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Abstract

Efficient detectionof objectsin imagesis compicated by

variations of object appeaance due to intra-classobject
differerces, articulation, lighting, occlusiams, and aspect
variations. To reducethe search requiredfor detectionwe
emply the bottomup approach where we find canddate

image featules and associatesomeof themwith parts of

the objectmodel. We representobjectsas collectionsof

locd features,and would like to allow any of themto be
absem, with onlya smallsubsesuficientfor detection;fur-

thermoe, our modelshoud allow efficientcorresponénce
search. We proposea model Mixture of Trees thatachieves
thesegods. With a mixture of trees,we can modelthe in-

dividual appearancesof the features, relationshipsamong
them, and the aspect,and hardle occlusions. Indegen-

dercescapturedin the modelmale efficiert inferencepos-
sible In our earlier work, we haveshownthat mixtures of

treescanbeusedto modelobjectswith a natural treestruc-
ture, in the context of human tracking Nowwe showthata

natural treestructuee is not required, and usea mixture of
treesfor bothfrontal andview-invariant facedetection We

alsoshowthat by modelingfacesas collectiors of featues
we can establishan intrinsic coodinate framefor a face

andestimateheout-ofplanerotationof a face

1. Introduction

Oneof the main difficulties in objectrecanition is being
ableto representthe variatiors in objectappeaanceandto
detectobjectsefficiently. Tempate-basedpprachege.qg,
to detectfrontal views of faceq[8, 11] andpedestrians[7])
are not generalbecausehey do not allow object partsto
move with respecto eachother An alternatie is to usea
mockl that, insteadof regarding an objed asrigid, models
local apparanceof partsandthe relationslips amory the
parts. Suchrepresentationshave beenusedextersively to
repesenipeople(e.g.[1, 3]) andhave beenappliedto faces
[10, 13, 14]. Detectingarticulatedobjeds requiresasearch
of averylargeconfiguationspacewhich,in the contet of
tracking, is oftenmadepossibleby constrainiig the config-
uratian of the objectin oneof the frames.However, if our
object detectoiis to beentirelyautomaticywve needamethod
thatallows usto explore the searctspaceefficiently.
Among the ways to make the searchefficient is the
bottan-up apprach, wherethe canddate object partsare
first detectedandthengrowpedinto arrangmentsobeying
the constraintdmposedby the objectmodel. Exanplesin
facedetectioninclude [13] and[14], who modelfacesas
flexible arrangmentsof local featues. However, if mary
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featuesareusedo representanobject,andmary candidate
featuesof eachtype arefound in theimage,it is imprac-
tical to evaluate eachfeaturearrargemen, dueto the over-
whelmirg number of sucharrargements. The correspon-
dene searchwherea part of the objectmodelis associ-
atedwith someof the candidhtefeaturescanbemademore
efficient by pruning arralgement<f a few featuesbefore
proceedingto biggerones[5]. Alternatively, themodelcan
be constraird to allow efficient search. One exanple of
suchamodelis atreg in which correspondene searctcan
be performedefficiently with dynamic programning (e.g.
3, 4]).

Representin@n objed with a fixed numkber of featues
males recoqition vulnerable to occlusims, aspectvaria-
tions, andfailuresof local featue detectors. Instead,we
wouldliketo modelobjedswith alargenumkerof features,
only several of which may be enowgh for recognition. To
avoid the combiratorial compleity of the corresponénce
search,we proposea novel mocel that usesa mixture of
treesto representheaspeciwhichfeatuesarepresenhand
which arenot) aswell asthe relatiorshipsamory the fea-
tures; by captuimg corditional indeperlencesamony the
featuescomppsingan object, mixtures of treesallow effi-
cientinfererceusinga Viterbi algoithm.

Someobjects suchashumanbodies have a naturaltree
repesentatior{with thetorsoastheroot, for exanple), and
we have shawn [4] thatmixturesof treescanbeusedto rep-
resentdetectandtracksuchobjects.However, ourmocelis
notlimited to articulatedobjects,and,becagewe learnthe
treestructue automaticallycanbe usedfor objectswithout
anintuitive treerepresetation. We illustratethis by apply-
ing our modelto facedetection. By usinga large nummber
of featuesonly a few of which aresuficient for detection,
we canmock| the variations of appearacedueto different
individuals,facialexpressionslighting, andpose.

