
Animating geometry procedurally, using
a dynamical system (which consists of a

set of state variables and a set of equations for describ-
ing how those variables change over time) rather than
with keyframes, offers the advantages of physical real-
ism, interactivity, compact descriptions, and infinite
variety of motion. However, the use of dynamical sys-
tems has been inhibited by two factors: their computa-
tional cost, even when out of view, and the difficulties
of implementation, partially due to a lack of standard
modeling and runtime environments.

VRML is particularly prone to these problems. The
most suitable, currently available, scripting language is
Java. Controlling a VRML world from a Java object
requires knowledge of a large number of methods and
types, and is highly error prone. A lack of debugging
environments, or even consistent exception handling,
only exacerbates the problem.

Our research aims to develop modeling tools that
enable incorporating large numbers of efficient dynam-
ical systems into virtual environments, while abstracting
the modeling process as much as possible. To achieve
efficiency, we concentrate on culling dynamical systems:
if the system is not in view, we do not compute any
dynamics for it.

As a concrete example of the benefits of culling, con-
sider a museum of kinetic sculpture (such as mobiles).
Such a world has a large number of dynamic objects—
the exhibits—placed in mutually nonvisible rooms. Tra-
ditional dynamic simulation requires computing the
motion of all the sculptures on every frame, even if some
sculptures aren’t visible to the viewer. Naturally, this
would severely limit the size of the museum. Culling
avoids dynamic state computation for the exhibits not
in view, just as geometry culling avoids rendering their
geometry. Exploiting culling allows the museum to be
arbitrarily large, provided only a few rooms are visible
at once. Similar examples occur in factory simulations
or dense city environments.

In this article we describe three tools that together
provide an environment for authoring cullable, dynam-
ic, rigid-body objects in VRML and Java:

■ A code transformation tool that exploits approxima-
tions to dynamical systems to enable culling. The
frame rate for a world using these systems depends
only on the number of systems in view. This results in
significant speedups over conventional models and
enables very large virtual worlds.

■ A runtime layer generator, which defines a simple stan-
dard interface between a VRML
browser and dynamical systems
described in Java. This hides the
complexities of the underlying
interface from authors, while also
allowing for a library of common-
ly used dynamical systems. Both
reduce the difficulties of generat-
ing dynamic content.

■ A rigid-body modeler, which
allows users to interactively
design the runtime layer and pre-
view the dynamic behavior. The
modeler environment is written
in Java, so some degree of inter-
active debugging is possible.

This article describes these tools, including some
example systems, and discusses the runtime perfor-
mance improvements obtained. Our tools are applica-
ble if the spatial range of the dynamic model can be
bounded by a static volume, the model is closed to out-
side influence, the underlying equations are continu-
ous, and the dimension (number of degrees of freedom)
of the system is small. Note that while this article focus-
es on VRML and Java as the target environment, the
underlying techniques apply to any rendering and lan-
guage environment.

Culling and prediction
In previous work1 we described the use of approxi-

mations to cull moving objects. Those techniques
employed statistical models and neural networks in
hand-coded systems to enable the culling of dynamics.
This allowed rapid generation of the new dynamic state
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even after long periods out of view. In this article we
describe automated tools to perform the same task for
systems whose range of motions can be bounded tight-
ly. Where such bounds exist, the key problem—the con-
sistency problem—is as follows. (Previous work1 defines
two other problems: completeness and causality. These
problems are not relevant if the objects can be tightly
bound, and we don’t consider them in this article.)

When a viewer turns away from a dynamic object,
which is culled, and then turns back to the object,
the new dynamic state should be consistent with
a viewer’s reasonable predictions for the behavior
of the object during the time it was out of view. A
solution to this problem requires the generation
of a new dynamic state over very long time-steps
(1) within an error bound determined by a view-
er’s ability to predict and (2) without significant-
ly delaying rendering of the next frame.

It helps to consider the viewer as an adversary who is
always seeking to discover a contradiction in the state
as objects move in and out of view. It’s the system’s job
to make sure that the viewer never spots such an incon-
sistency and never experiences significant lag.

