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Abstract

A recognition strategy consisting of a mizture of indez-
ing on invariants and search, allows objects to be recog-
nised up to a Euclidean ambiguity with an uncalibrated
camera. The approach works by using projective invari-
ants to determine all the possible projectively equivalent
models for a particular imaged object; then a system of
global consistency constraints s used to determine which of
these projectively equivalent, but Euclidean distinct, mod-
els corresponds to the objects viewed. These constraints
follow from properties of the imaging geometry. In par-
ticular, a recognition hypothesis is equivalent to an asser-
tion about, among other things, viewing conditions and ge-
ometric relationships between objects, and these assertions
must be consistent for hypotheses to be correct. The ap-
proach is demonstrated to work on images of real scenes
consisting of polygonal objects and polyhedra. Keywords:
Recognition, Computer Vision, Invariant Theory, Indez-
ing, Model-based Vision

1 Introduction

Many recent object recognition systems model view-
ing with an uncalibrated camera or using an uncalibrated
stereo pair as inducing either an affine or a projective
transformation on figure. This approach allows invariants
of the appropriate transformation to be used to index mod-
els to produce a selection of recognition hypotheses. These
hypotheses are combined as appropriate, and the result is
back-projected into the image, and verified by inspecting
relationships between the back-projected outline and im-
age edges [3, 5, 9, 12, 14]. Indexing using projective in-
variants has been demonstrated for plane objects and sim-
ple polyhedral objects, and has been extended with vary-
ing success to certain types of surfaces [1, 6, 8, 13, 15].
One main disadvantage of this approach is that objects
are identified only up to either an affine or a projective
ambiguity. This paper argues that this ambiguity is a con-
sequence of considering recognition hypotheses in isolation,
and is not intrinsic to the approach.

Systems based on indexing using projective invariants
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have not, to date, been able to distinguish between ob-
Jects that are projectively equivalent, but not Euclidean
equivalent, because such objects have the same projective
invariants. In this paper, we show that a view of two or
more coplanar objects, or polyhedra is enough to allow the
objects to be recognised up to only a Euclidean ambigu-
ity, if the objects can be recognised at all and if Euclidean
models are available.

1.1

Much of the work we describe consists of reconciling dif-
ferent assertions about coordinate frames. As a result, the
discussion can become confusing without an established
terminology. The paper uses the following terms:

Frames and terminology

e object: an actual thing in the world.

¢ model: a collection of known measurements of the
projective and Euclidean geometry of an object,
which is stored in the system. A model could con-
sist of a mixture of points, lines, planes, conics and
more complicated curves or surfaces.

e model frame: the frame of reference in which the
model measurements are taken; the reference points
of an object in the world are within a Euclidean trans-
formation of the reference points in this frame.

world frame: a global frame of reference, in which
objects exist. If the world consists of coplanar plane
objects, then the world frame is the frame of reference
within this plane; otherwise, the world frame is three-
dimensional.

¢ image frame: a frame of reference constructed in
the image plane, usually by reference to the pixel po-
sitions in the camera. For a view of a plane world, the
image frame is within an unknown projective trans-
formation of the world frame.

Euclidean transformation: a projective transfor-
mation, equivalent to a rigid motion (rotation and
translation), expressed in homogenous coordinates.

In this paper, the relationships between frames are empha-
sized; these relationships are usually determined by com-
puting transformations between image features and model
features. Such a transformation, although computed using



some specific set of features, expresses the transformation
between the model frame and the image frame.

2 Plane objects

Consider a scene consisting of a set of distinct, coplanar
plane objects, many of which are represented in a model-
base. It is well known that any view of this scene with
an uncalibrated camera can be obtained by applying an
appropriate plane projective transformation to the scene.
The goal of a recognition algorithm is from an image of the
scene, label each object correctly up to Euclidean equiva-
lence.

Indexing using projective invariants (as in [9]) asso-
ciates with each group of image features a collection of
object models (labels), which are projectively equivalent,
but Euclidean inequivalent.

If only one known object is present, the task is possi-
ble only if there is just one possible label for that object.
If two or more labels apply, the task can be considered
in terms of constructing the largest possible consistent la-
belling, because implicit in each recognition hypothesis is
information about the frame in which the objects lie. This
information can be formalised to obtain possible contra-
dictions between recognition hypotheses. The details of
the idea appear below; an example that illustrates the rea-
soning appears in section 2.1.1.