In section2, we describemixtures of trees,and shav
how to mocel faceswith a mixture of treesin section3.
We useour modelfor frontal (section4) andview-invariart
(section5) facedetection. The featurearramgemets rep-
resentingfacescarry implicit orientationinformation. We
illustratethis in section6, wherewe usethe autanatically
extracted featue represetation of facesto infer the angle
of out-of-plare rotation

2. Modeling with mixturesof trees

Letussuppaethatanobijectis acollectionof K primitives,
{X1... Xk}, eachof which canbetreatedasavectorrep-
resentingts confguration (e.g, the positionin theimage).



Givenanimage,the local detectos will provide uswith a
finite setof possibleconfiguationsfor eachprimitive X .
Thesearecanddate primitives the objective is to build an
assemblpy chomsing an elementfrom eachcanddateset,
sothatthe resultingsetof primitives satisfiessomeglobal
corstraints.

The global constraits can be capturedin a distribu-
tion P(X; ... Xk), whichwill behighwhentheassembly
looks like the objectof interest,andlow whenit doesn't.
Assumingexadly oneobjed presenin theimage,we can
localizethe objectby finding the assemblymaximizing the
value of P. In geneal, this maximizaion requresacombi-
nataial correspndercesearchHowever, if P(X ;... Xk)
is represeted with a tree, correspoderce searchis effi-
ciently acconplishedwith a Viterbi algoithm. If thereare
M canddate configuationsfor eachof the K primitives,
thenthesearchtakesO(K M?) time, wherea for ageneal
distribution P the compleity would be O(M ¥).

2.1. Learningthetree model o
In additionto makirg correspodene searchefficient, the

corditional independencesaptued in the treemodelsim-
plify learning by redudng the numbe of paranetersto be
estimateddueto thefactorizedform of the distribution:

P(Xy...Xk) = P(Xeoot) [ P(Xi|Pay),
k#root

where X0t iS the nodeat the root of the tree, and Pay,

derotesthe parentof thenode X ;. Learningthe modelin-

volves learnirg the structure(i.e., the tree edges)as well

asthe paranetersof the prior P(X,,0¢) and conditiorals
P(X}, | Pag). We learnthemodé by maximizingthelog-

likelihood of the training data,which canbe shavn to be
eguvalentto minimizing the entrqy of the distribution,

subjecto theprior P(X.0t) andcorditionalsP (X, | Pay)

beirg setto their MAP estimatesThe entrqoy canbemin-

imizedefficiently [2, 12] by findingtheminimum spanning
treein the directedgraph, whoseedgeweightsarethe ap-
propriatecondtional entropes.

2.2. Mixturesof trees
It is difficult to useatreeto modelcasesvheresomeof the

primitivesconstitutirg anobjed aremissing— dueto occlu-
sions,variationsin aspecbr failures of thelocal detectos.
Mixturesof trees,introdwedin [6], provide a solution In

particdar, we canthink of assembliess being gererated
by a mixturemoded, whoseclassvariabe specifiesvhatset
S of primitiveswill constitutean object,while condtional

classdistributions Ps({ X}, : k € S}) generatehe corfigu-
ratiors of thoseprimitives. The mixture distributionis

P({Xk ke S}) = W(S)Ps({Xk ke S})

whete 7(S) is the prabability thata randon view of anob-
jectconsistsof thoseprimitives. This mixturehas2 % com-
porents—onefor eachpossiblesubsetS of primitive types.
Learring a mixture of treesinvolvesestimatinghe mixture
weights 7(5), aswell the structureandthe modé parame-
tersfor eachof thecompnenttrees.

Figurel: Usinga genemting treeto derivethestructuse for
a mixture compornt. Thedashedinesare theedgesin the
genesting treg which spansall of the nodes. The nodes
of the mixture compmentare shadd,andits edges(shown
as solid) are obtainedby makinga grandparent “adopt”
a nodeif its parert is not presentin this tree (i.e., is not
shade). Thusmixture compomntsare encocedimplicitly,
which allows efficient representation learning and infer-
encefor mixtureswith a large numter of compments. The
structue of the geneating treeis learnedby entropy mini-
mization.

2.3. Mixturesof treeswith shared structure
Explicitly representing2® mixture compmentsis unac-
ceptale if the number of objectparts K is large. Instead,
we usea single genegting tree which is usedto generate
thestructure of all of the mixturecompaments.