The naive way to generate a consistent state is to
determine exactly how the system behaved while out of
view and display the resulting state. This satisfies (1) in
the consistency problem above, but the resulting state
may take a very long time to compute—arbitrarily long
if an object can be out of view for arbitrary periods of
time—and the method fails on point (2) above.

A better way of generating a new state when an object
reenters the view comes from observing that viewers
cannot accurately predict the behavior of a system over
time.2 If accurate predictions were possible, a viewer
could know all of a world’s future simply by observing it
for a short period of time, which is obviously not the
case. Solving consistency means satisfying viewer pre-
dictions, so if viewers cannot predict everything, we
need not compute everything. All we need do is com-
pute those things a viewer can predict. This is a fairly
flexible requirement—we can do more or less work
depending on the quality of the simulation required. For
entertainment purposes, larger errors in the state may
be acceptable, whereas visualization tasks or training
simulations generally require higher accuracy.

A viewer’s inability to predict results from several fac-
tors: uncertainty in the last known state of the system;
uncertainty in the details of the model; and a lack of
knowledge about factors that influence the system. Our

methods are based primarily on uncertainty in the last
known state of the system. In other words, when a system
leaves the view, it’s not possible for a viewer to have a
completely accurate picture of, for instance, how fast it’s
moving, because of inaccuracies in the rendering (timing
inconsistencies and pixel sampling errors) and limita-
tions in the viewer’s perception. By taking the uncer-
tainty and propagating it forward through the time an
object is out of view, it’s possible to discover the uncer-
tainty of an object’s state when it reenters the view. If the
new state we generate lies within this reentry region of
uncertainty, a viewer cannot detect an inconsistency.

Our methods for generating a new state will rely heav-
ily on the approximation of dynamical systems. Approx-
imations have previously been exploited by several
authors for a variety of purposes. Hodgins and Carlson3

and Setas et al.4 employ approximations for dynamical
systems that are further from the viewer—level of detail
for dynamic simulations. Grzeszczuk et al.5 employ
neural networks as approximation functions for dynam-
ical systems, thus reducing the cost of generating the
state for each frame, but ignoring issues such as level of
detail and culling.

Generating approximations
Our tools take as input a basic description of the

dynamics and produce an alternate description suitable
for culling. We assume the input description is the most
accurate required for simulation and refer to it as the
accurate model. We call the output description the effi-
cient model. The tools we describe work for dynamical
systems that are free from external influence and have a
state space of low dimension. They prove useful only if
the accurate model is expensive to evaluate over long
time intervals. This occurs with, for instance, systems of
differential equations evaluated by numerical integra-
tion or systems described by state machine transitions.

In our implementation, the accurate model consists
of a Java class file that implements a function for eval-
uating the system at some given time when also given
an initial state and time. The function should be able to
generate the state in real time (it will be used when the
system is in view), but need not be significantly faster. In
specifying the accurate model, the user also defines
other information helpful in analysis, such as initial con-
ditions (which may be fixed or random), the dimension
of the system, and a number of other parameters.

We distinguish systems according to whether they are
periodic or not. A system is periodic if its state at time t,
St, is identical to that at time t + T, where T is the peri-
od of the system. If St = St+T, then St = St+nT for any inte-
ger n. If no such T exists, then the system is not periodic.

Periodic systems
As an illustrative example of a periodic system, con-

sider a roller coaster model. The car runs on a track
described by a uniform cubic B-spline (see Figure 1),
under the influence of gravity but without friction. The
car’s “upright” direction is also described with a B-
spline. Two state variables describe its motion: the para-
metric position on the track, u, and the derivative of u
with respect to time, 

.
u.
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Consider what a viewer might be able to predict about
a system like the roller coaster. Over very short periods,
on the order of a few seconds, the smooth nature of the
motion makes accurate prediction easy: a viewer can
simply extrapolate the last seen position and velocity.
But if the roller coaster has been out of view for longer,
the viewer must rely on what they know about roller
coasters in general, such as how fast the cars move at a
given position on the track. Predictions of this type will
generally be uncertain: as long as the car appears to be
doing about the right thing, the viewer will think every-
thing looks reasonable. Our task is to find functions
whose output is close enough to the true dynamics to
fool the viewer, while still being fast enough to evaluate
at runtime without introducing lag.

