way to F : C -+ F(C). Clearly, for A 
Gs[C] ,  f ( A )  = FAF-' E Gs[F(C)]. We verify easil! 
that the mapfis a homomorphism, for FZnF-I = I,. 
and FABF-I = FAF-IFBF-'. In fact, the map is injec 
tive, for FAF-' = FBF-I e A = B. But we may define 
a similar injective homomorphismf: Gs[F(C)] -, Gs[Cl 
byf(B) = F-IBE Hence, the groups are isomorphic 

I 