A genemgting treeis a directedtree T whosenodes are
X ... Xk, with X0 attheroot. It providesthe struc-
ture of the graphical model repesentingr(S): «(S) =
P([Xroot]) [Tetroot P([Xk] | [Pax]), where[X}] dendes
theevert that X, is oneof the primitivesconstitutirg aran-
domview of theobject,andthedistributions arelearnecby
courting occurencesof eachprimitive and pairs of prim-
itivesin the training data. For a subsetS of objectpart
types, the mixture commpnen Pg contairs all the edges
(X; = Xi) suchthat X; is anancestoof X, in thegen-
eratingtree,andnore of the nodeson the pathfrom X ; to
Xy isintheset{X} : k € S}. Thismeanghat,if the par
entof noce X, is not presehin aview of the objed, then
X}, is “adopted” by its grangarent,or, if that oneis ab-
sentaswell, a greatgrand@rent,etc. If we assumehatthe
roat X,.o4 IS alwaysa partof the object,then Ps will bea
tree,sinceX .o, Will ensuethatthegraphicalmodelis con-
nected An examge of obtainirg the structureof a mixture
compnentis shavnin figure 1. We ensureconnetivity by
usinga “dummy” featureastheroot X, representingthe
rough positionof the assemblyrandid&e roa features are
addel to testimagesatthe nodes of a sparsegrid.

Thedistribution Pg is the product of theprior P(X o0t)
and corditionals P(X, | X;) correspondig to the edges
of the treerepresentingPs. We learnthe structue of the
geneatingtreeT that minimizesthe entrqpy of the distri-
bution. We arenot awareof anefficient algoithm thatpro-
ducestheminimunt insteadwe obtainalocal minimum by
iteratively applyirg entrgy-reducing local changs (such
asrepladéng a noce’s parentwith anotrer node)to 7" until
corvergence.



(@) (b) (©

Figure 2: Corvertinga mixture of treesinto a graphwith

chdcenodes, onwhich corresponéncesearhis performed
usingdynanic programming (a) A fragmentof the gener

ating tree for a person, contaning the torso, right upper

arm, andright lower arm. (b) The mixture of 4 treesthat
resultsif we require the torso to be alwayspresent. The
triangle representsa choicenode only oneof its children
is selectedandthe mixture weightsare givenby the model
of theaspect.(c) Theshatwed structuie of the mixture com-
porentsis captued using extra choice noces. The empty
nocescorrespom to addng no extra segmentsithe mixture
weightcorresporling to ead child of a choicenodeis de-
rived fromtheprior for anaspect.

2.4. Grouping using mixtures of trees
To localizeanobject in animage we find theassemblythat

maxmizesthe posteriorPr(object| assembly or, equiva-

lently, theBayesFactorB = P({X}})/Pneqs ({ X }) Where
thenumeatoris the probaility of a configuationin aran-

domview of the object,andthe denoninatoris the praba-

bility of seeingit in the backgound We modelthe back-

ground as a Poissonprocess: Ppe,({Xy : k € S}) =

[I1cs @ whereay is the rate (or density)of the Poisson
processaccordng to which the primitives of type X, are
distributed in the backgpund Becauseof theindepement
structue of P,.,, the Bayesfactorcanbe obtainedby as-
sociatingthe terma;, ' with eachmemberof X’s candi-
date set, and multiplying thosetermsinto the likelihood
P({Xy}).

We perfam the correspadene searchusing a Viterbi
algaithm on treeT'; at eachnode,we selectnot only the
bestprimitives to chaosefrom thechildreris canddatesets,
but also the edges to be includedin the tree (i.e., which
partsconstitutean objectinstance). This is equivalentto
dynamicprogammingon a graphwith choicenodesillus-
tratedin figure2. Thisalgorithmrursin time O(KhM 2) =
O(K?M?) where M is the nunber of primitivesin each
canddateset, K is thenumter of objectparts,andh is the
deph of thegeneatingtree.