The behavior of a periodic system can be completely
described by its state function over the course of one
period: St = φ(t), t ∈ [0,T). If we build a closed-form
approximation, ̂St=φ̂(t), t ∈ [0, T), then we can approx-
imate the state of the system at any time, t′, simply by
evaluating St′=φ′(t′modT). Provided the error in ̂φwith
respect to φ is not large, a viewer will not detect the
approximation error.

In our tools, approximation of periodic systems
involves four steps:

■ Determine the period.
■ Bound the range of each state variable over one peri-

od, to aid in approximating.
■ Learn a neural network approximation, φ̂(t).
■ Generate code for the efficient model.

Determining the period of a dynamical system, if one
exists, is a common operation in numerical analysis. You
may use Fourier analysis or an approach that searches
for return values—places where the function takes on
values it has taken before. Our tools take the latter
approach.

Given the period, it is possible to determine φ̂, the
approximation function, which we represent as a neur-
al network.6 Neural networks have the advantage of
near constant evaluation time for a given network and
can approximate well the wide variety of functions our
tools may encounter. Specifically, we use a standard

feed-forward neural network with two hidden layers
and a fixed number of nodes. The network has one input
node, corresponding to the time at which we wish to
evaluate, t ∈ [0, T), and as many output nodes as there
are state variables for the system. Our tools use networks
with 10 hidden nodes per layer, which is a trade-off
between the quality of the approximation and the time
taken to evaluate the network. Other network topolo-
gies and training schemes could also be used.

The neural network will perform best if the function
it is trying to represent has each component in the range
(0, 1). Rescaling the state variables for a dynamical sys-
tem to this range requires finding the minimum and
maximum possible values for each component. You can
do this by taking each variable, one at a time, and
searching for global minimum and maximum values of
that variable over the interval [0, T).

To train the network, N samples of φ(t) are generated
for random times within the period. We then repeated-
ly apply a standard back-propagation6 with momentum
algorithm on these samples. Each sample is used N − 1
times, after which we replace it with a new sample. We
do this to reduce the number of dynamical system eval-
uations, since they’re generally slower than a neural net-
work training iteration. The learning process is
terminated when the error falls below a user-defined
threshold or a maximum number of iterations is reached.

Figure 2 shows the exact functions for the paramet-
ric position of a roller coaster car on its track, u(t), and
its derivative, 

.
u(t), and the neural network approxima-

tion to them, plotted for one complete period (12.13 sec-
onds). The neural network was trained for about 30
minutes to achieve this result. The network approxi-
mates u with great accuracy, but does less well with the
local maxima and minima of

.
u. That doesn’t concern us

in this example because the underlying dynamical sys-
tem can correct any error based on energy constraints.
Currently, our tools use the same network to approxi-
mate all the state variables for one system. A separate
network could be used for each state variable, which
would improve the error at the expense of additional
code and evaluation time.

In the final step, code generation, we create a new
Java class that evaluates the state of a periodic system
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efficiently regardless of the time between evaluations.
This new system can choose to use either the accurate
model or the approximation. It applies the former if the
interval between a viewer last seeing the system and the
current time is less than 10 percent of the period; other-
wise, it applies the latter.

Many approximation strategies other than neural net-
works are possible. In particular, if the system’s period
is short, state variables corresponding to a fixed set of
times could be stored and a new state generated simply
by interpolation. Such a scheme is directly supported
by Interpolatornodes in the VRML language. How-
ever, in the general case, the neural network approxi-
mations we use are smoother and more compact.

Nonperiodic systems
As an example of a nonperiodic system, we use the

Tilt-A-Whirl (see Figure 3), an amusement park ride that
exhibits highly complex motion despite a simple dynam-
ics description. The ride has seven cars, each attached to
a platform on which it rotates freely. The platforms are
driven around a circular hilly track. As the platforms
move around the track, they tilt so as to remain tan-
gential to the surface, which results in complex motions
for each car.