2.1 Theory

Consider two coplanar plane objects, o1 and o2, for
which we have models m; and m2. Write the transfor-
mation from mi to ox as Ex, and the transformation
from my to the image frame as Pi. Ei is Euclidean,
and moves the model into its position in the world frame.
Write the projective transformation from the world frame
to the image frame as Q. Then Py QFEx, so that
PP, = E['QTIQE: E7!E; which is Euclidean.
Since labelling an image curve with a particular model
name determines the transformation from that model’s
frame to the image frame, the pairwise consistency of la-
bellings can be checked by forming a system of matrices
P! P,, and checking whether they are Euclidean.

Objects can consist of points, or of some mixture of
points, lines, conics, and other curves, as long as a pro-
jective transformation can be computed from the object
frame to the image frame. This observation also justifies
our emphasis on coordinate frames, rather than on par-
ticular geometric configurations. Section 2.2 details the
ambiguities implicit in this scheme.

If a labelling is consistent it is possible to reconstruct
the whole plane, in the frame of one given model, since
PJ_l P, gives the transformation from the configuration in
m;’s frame to that in m;’s frame. To reconstruct the plane
in, say, m,’s frame, for all mx compute Pl"1 Pi and then
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apply this map to my; this will give a collection of objects
in mi’s frame

2.1.1 Example

Given an image of three objects, o;, 02 and os, which
are plane and coplanar, and which are instances of known
models, the recognition system would proceed as follows:

1. Determine projective equivalence classes by in-
dexing the model-base using appropriate projective
invariants. For each object, the indexing stage re-
turns a collection of possible Euclidean models to
which it might correspond. Assume that the re-
sponse is: 01 — (my1,m4,m7), 02 — (M2, ms, ms)
and o3 — (ms, me, mg).

2. Determine all image-model transformations
for every image-model correspondence using a least
squares process. Call the transformations between o,
and m,, Pi;. There is a total of nine transformations.

3. Test consistency between model hypotheses for
each pair of objects. Thus, for 01 and o2, form the
matrices:

P Pas, Py Paz, Py P, P Pas, Py Pis,

P Pos, Pi" Pas, P! Pas, P Pas

if, say, P ;' P is very close to being a Euclidean
matrix, then accept the pairing (o1m1,02m2). For
this example, assume that the pairs: (01m1,02m2),
(o1m1, 03m3), (62m2, 03ma), (01m7, 02ms) are consis-
tent.

4. Form the longest possible consistent hypoth-
esis by merging consistent pairings.  Thus, in
this example, the longest consistent hypothesis is
(o1m1, 02m2,03m3). This is accepted as the correct
labelling for the image; consistency is defined by en-
suring that each object has at most one label, so that
two pairings are consistent if they refer to distinct ob-
jects, or if they assign the same labels to objects that
they share. The other possible consistent labelling is
(01m7, 02ms), which is the result of an ambiguity.

2.2  Ambiguities

An ambiguous image supports two or more consistent
labellings that are indistinguishable, one of which will be
correct. Ambiguities arise from quite complex interactions
between properties of the image and of the modelbase;
some modelbases may not admit ambiguities. We assume
that projectively distinct objects receive distinct labels,
and study inherent ambiguities in the consistency process.

Definition: Two pairs of models, say {m1, m2},
{m}, m3}, admit an ambiguous labelling if there
is some image containing objects {01, 02} so that
{o1m1, 02m2}, and {o1m},02m5} are both con-
sistent labellings of the objects.



Admitting an ambiguous labelling poses a stringent
constraint on the models in the modelbase. If two pairs
of models, say {mi,m2}, {m}, m}}, admit an ambiguous
labelling, then there exist projectivities Pyys and Py such
that m; = Py;imy and mb = Ppyimy

It can be shown that, for the configurations to be am-
biguous, there are Euclidean transformations Eq, Ey such
that Piyy = EoPyy Ey. This is an action of two copies of
the Euclidean group on the space of projective transforma-
tions, and invariants can be obtained for this action. For
example, writing the i, 5°th component of a matrix Q as
gij, the expression (g2, + ¢, )*/Det(Q)? is an invariant un-
der this action. This means that this expression must take
the same value for Q@ = P,/ as it does for Q = Pay. Thus,
for a modelbase to admit ambiguities, it must contain at
least two pairs of projectively equivalent models, where the
projectivities between the ambiguous models have special
properties. In turn, this statement suggests that ambigui-
ties are unlikely. However, there is some reason to believe
that modelbases containing man-made objects are likely
to contain ambiguities; for example, a sequence of scaled
versions of several different objects will certainly give rise
to ambiguities.