3. Learning the model of aface
Represeting afaceasanassemblyof local featuresallows
usto modelboth the relative rigidity of the facial features
andtheflexibility of their arrargements.Otherappioaches
mockling faceswith local featue arrargemets (e.g.[13])
usuallyrely onaspecific,smallsetof featues,becaus¢hey

Figure 3: Cluster centes found by groupirg subimaes
extractedfrom training face images with the modifiedK-
Meansalgorithm Theclusteringproceduie learnsboththe
avelage grey-level appeaanceof ead featue and its av-
erage warpedposition(accading to which ead clusteris
positioredin thefigure).

canrot handlemissingfeaturesandlack anefficient group-

ing mechamsm. With a mixture of trees,we canaddess
theseissues Becausef the efficientinferenceon mixtures
of treeswecanuseaverylarge numbe of featureg~ 150),

but requre only afew (=~ 10) to declareadetectim. There-
fore, we canhande occlusiors and multiple aspectsand
usethe samemockl to representall orientations of a face.
However, the oriertationis not discared; instead it is im-

plicitly encoadby themixture of trees.We canrecoverthe
poseby examinirg the featue arrangmentobtainedfor a
faceimage,andusingthe typesof thefeatuesconstituting
anarrangenent,aswell astheir georetric relationshig, to

estimatethe orientation

3.1. Facial features

Eachfacialfeatureis represetedasasmallimagepatch;an
assemblyis a groy of featuessatisfyingsomeconstraits
imposedby the geonetry of a face. For eachfeaturetype,
thecanddatefeaturesareimagepatchesvhaseappeaance
is sufficiently similar to the “canmical” appeaanceof that
featue.

To redwce the time it takesto find candidatefeatures,
eachimage— both training and test— is represeted as a
collectionof small(9 x 9) imagepatchesenteredatinter
estpoints (found with the Harris operate, e.g. [9]). Local
contastnormalizationis appliedto courterthevariatiorsin
brightnessandcontrasidueto differentlighting.

Insteadof manwally specifyingwhatfeaturescompsea
face,we learna setof featuesthatarestable(i.e., presen
in alargenumker of faceimagesatroughly thesameplace
relativeto theface) distinctfrom otherfeaturesanddistinct
from the backgound First, we clusterthe imagepatctes
in trainingimagesusingthe K-Mears algorithmwhich we
modfied sothatit learnsnot only the appearacesbut also
the warped positionsof the clustercentes; the warp for
eachtraining imageis computed as an affine transfoma-



Figure 4: Exampes of facesdetectedn the testdata (with thethreshold\ = 1). Theboxes indicatethe bourding boxesof
thefeature assembliesepresentinghe faces,andthe dot showsthe positionof the root nodein the mixture of trees,which

indicatesthe“g eneal positior of a face

tion thatmaps3 “landmark points” on a faceimageto their
canaical positiors. The similarity betweena patchand
a clustercenteris compued asthe Euclidea distancebe-
tweentheir pixd represent#ons, subjectto proximity be-
tweentheir warpedpositions.By clusteringimagepatctes,
we corvert eachtraining imageto an assembly theseas-
sembliesare now usedto learnthe facemocel. Figure 3
shavs the clustercentersobtairedwith ouralgorithm

Becausepixels within a patchare not independen, we
repesenteachimage patchwith its prgectionsonto sev-
eral(e.g. 15) dominant independenttompmnents(found by
appying PCA to the sub-imaesof faceimages). We can
captue depenlencesamongtheseprojectiors condtional
onthefeaturetype andstill maintainthe linear comgexity
of themocel with atree-structtedmodel. All conditiorals
in this mockl areGaussianandthetreestructureis learned
by maximizirg mutwal information[2].

3.2. Modeling feature arrangements
To modelfaceswith a mixture of trees,we needto learn

the pairwiserelationshig first, andthenuseentroy mini-
mizationto obtainthe structureof thegeneatingtree.Con-
ditional prokability tablesfor feature visibility arelearned
by simplecourting. The distributions of the relative posi-
tionshave theform P(X, | X1) = P(Us, V2 | U1, V1) =
P(Uy — Uy, Vo — V4) where(Us — Uy, V2 — V4) is thedis-
placenentbetweerthe two featues. We usea Gaussiarto
repesentP (X | X1).