Consider a Tilt-A-Whirl that moves out of view, then
reenters. If it is hidden for only a short period of time,
an observer can simply extrapolate from its state when
it left their view, and hence quite accurately predict the
new state. In this case we must use the most accurate
model to update the Tilt-A-Whirl’s state. However, as
the Tilt-A-Whirl stays out of view for longer periods, an
observer makes increasingly poorer predictions for what
its new state should be. The system can make larger
errors in generating the new state without contradicting
the viewer. In other words, you may use approximations
to the true system, and the approximation error can
grow as the time interval out of view grows.

After a Tilt-A-Whirl has been out of sight for a long
time, a viewer can no longer use information from the
previous sighting to predict the new state. However,
viewers can use their general knowledge of how a Tilt-
A-Whirl behaves. To satisfy a viewer’s prediction, we
must choose a state that is typical for the Tilt-A-Whirl. To
represent such typical states, we use a probability dis-
tribution over the state space of the Tilt-A-Whirl: states
seen more often by a viewer will have a higher proba-

bility than states seen infrequently. To generate a new
state, we simply sample according to the distribution.
We refer to the distribution as the stationary distribu-
tion for the system. (Note, we borrowed the term “sta-
tionary distribution” from the theory of Markov
processes, to which our distribution is related.7)

While we phrased the preceding discussion in terms
of a Tilt-A-Whirl’s behavior, the observations made are
typical for any nonperiodic system. Various system-
dependent parameters will change, based on how easy
or hard it is to predict the specific system, but the sys-
tem can be analyzed to find values for these parameters.
Our tools do exactly that.

Analysis begins with an accurate model, as for a peri-
odic system, and proceeds through the following steps:

1. Find the range of the system—the bounds of its state
variables in the state space. This lets us build cell
structures over the space and scale values if required.

2. Build the stationary distribution that will be sam-
pled to generate the new state when a system has
been out of view for a long time.

3. Determine tlong, the time an object must be out of
view before we can sample a new state from the dis-
tribution.

4. Build approximations for generating the new state
when a system has been out of view for a medium
period of time.

5. Determine tmedium, the time a system must be out of
view before we use approximations instead of the
accurate model.

6. Generate code incorporating the distribution for
sampling, the approximations, and control logic for
determining which method to use for a given time
out of view.

Finding the range. The range of the system is
important because it restricts the region of the state
space we must concern ourselves with, allowing discrete
cell structures to be built on the state space. To bound an
individual variable, we search forward through time for
local minima or maxima for each variable, updating the
global minimum and maximum as we go. We stop look-
ing for new local minima and maxima when the global
values cease to change significantly.

This method is not foolproof—the simulation will not
visit regions of the state space reachable from a differ-
ent starting point. However, we can be arbitrarily certain
of how good the bounds are by tracing a larger number
of trajectories from appropriately distributed starting
values. We find in practice that small errors in the bounds
do not harm the analysis. Also, some variables may be
bounded by the user in the input description, particu-
larly angular variables (which lie in (−π, π]).

Building the stationary distribution. The sta-
tionary distribution indicates how much time a long-
running system spends in any region of the state space.
To model the distribution, divide the reachable regions
of the state space into constant (user specified) size cells;
a probability, Pi, is attached to each cell i. The result is a
discrete distribution on cells, where Pi is the probabili-
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ty that, at a random point in time, the system lies with-
in that cell. We assume that the distribution on points
within a single cell is uniform.

To build the distribution, we begin with a large num-
ber of paths at random and integrate for fixed time-
steps. We maintain a counter for each cell, measuring
how many times a path lies in that cell at the end of a
time-step. Then,

According to the statistical law of large numbers, the
Pi will converge to fixed values as the system is inte-
grated for longer periods of time (assuming a station-
ary distribution exists). We monitor how much the
distribution changes between time-steps and stop when
the change becomes small as measured by the L1 norm.

The discrete cell approximation to the exact station-
ary distribution performs well in practice, even with
quite large cell sizes. Figure 4 shows the stationary dis-
tribution for the Tilt-A-Whirl, in which the discrete dis-
tribution succeeds in capturing the swirling nature of the
exact distribution, but with only a small storage cost. The
left image shows a high-resolution image of the distrib-
ution. Darker points correspond to higher probability,
indicating that the system’s state is more likely to take
on that value. The right image shows the discrete cell
approximation to the distribution. The discrete approx-
imation still captures the overall character of the distri-
bution, but with far smaller data storage requirements.