2.3 Implementation details and experi-
ments

A system implementing the approach described has
been demonstrated on real images of simple scenes, us-
ing a stripped-down version of the system described in de-
tail in [9] to perform early vision and fitting. Indexing,
though performed in a reimplementation of that system,
follows essentially the same pattern, but in the present sys-
tem a successful indexing attempt returns a collection of
Euclidean models. To focus attention on the Euclidean la-
belling properties of the system, the model base contains
only one projective equivalence class of models, consisting
of five projectively equivalent but Euclidean distinct mod-
els, so that for all known models the projective invariants
are the same. The models all consist of polygons with five
sides; objects were obtained by cutting these polygons out
of black cardboard.

The success of this approach can be measured both by
determining its effectiveness in labelling the scene, and
by looking at Euclidean invariants of an unknown object,
coplanar with the known objects in the scene, and recon-
structed using the techniques described; stability in these
invariants means that the Euclidean labelling was suffi-
ciently successful to allow the Euclidean structure of other
objects to be determined from the labelling. Some results
are shown in figures 1 and 3.

3 3D objects

The situation is more difficult when the objects are
three-dimensional. It is known that the projective geom-
etry of a range of polyhedra can be recovered partially or
completely from a single perspective view with an uncali-
brated camera (see [10, 11]). In turn, projective invariants
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Figure 1: Six examples of scenes containing known
coplanar plane objects (five sides), and an unknown
object, imaged with a projective camera.

Figure 2: The Euclidean labels chosen by a global con-
sistency analysis of the corresponding scenes in figure
1, superimposed on the backprojected outlines of the
objects, which are five-sided plane polygons. Although
the labellings are correct, the system consistently ig-
nores one object (apparently as a result of a segmen-
tation difficulty with one poorly cut corner).



Figure 3: The graph shows the area of the unknown
quadrilateral, measured in the six images shown above
by computing a backprojection based on the Euclidean
recognition hypotheses; note that the area is relatively
stable.

can be computed and used to index the polyhedron in a
model-base. Appropriate polyhedra are position-free in
views, and tend to contain many faces with four or more
vertices. However, for most situations, the resulting pro-
Jjective ambiguity is too great. To proceed, it is necessary
to assume that that, for each generic view of every poly-
hedron in the modelbase, a distinctive projective structure
can be recovered (details appear in [10]).

The perspective projection from 3D projective space,
P?, to the image plane, P?, is modelled by a 3 x 4 projec-
tion matrix, P, so that

x = PX (1)

where homogeneous coordinates are used, X =
(X,Y,Z,1)", x = (z,¥,1)" and = indicates equality up to
a non-zero scale factor. Following Hartley [4], we partition
P as
P = (M| - Mt) (2)

where t is the focal point (since the focal point projects
as PX = 0). Provided the first 3 x 3 matrix, M, is not
singular (i.e. the focal point is not on the plane at infinity),
P can always be partitioned in this way.

To determine the position of the focal point in the model
frame proceed as follows:

1. Compute the projection matrix P from the known
model vertices and their corresponding image posi-
tions.

2. Partition P as above. This determines t, which is the
focal point in the object’s frame.

3. The rays passing through other image outline points

are given as the pre-image in P of the image points.

An alternative construction, due to Mohr, is also possi-

ble [7]. Labelling an image with a consistent Euclidean
labelling proceeds as follows:

505

¢ Determine a set of projectively equivalent, Euclidean
inequivalent labels for each polyhedron visible, using
the indexing methods of [10].

o For each labelling of each item, compute the focal
point and an appropriate cone of rays in the object’s
frame.

¢ Construct the largest pairwise consistent labelling of
the scene, where pairwise consistency is checked by
determining that the focal point and cone of rays con-
structed by assuming one object, is Euclidean equiva-
lent to that constructed by assuming a second object.

As in the case of coplanar plane objects, although a correct
labelling must be consistent in the sense given, a consistent
labelling may not be correct. Thus, for particular scenes
and particular model-bases, a unique labelling may not, in
fact, be possible.

