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Abstract. Digital library applications require very general object recog-
nition techniques. We describe an object recognition strategy that op-
erates by grouping together image primitives in increasingly distinctive
collections. Once a sufficiently large group has been found, we declare
that an object is present. We demonstrate this method on applications
such as finding unclothed people in general images and finding horses
in general images. Finding clothed people is difficult, because the vari-
ation in colour and texture on the surface of clothing means that it is
hard to find regions of clothing in the image. We show that our strategy
can be used to find clothing by marking the distinctive shading patterns
associated with folds in clothing, and then grouping these patterns.

1 Background

Several typical collections containing over ten million images are listed in [6].
There is an extensive literature on obtaining images from large collections using
features computed from the whole image, including colour histograms, texture
measures and shape measures; significant papers include [9, 13,16, 21, 24, 25, 27,
30,31, 36-39,42].

However, in the most comprehensive field study of usage practices (a paper
by Emnser [6] surveying the use of the Hulton Deutsch collection), there is a
clear user preference for searching these collections on image semantics; typical
queries observed are overwhelmingly oriented toward object classes (“dinosaurs”,
p. 40, “chimpanzee tea party, early”, p. 41) or instances (“Harry Secombe”,
p. 44, “Edward Heath gesticulating”, p. 45). An ideal search tool would be a
quite general recognition system that could be adapted quickly and easily to the
types of objects sought by a user. Building such a tool requires a much more
sophisticated understanding of the process of recognition than currently exists.
Object recognition will not be comprehensively solved in the foreseeable future.
Solutions that are good enough to be useful for some cases in applications are
likely, however. Querying image collections is a particularly good application,
because in many cases no other query mechanism is available — there is no
prospect of searching all the photographs by hand. Furthermore, users are typ-
ically happy with low recall queries - in fact, the output of a high-recall search
for “The President” of a large news collection would be unusable for most ap-
plication purposes. This proposal focuses on areas that form a significant subset
of these queries where useful tools can reasonably be expected.
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Discussing recognition requires respecting a distinction between two important
and subtly different problems: finding, where the image components that result
from a single object are collected together; and naming, where the particular
name of a single isolated object is determined. Finding is not well defined, be-
cause objects are not well defined — for example, would one regard the image
components corresponding to an ear or an eye as separate objects that comprise
a face, or do these components belong together as part of a single indissoluble
object?

2 Primitives, segmentation and implicit representations

Writings on object recognition have tended to concentrate on naming problems.
For some types of object or scene finding can be avoided by quite simple tech-
niques. For example, for small numbers of geometrically exact object models
search is effective [7, 14, 18,22, 26, 28, 29, 34, 40]; and for isolated objects, finding
is irrelevant.

However, in many applications finding is an important component of the prob-
lem; often, the name of an object is required only at a very limited level of detail
(“person”, “big cat”, etc.). While naming is not an easy problem, quite good so-
lutions appear possible with extensions of current pose-based techniques. There
are several reasons finding is very difficult and poorly understood. Finding is es-
sentially segmentation writ large, using generic cues — like coherence in colour
and texture, used by current work on segmentation — initially and high-level
knowledge later to obtain regions that should be recognised together. However, de-
ciding which bits of the image belong together and should be recognised together
requires knowledge of object properties. As a result, finding involves deploying
object knowledge to direct and guide segmentation — but how is the right piece
of knowledge to be used in the right place? One wishes to recognize objects at a
class level independent of geometric detail, so that finding algorithms should be
capable of abstraction. For example, most quadrupeds have roughly the same
body segments in roughly the same place — good finding algorithms would ex-
ploit this fact before, say, measuring the distribution of musculature on each
segment or the number of hairs on an ear. Finally, a sensible approach to finding
should use representations that are robust to the effects of pose, and of internal
degrees of freedom, such as joints.

If we use the word primitive more loosely, to mean a feature or assembly of
features that has a constrained, stylised appearance, then a representation based
around primitives at many levels has the great advantage that, at each stage of
finding, a program can know what it is looking for. For example, horses can be
represented (crudely!) as assemblies of hide-coloured cylinders — this results in
a finding process that first looks for hide-like regions; then finds edge points, and
uses geometrical constraints to assemble sets of edge points that could have come
from cylinders; and finally reasons about the configuration of the cylinders. At
each stage there are few alternatives to choose from, which means the search is
efficient; and, while each individual test is weak, the collective of tests in sequence
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can be quite powerful. The choice of primitives and the order and nature of
assembly routines together form an implicit representation — a representation of
an object as a finding process which functions as a source of top-down knowledge.
We now have some insight into what should be a primitive. Primitives should
have stereotyped appearance. The most useful form of primitive is one where
it is possible to test an assembly of image features and say whether it is likely to
have come from a primitive or not. For example, it is known that such tests are
easy for surfaces of revolution, straight homogeneous generalised cylinders, canal
surfaces, and cylinders [32,33,43]. As a result, it is possible to segment image
regions that are likely to correspond to such surfaces without knowing to what
object they belong'. A second feature of a useful primitive is that it is significant.
For example, a cylinder is a significant property, because many objects are - at a
crude level - made of cylinders. A third useful property is robustness; cylindrical
primitives are quite easy to find even in the presence of some deformations. These
properties mean that finding objects that are assemblies of primitives essentially
involves finding the primitives, and then reasoning about their assembly. As we
have indicated, previous work has typically concentrated on parsing activities
(which assume that finding has already occurred); this proposal concentrates on
finding.