Determining tlong. The sampling threshold, tlong,
represents the period of time that must elapse before a
new state may be sampled from the stationary distribu-
tion, rather than computed based on some initial condi-
tions. It equals the time taken for a small region of viewer
uncertainty to evolve into the stationary distribution. To
see why, consider what an observer knows when the
object leaves the view. There is some error in this knowl-
edge, which means that the system could be moving on
one of several different paths. As time moves on, these
paths diverge, until finally the distribution of possible
paths looks like any other distribution of paths for the
system—the stationary distribution. Because the two
distributions are now the same, sampling from one is the
same as sampling from the other, and observers cannot
detect that we sampled from the stationary rather than
the exact distribution defined by their knowledge.

To determine tlong, we sample a large number of start-
ing values from within a small region of the state space,
then integrate these paths for fixed time-steps (see Fig-
ure 5). At the end of each step, we check the difference
between the distribution of the paths and the station-
ary distribution. If these are nearly the same, the total
integration time is a candidate for tlong. We then repeat
this procedure for other starting regions, until we have
sampled from enough of the state space. The actual
value used is the maximum tlong found for any region.
Our methods directly examine the propagation of uncer-
tainty, but other approaches based on more theoretical
considerations8 might also apply.

Building approximations. The approximation
functions we build in this step will be used to generate
a new state quickly, with some error allowed. After some
short period of time, they must cost less to evaluate than
the most accurate routine supplied by the user, and we
want the cost of evaluating them to grow more slowly
than the time period over which they evaluate. For this
task we use neural networks, similar to those used for
approximating periodic functions.

In this step we generate several neural networks, each
of which evaluates over its own fixed time interval, ∆ti.
As input, each network takes the state of the system at
time t, so there are as many input nodes as state vari-
ables. On output, each produces the state at time t + ∆ti.
One network evaluates a function over a period of half
the sampling threshold, tlong/2. The next function eval-
uates over half this time, the next over half of that, and
so on, stopping at a network that evaluates over either
a user-defined minimum step or the period of any forc-
ing functions, whichever is greater. By chaining neural
networks together, we can evaluate to within a small
distance of any time interval, which we will reach exact-
ly using the accurate model.

Our structure of networks has the following
advantages:

■ We expect the cost of evaluating networks to grow at
a slower rate than the time interval for which they
evaluate, resulting in computational savings over the
cost of evaluating one network over many steps.

■ We can build the network’s dependence on time into
the network itself, rather than making it an input
parameter. This significantly simplifies the network
and allows lower errors for the same size net.

■ We can tolerate larger errors in networks that evalu-
ate over longer times, without sacrificing accuracy in
networks that will evaluate over short periods.
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4 The station-
ary distribution
for the Tilt-A-
Whirl system at
high resolution
(left) and a
discrete cell
approximation
to the distribu-
tion (right).

5 The convergence of one cell into
the stationary distribution, for the
Tilt-A-Whirl model. Starting top left
and moving clockwise, the plots
show the distribution of 5,000
paths after 3.07 seconds, 6.15
seconds, 9.23 seconds, and 12.31
seconds. The distribution in the
lower left is sufficiently close to the
stationary distribution to stop
testing for this cell. Other cells take
up to 24.6 seconds to converge.
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■ We can train networks concurrently, with significant
improvements in training time and efficiency.

The samples on which we train the neural networks
are distributed according to the stationary system (due
to the method we use to generate them). This results in
the networks having lower error rates in regions of high
probability and higher error rates in regions of lower
probability (see Figure 6). We judge this acceptable
because the error will tend to be inversely proportional
to the likelihood of a viewer seeing the error. We termi-
nate learning if the error falls below a user-defined
threshold value. We grow the network by adding five new
nodes per layer each time its learning rate slows. We also
force termination after a fixed number of cycles if the net-
work has not reduced its error to an acceptable level.