3.1

The range of possible ambiguities in the case of poly-
hedral objects is wider than in the case of plane ob-
Jects. Problems arise both as a result of viewing and self-
occlusion issues and because the reconstructed polyhedra
do not share the same projective frame. Ambiguities re-
sulting from self-occlusion are not treated here, as the na-
ture of the ambiguities depends in a complicated way on
the structure of the recognition system. If the projective
class of the object has been correctly recovered, and the
cones through the object vertices and the focal point have
been constructed correctly, the following, tractable ques-
tion remains; given an image, and the projective structure
of the polyhedra represented in that image, what ambigu-
ities exist in the Euclidean labelling process described?

There is now a second source of ambiguity; many dis-
tinct objects can produce the same cone of rays through
the focal point. It can be shown that, for a modelbase
to admit an ambiguity, it must contain four elements
P1,p2,P1,p, with p; and p{ projectively equivalent, and
where the transformations between the model frames sat-
isfies:

Ambiguities

P, =ET™'DTP,

Pap) 1Py

for some arbitrary translation T, elation D and Euclidean
transformation E. Note that, since the total number of
arbitrary degrees of freedom is 13, not every pair of trans-
formations P, s, P, P, will have this property. As a result,
not every modefbase admits an ambiguity, and unambigu-
ous labellings appear possible for at least some modelbases.
Many man-made objects yield modelbases that admit am-
biguities (for example, a modelbase containing only cubes
of different sizes).

3.2 Experiments

A system implementing the approach described has
been demonstrated on real images of simple scenes. The
modelbase contains five polyhedral objects, all projectively
equivalent. Polygon vertices are marked in the image by
hand; all further processing is automatic. Figure 4 shows



Figure 4: Four examples of scenes containing known
polyhedral objects all of which are projectively equiv-
alent, imaged using a perspective camera.

typical images; figure 5 shows the Euclidean labelling for
corresponding images and figure 6 shows a reconstruction.
The reconstruction techniques used at present can produce
a reconstruction that is within an improper rotation (with
negative determinant) of the original world; this appears to
be an intrinsic ambiguity in the purely projective methods
used, and may be overcome by considering the direction
in which the camera is pointing. The techniques do not
extend to reconstructing unknown objects in the way that
the plane techniques do.

4 Discussion

We have shown methods for using geometric consistency
in 2D from 2D recognition, and in 3D from 2D recognition;
because the argument is based on frames and maps, the
2D from 2D argument carries over to the 3D from 3D case
without modification (for example, on the output of “un-
calibrated stereo”[2]).

Linking these ideas is the observation that recognition
hypotheses are frame hypotheses. When a program asserts
that some Euclidean model produced an image observa-
tion, it is making a statement about camera position and
internal parameters. Such statements lead to global consis-
tency constraints that must hold. If, in a world with many
known objects, objects can be recognised effectively and
unknown objects can be reconstructed up to a Euclidean
ambiguity without camera calibration, there is no reason
to calibrate the camera. Other constraints can be applied
to the reconstruction (for example, using known objects,
occlusion cues and up-vector estimates to bound the dis-
tance to the object). This paper has dealt with discrete
modelbases; the case of parametrised systems of models
bears further investigation.

More global consistency mechanisms are available - for
example, the orderly and effective exploitation of the po-
tential of t-junctions to explain occlusions. Many other
sources of information, not necessarily primarily geomet-
ric, could be used to inform and strengthen recognition
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Figure 5: Euclidean labels chosen by a global consis-
tency analysis of the scenes in figure 4, superimposed
on the backprojected outlines of the objects. A label
“i/j” means that there is a consistent interpretation
where the object is either object i or object j. Incor-
rect labels are enclosed in parentheses.



Figure 6: A Euclidean reconstructions of the polyhe-
dral world shown in one image (bottom left image, all
labels correct) taken from figure 4. The focal point
is the marked point in the top right-hand corner of
the figure. Note the distortions of the boxes, caused
by mapping all boxes into the frame of one box; more
sophisticated techniques might distribute error more
evenly. The focal point is included so the reader can
assess the effectiveness of the reconstruction by com-
paring with figure 4, which is seen from a different
viewpoint; note that, for example, the bases of ail
boxes are near to coplanar.

hypotheses (and thereby shore up minor failures of the
consistency mechanism}.

Finally, consistency mechanisms of the type described
are most effective in worlds well-populated with familiar
objects. We believe that the tremendous potential power of
a global consistency analysis will become most important
in a system with a large modelbase, operating in a complex
world.
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