To be ableto detectfaces,we needto learnthe mocel
of the backgound as well asthat of a face. We canin-
corporatethebackgourd modelinto the efficientinferene
mechanismif it obgysthesamdandepadencessthosecap-
turedin the mixture of treesmockling a face. We choce
the simplestsuchmodel,in which the featuesdetectedn
baclground areindepemnlent,and modeledwith a Poisson
process. The appeaanceof imagepatchesn nonfaceim-
ageds modelel with a mixture of distributions of the same
typeasusedto modelfacialfeaturesThisallowsusto more
accuately mocel the backgoundimage patchesthat look
similar to facial features. The probaility densityof gen-
eratinganassembly{ X : k& € S} in the backgoundbe-
COMes Py ({ Xy : k € S}) = [Ies axPo(Xk) whereay,

In A | -10 -3 0 3 5 10

Detection | 90% 80% 76% 69% 66% 56%
Falsealarms| 1364 279 129 50 22 1

Tablel: Frontal face detectionresults. Thedatatasecon-
tained117images,with a total of 511 faces. We showthe
fractionof facescorrectly detectedandthe numter of non-
facesmistalenlydetectedfor differentvaluesof thethresh-
old A with which the posterioris compaed

is the rateof the Poissorprocessve assumeo be gererat-
ing the candichtefeatuesof typek.

To find face-like assemblie®f imagepatcheswe com-
pute,for eachfeatue type k andeachimagepatchz ;, the
probability Py (z;) of seeingthis patchin a randan view
of feature Xy, and the probability Py(x;) of seeingthe
patchin a rancdbm view of a nonface. In maximizirg the
Bayesfactor we associatean extra multiplicative weigh
Py (x;) /(o Py(x;)) with eachfeatue k£ andpatchz;. In
practice,we will make z; a canddatefor featurek only if
theratio Py (z;)/ Py (;) is suficiently large — a condtion
thatdoesnot hold for mostpatch/faturepairs.

4. Detecting frontal faces

We have usedmixtures of treesto learnthe mocel of the
frontal faces. The training datawas kindly provided by
Henry Schneideman. Thetrainingbackgoundimagesare
choseratrancbm from the Corelimagedatabase.

We testedour facefinder on imagesfrom the MIT and
CMU facedatabases— 117 phaogrags with 511 frontal
faces.Facesweredetectedcht arange of scalesspacedy a
factorof 2'/4. If two assembliesbourding boxes overlap
by morethana smallamoun, we remove the onewith the
smallerposterior Table 1 shawvs the perfamancefor our
detectorfor somevaluesof the threshdéd A for the Bayes
factor Figure4 shavs someexamges of faceswe detected
in testimages.In figure5, we shov anexamge of ourface
detectolappliedto alargegroup phao (with A setverylow;
this doesnot resultin mary falsedetectios, sincemostof
thosearesuppessedy therealfaces).



Figure 5: Facesfourd in a large group phao. Thethreshold\ is setvery low; mostfalse detectios are suppessedoy
the correctly detectedaces. Out of 93 facesin the image, 79 were correctly detected14 were missedand5 falsealarms
occured. Mostof themissedaceswere notfoundbecasethey were smallerthanthesizeof thetraining faces.

Figure 6: Examplesf the view-invariant facedetecto apgdied to facesand badkgrounds. (a) examplesof faceassemblies
detecteccorrectly Thesquaesshowthe featuesin the assemblythe circle corresponddo the root nock of the mixture
of trees,and the edges showthe edges of the mixture compoent correspoiding to the assembly (b) False detectioms in
badgroundimages.(c) An exampleof a misseddetection Eventhoudh a featuie assemblys foundcorresponlingto a face

its posterioris too low to declare a facedetection

5. View-invariant face detection

Out-d-plane face rotatiors suggestthat a model that is
able to representaspectwould perform well. Our data
waskindly provided by M. Weberet al., authorsof [13].
It contaired facesof 22 subjects,phaograghed agairst a
uniform backgound(which we syntheticallyreplacedwith
rancdbm imagesfrom the Corel databaseat 9 differentan-
gles,spaceddy 15° andspaning the entirerange between
the frontal view andthe prdfile; 18 to 36 picturesof each
persm, for different posesandfacial expressionswerein-
cluded. We randbmly chosel4 individualsandplacedall of
theirimagses into the testset, usingthe photogaphsof the
remaning 8 subjectdor testing.
Eachfaceimagewasrescaledo be betweerd0 and55
pixels in heigh, andeachnonfaceimagewasa 128 x 192
image taken from the Corel datalase. For eachimage
we decidewhetheror not it containsa face by compar
ing the posteriorof the highestBayesfactor featue ar
rangmentwith a threshdd. Theerrorrate ((FalsePos +
FalseNeg)/2) rangedbetweend% and 8%. Our perfor
marce is betterthanthe abou 15% erra ratesrepoted in
[13] for a single detectortrainedand testedon the entire
range of rotatins, which shavs that a mixture of treesis

ableto representhe variaions of the faceappeaanceasit
rotates.In figure6, we shav examgesof correctly detected
facesaswell asfalsedetectionsepotedin backgourd im-
ages.