In Figure 6, the network shown is attempting to learn
the change in orientation and change in velocity of a Tilt-
A-Whirl car over a 6.15-second interval. The left column
plots the change in position as a function of initial con-
ditions, and the right column plots the change in veloc-
ity. The top row shows the true function, the middle
images show the function learned by the network, and
the bottom row shows the difference image, masked by
the stationary distribution shown in Figure 4. In each
frame, the initial orientation increases from −πto πalong
the horizontal axis, and the velocity increases vertically
from −4.21 to 3.59. Note that we aren’t concerned with
errors masked out by the stationary distribution, because
a viewer will never see these errors. Such regions include
the top left and bottom left corners of each frame.

We could use other approximating functions, such as
radial basis functions, wavelets, or splines, which have
the advantage of elegant subdivision schemes, but lack
the generality and ease of fitting offered by neural net-
works. For optimum approximation, the best method
would be chosen based on how each performed on the
target function.

Determining tmedium. To determine when we can
use the approximation in place of the true evaluation rou-

tine, we may simply find the point at which it becomes
more efficient to approximate, provided the approxima-
tion error is sufficiently low. The neural network learn-
ing procedure ensures that the error in the approximation
function for the shortest evaluation time network is with-
in a viewer’s ability to predict. Since we also assume that
neural networks are always cheaper to evaluate than the
accurate system, we simply set tmedium to the smallest eval-
uation time of the networks we have trained.

Code generation. The code generated for nonpe-
riodic functions allows efficient evaluation of new
dynamic states over any time interval and within a view-
er’s ability to detect errors. The components of the new
model are

■ A representation of the stationary distribution and
code to sample from it.

■ Code to evaluate the various neural networks and a
wrapper function that determines the set of evalua-
tions required to step forward a given amount in time.

■ Control logic that examines the difference between
the desired evaluation time and the last time the view-
er saw the system. If the difference exceeds tlong, it sam-
ples new values. Otherwise, if the difference exceeds
tmedium, it uses a neural network approximation. Oth-
erwise, it uses the accurate model to generate state.

The runtime layer
The tools for generating approximations for culling

produce a description of the dynamical system that can
efficiently evaluate the state at any given time regard-
less of the period between evaluations. The runtime
layer aims to provide a standard interface between such
systems, written in Java, and a VRML world. From the
VRML side, a dynamical system is an EXTERNPROTO
object, reducing to a minimum the complexity of incor-
porating a model into a larger world. From the Java side,
it’s only necessary to supply the dynamics evaluation
routine in a standard format.

A runtime environment is generated for each dynam-
ic object, consisting of a VRML file and a Java class file.
Together, they must perform the following tasks:

■ Store the geometry of the animated objects.
■ Link the state variables of a dynamical system to

transformations of the objects.
■ When the VRML browser indicates a new frame

(achieved through TimeSensor events, which we
assume a browser sends at least once per frame), the
runtime system must obtain dynamic state values for
that frame.

■ Track the visibility of the system and turn off evalua-
tion of dynamic state (cull this system) if not in view.

The geometry of the animated object is stored within
the VRML file, in standard VRML format. The VRML file
also contains a Scriptnode to interface to Java, and it
defines all the necessary names and ROUTES for linking
the script’s output to transformations of the geometry.

To manage dynamic state, the runtime environment
maintains buffers of state variables evaluated at fixed
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equations of motion approximated
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time intervals. Intermediate values required for ren-
dering are interpolated between buffered states. We use
linear interpolation, although higher order schemes are
possible. Buffering state is advantageous because it pro-
vides a constant frame rate interface to the renderer,
while allowing the underlying dynamic system to com-
pute values at any rate and time-step. It also makes it
possible to have useful values ready in the buffer if the
object leaves the view and then reenters soon after.

When the runtime system receives a request for a new
state, two possibilities exist, depending on whether the
value is already buffered. If the value requested does
not appear in the buffer, the dynamical system is eval-
uated twice, once for each of the values bracketing the
requested time. If the values are already in the buffer,
the system is still evaluated in order to fill future slots in
the buffer. In practice, the system is evaluated repeat-
edly to fill the buffer until it signals that enough work
has been done for one frame.