6. Pose estimation

Representig a facewith a large nunber of featues, al-
lowing ary feature to be absentandmockeling the way in
which the featurevisibilities and configuationsaffect one
anotter, allows ourface-deteiion systemto beview invari-
ant. However, theorientatia is notdiscared, butis instead
implicitly encoadin themockel. By examning the feature
arrargementfound for a faceimage, we can estimatean
intrinsic coordnate frame for the face. The typesof the
featuesconstitutinga face,aswell astheir geoméric con-
figuration, canbe usedto derive correspndercesbetween
different views of a face,or betweenanimageanda 3D
mockl of the head,andalsocarry implicit aspectnforma-
tion. For exampe, having found a featurecorrespadingto
theleft eye,we know thattheview is nottheright profile.
To determire the poseof a face, we learn, for each
featue X, and eachview direction 4, the probability
Pr([Xk] | 9) thatthis featue is presetin the view. Our



datasetcontains9 differentview directiors, andthefeatue
frequeny informationis captuedin a9 x K table,where
K is the numker of available featues. The entriesof the
tableareestimatedrom thetrainingfaceassemblies.
Givenanassemblyd = {X} : k € S}, we cancom-
putetheprolability thatit hasbeengenergedby aparticular
view §: Pr(6 | A) o< P(A | 0)Pr(0) o< [[,cs Pr([Xk] | 6)
for a uniform Pr(6). As our estimateof the pose,we use
theexpededvalue® = ", Pr(6 | A)f. If 6* is thecorrect
view angle the estimatiorerra is givenby © — 6*, andthe

RMS erroris \/Zle((an —8x)2/N, for N testimages.
In our experimentsthe RMS erra was15°, i.e. onthe av-

erag (andin factfor mosttestimages)}he estimatecangle
is within oneande stepof the actualangle. Comparethis

with the RMS error of 39° that would resultfrom always
repating the averag faceangle(45°).

7. Conclusions

Mixtures of treesallow us to represehobjectsasflexible
collectimsof parts wheresomepartcanbemissing,andwe
mockl the aspectgeomdric relatiorshipsamory the parts,
andtheindividual partappeaances.Dueto the condtional
independeresin the mockl, inferencecan be perfomed
efficiertly, in a bottam-up fashion,wherecandidateobject
partsarefirst detectecandthengroupedinto arrangments
using dynamic progammingon the mixture of trees. In
addtion to beingableto represenandtrack people aswe
have shavnin [4], mixturesof treescanmockl objectswith-
outanintuitive treedeconposition,andwe have shavn this
by applying our modelto frontal and view-invariantface
detectio.

Eventhoudh theresultswe have obtairedfor frontal face
detectim areslightly behindthe stateof the art, our mocel
hasthe adwentagethatit canbe usedto do more thanjust
detectim. We can deternine not only whethera faceis
presen but alsothe configuration of theface,i.e. whatfa-
cial featuresarepresentandwhere they arewith respecto
eachother Our modelcanusea large nunber of features
(=~ 150), with only afew (=~ 10) neededor detectionand
implicitly encods the aspectwe have shavn thatwe can
recover theaspecinformationby examinng thefeaturear
rangementobtainedfor a faceto estimatethe out-df-plane
rotatin of aface. The future work includesusingthe fea-
ture representatiorof an objectthat mixturesof treeshelp
us obtainfor apgications suchasrecogition of individu-
als, gendkrs, or facial expressions(by compaing features
of the sametypein differentfaceswe do not have to rely
on the two facesbeingin the samepose),matchingfea-
turesbetweentwo imagesof a face,or betweenanimage
anda 3D facemodel, andfacetracking (we have already
shavn [4] thattempogl coheencecanbeincorporatednto
ourmodd).

Anotherimportantadvartageof ourmocklis thatit is not
tailoredto a particuar type of object: we have shavn that
it canbeusedfor suchdiverseobjeds ashumanbodiesand
faces.Oneof theresearchdirectiors is to usethe modelto

repesentotherobjects, or entireclasse®f objects.For ex-

ample just aswe detectfacesn anarbitray view andthen
deterninetheposewe coulduseasinglemixtureof treesto

representmary kinds of animal,andusethe resultingfea-

ture representatiorof an objed in animageto determine
whattypeof animd it is.
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