To track visibility, we use VisibilitySensors
within the VRML file. These sensors send events each
time a bounding volume enters or leaves the user’s view.
In turn, these events cause the Java class to mark indi-
vidual dynamical systems that control the object as vis-
ible or invisible. Invisible objects will not be evaluated
for a new state. The VRML specification does not allow
a user to explicitly activate or deactivate Java scripts, so
we use an automatically generated script to ensure that
events are not sent to culled scripts.

Each runtime environment is unique to its model. To
create the runtime environment, the user provides a file
describing the geometry to be animated and associat-
ing dynamic variables with transformations. A program
then completes a template to create the runtime files.
The file format used is simple enough to generate by
hand, but the easiest method is through a modeler,
which we describe next.

Attaching dynamics to geometry
The rigid-body modeler allows a user to load objects

described by VRML’s PROTOmechanism, display them,
and build transformation hierarchies consisting of
objects, rotations, translations, and bounding boxes.
The values used for the transformations may be ani-
mated, thus creating dynamic models. As output, the
modeling program produces the runtime layer, or it can
save an intermediate file format.

The interface, which appears in Figure 7, consists of
three regions. The top panel displays the current geo-
metric arrangement of the system, including its bound-
ing volume. The transformation hierarchy for the system
appears in the lower left panel. A simple drag-and-drop
interface is used to edit the hierarchy. The available
nodes, shown on the far left, are (top to bottom): group,
rotation, translation, VRML object, and bounding vol-
ume. By clicking on a node in the tree, a user can edit
the fields of that node in the lower right panel, entering
a constant or specifying a variable to animate the field.
The user here is editing a rotation node, specifying a
variable as the angle through which to rotate.

In describing systems for the modeling process, we
distinguish between output variables and state variables.

State variables are the set of values required to describe
the system completely at any time, whereas output vari-
ables correspond directly to geometric transformations.
The output variables are derived from the state variables
through a user-defined function. For example, the roller
coaster model has two state variables: the parametric
position on the track and the parametric velocity along
the track. The output variables are the actual position in
world space and the various rotations to align the car
with the track, derived by evaluating the track spline at
the position indicated by the state variables.

Each field of geometric transformation is specified
either as a constant value or as an element of a field vari-
able. Each field variable is an array corresponding to the
output variables for a dynamical system, which the user
specifies as a Java class name when defining the field vari-
able. The class for field variables must implement an inter-
face that defines functions for evaluating the state at a
given time, and for setting the values of output variables.
The approximation tools described above produce such
classes, but users can also define them directly—the for-
mat is simple and compact. Hand authoring is desirable
for systems expressed as closed-form functions of time,
which do not benefit from the approximations described
above yet are still important for modeling dynamics.

Within the modeler, a user can preview the effect of
the dynamical system on the model. Such a preview
takes place within a Java environment, as opposed to
the VRML browser environment. This makes debugging
significantly easier.

The bounding boxes in the hierarchy tell the system
which dynamics may be culled. Each bound has associ-
ated with it a set of variables whose visual effect is con-
tained within the bound. If the bound is not visible, the
dynamics for those variables will be culled. The model-
er can automatically determine this bound by running
the system within the modeler and examining the max-
imum extents of geometry over time.

We emphasize again that the dynamics are largely
independent of the geometry to which they are attached.
Some dependence occurs if you want to make the simu-
lation physically plausible, such as lengths of geometric
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modeler.
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objects appearing as parameters in the dynamical system,
but as parameters they are readily made available to a
user and don’t change the structure of the underlying
equations. This allows reuse of parameterized dynamics
with different geometries and vice versa. More impor-
tantly, it makes possible a library of dynamical systems,
each with efficient cullable code, which authors could
use in the same way they use 3D geometry libraries today.

Speedup results
To measure the performance improvement while

culling dynamics, we studied the time spent computing
the dynamics for each rendered frame of a simulation.
The models used in our tests appear in Figure 8. We
began with one instance of each in the world, then
added additional objects up to a maximum of 35 (five
of each example).

In each test, we measured the average frame time for

a viewpoint animated such that the
center of view moved in a circle
around the world while the view
direction oscillated through a 90-
degree angle. We added rides so
that the density of rides in the world
remained approximately constant.
With culling turned on, the dynam-
ics for a ride were computed only if
the ride was visible, and we used the
models generated by our software
to ensure fast, consistent evaluation.
With culling off, the dynamics for all
the models were computed for every
frame using the accurate model for
the system. The geometric render-
ing was not affected by the culling—
we assume the browser culled
geometry against the view volume.

Table 1 presents the timing val-
ues recorded in our experiments. It
shows the average time per frame
with and without culling, and the
average number of models in view,
for increasing numbers of models.
The time per frame with culling on

grows approximately linearly with the number of mod-
els in view, and the frame-rate speedup is roughly con-
stant (see Figure 9), as expected with our setup. Our
results demonstrate that the average time per frame is
roughly linear with respect to the average number of
systems in view, because we only perform computation
for objects in view, and the browser performs geomet-
ric culling against the view volume.

Figure 9 plots the speedups obtained by culling over
a world that does no culling. The speedups obtained are
around 2.6 and remain roughly constant as the number
of systems increases. We expect this result, as the per-
centage of systems in view remains approximately con-
stant. We did not achieve the 4× speedup you might
expect (only around 1/4 of the systems were in view at
any time). This results in part because our underlying
system must perform some computation to check
whether each system is in view, as well as the overhead
of Java scripts.

Future work
One significant extension we want to add to our

approximation software is the capacity to handle state
machines and hierarchies of systems. The optimization
approach is similar, and the range of systems that can
be modeled would greatly increase. For example, the
Tilt-A-Whirl ride could stop to let off and collect pas-
sengers, rather than running indefinitely.

For novice users, an authoring tool would ideally hide
any equations of motion for the system from the author.
Such a tool would approach modeling from the point of
view of geometric constraints and common forces (such
as gravity or motors). The modeler would then infer the
dynamics and generate the accurate model required by
our current system. With this architecture the optimiza-
tion process is carried out as a subsystem of the modeler,
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Table 1. Experimental timing values.

Cull On Cull Off Number Percent
Total (seconds) (seconds) in View in View

7 0.048 0.126 1.42 20%
14 0.090 0.249 2.94 21%
21 0.142 0.394 4.75 23%
28 0.208 0.550 7.27 26%
35 0.280 0.727 9.12 26%
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9 The speedups
obtained plot-
ted as a func-
tion of the total
number of
models in the
world. Note
that the vertical
axis does not
start at zero.

8 Fairground rides modeled with
our tools: the octopus (front left),
the pirate ship (front right), two
versions of a double pendulum
(center front and back), the dive-
bomber (back right), and the roller
coaster and Tilt-a-Whirl.
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and the user need never explicitly state the dynamics.
Some aspects of our work could be simplified by incor-

porating appropriate semantics into the VRML specifi-
cation. In particular, our runtime layer uses special
scripts to ensure that timer events are only sent to sys-
tems in view. The VRML browser could be supplied with
all the information necessary to do that itself: scripts
require bounding volumes with the semantics that
scripts need not receive events when their bound is invis-
ible. In many cases this information could be inferred
by examining the bounding volumes for geometry influ-
enced by events from the script.

Of interest to the VRML community is the interaction
of culling with multiuser networked environments. A con-
servative culling approach for multiuser worlds would
keep track of the last time any viewer saw each system
and apply the same tests used in this article to determine
how the system should have evolved when next seen.
More aggressive approaches might allow different view-
ers to see different things, based on the viewers’ ability
to communicate. In particular, as long as each viewer per-
ceives the same events, their accounts will agree. If the
actual dynamic motion that led to the perception differs
just slightly, noticeable inconsistencies are unlikely.

Conclusion
The set of tools presented here enables authoring effi-

cient dynamic models in VRML and Java. They use novel
techniques for automatically generating dynamical
models that may be culled when not in view. Our inter-
active modeler allows combining geometry and dynam-
ics by associating geometric transforms with dynamic
state variables.

Our results show that large numbers of models can
be included in a VRML world without sacrificing frame
rate. We achieve this by performing only that work nec-
essary to ensure a consistent environment for the view-
er. Our tools make it possible for those inexperienced
with dynamics to achieve similar results, while strong-
ly encouraging the development of a library of dynam-
ics for use with varying geometry. ■
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