2.1 Body plans - interim results on implicit representations

A natural implicit representation to use for people and many animals is a body
plan — a sequence of grouping stages, constructed to mirror the layout of body
segments. These grouping stages assemble image components that could corre-
spond to appropriate body segments or other components (as in figure 1, which
shows the plan used as an implicit representation of a horse). Having a sequence
of stages means the process is efficient: the process can start with checking
individual segments and move to checking multi-segment groups, so that not
all groups of four (or however many for the relevant body plan) segments are
presented to the final classifier. We have done extensive experiments with two
separate systems that use the same structure:

— Images are masked for regions of appropriate colour and texture.
— Roughly cylindrical regions of appropriate colour and texture are identified.
— Assemblies of regions are formed and tested against a sequence of predicates.

The first example identifies pictures containing people wearing little or no cloth-
ing, to finesse the issue of variations of appearance of clothing. This program has
been tested on an usually large and unusually diverse set of images; on a test
collection of 565 images known to contain lightly clad people and 4289 control
images with widely varying content, one tuning of the program marked 241 test

! While current techniques for finding generalised cylinders are fragile, because they
winnow large collections of edges to find subsets with particular geometric properties
and so are overwhelmed by images of textured objects, the principle remains. We
indicate an attack on this difficulty below.
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Fig. 1. The body plan used for horses. Each circle represents a classifier, with an icon
indicating the appearance of the assembly. An arrow indicates that the classifier at the
arrowhead uses segments passed by the classifier at the tail. The topology was given in
advance. The classifiers were then trained using image data from a total of 38 images
of horses.

images and 182 control images (the performance of various different tunings is
indicated in figure 3; more detailed information appears in [12,10]). The recall is
comparable with full-text document recall [3,4,35] (which is surprisingly good
for so abstract an object recognition query) and the rate of false positives is
satisfactorily low. In this case, the representation was entirely built by hand.

The second example used a representation whose combinatorial structure — the
order in which tests were applied — was built by hand, but where the tests
were learned from data. This program identified pictures containing horses, and
is described in greater detail in [11]. Tests used 100 images containing horses,
and 1086 control images with widely varying content. The geometric process
makes a significant different, as figure 2 illustrates. The performance of various
different configurations is shown in figure 3. For version “F”, if one estimates
performance omitting images used in training and images for which the segment
finding process fails, the recall is 15% — i.e. about 15% of the images containing
horses are marked — and control images are marked at the rate of approximately
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Fig. 2. Typical images with large quantities of hide-like pizels (white pizels are not hide-
like; others are hide-like) that are classified as not containing horses, because there is
no geometric configuration present. While the test of colour and texture is helpful, the
geometric test is important, too, as the results in figure 8 suggest. In particular, the
fact that a horse is brown is not nearly as distinctive as the fact that it is brown, made
of cylinders, and these cylinders have a particular set of possible arrangements.

0.65%. In our test collection, this translates to 11 images of horses marked and
4 control images marked?.

Finding using body plans has been shown to be quite effective for special cases
in quite general scenes. It is relatively insensitive to changes in aspect [11]. It is
quite robust to the relatively poor segmentations that our criteria offer, because
it is quite effective in dealing with nuisance segments — in the horse tests, the
average number of four segment groups was 2,500,000, which is an average of
forty segments per image. Nonetheless, the process described above is crude:
it is too dependent on colour and texture criteria for early segmentation; the
learning process is absent (humans) or extremely simple (horses); and there is
one recogniser per class.

3 Learning assembly processes from data

We have been studying processes for learning to assemble primitives. The recog-
nition processes described above have a strong component of correspondence; in
particular, we are pruning a set of correspondences between image segments and
body segment labels by testing for kinematic plausibility.

% These figures are not 15 and 7, because of the omission of training images and images
where the segment finder failed in estimating performance.
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Fig. 3. The response ratio, (percent incoming test images marked/percent incoming
control images marked), plotted against the percentage of test images marked, for vari-
ous configurations of the two finding programs. Data for the nude human finder appears
on the top, for the horse finder on the right. Capital letters indicate the performance
of the complete system of skin/hide filter and geometrical grouper, and lower case let-
ters indicate the performance of the geometrical grouper alone. The label “skin” (resp
“hide”) indicates the selectivity of using skin (resp hide) alone as a criterion. For the
human finder, the parameter varied is the type of group required to declare a human is
present — the trend is that more compler groups display higher selectivity and lower
recall. For the horse finder, the parameter being varied is the mazimum number of that
will be considered.

The search for acceptable correspondences can be made efficient by using pro-
jected classifiers, which prune labelings using the properties of smaller sub-
labelings (as in [18], who use manually determined bounds and do not learn
the tests). Given a classifier C' which is a function of a set of features whose
values depend on segments with labels in the set L = {l; ...l,,}, the projected
classifier Cy,. 4, is a function of of all those features that depend only on the
segments with labels L' = {l;...lx}. In particular, Cj,. ;, (L") > 0 if there is
some extension L of L' such that C'(L) > 0. This criterion corresponds to insist-
ing that groups should pass intermediate classifiers if, with appropriate segments
attached, they pass a final classifier.

The converse need not be true: the feature values required to bring a projected
point inside the positive volume of C' may not be realized with any labeling of the
current set of segments 1,..., N. For a projected classifier to be useful, it must
be easy to compute the projection, and it must be effective in rejecting labelings
at an early stage. These are strong requirements which are not satisfied by most
good classifiers; for example, in our experience a support vector machine with a
positive definite quadratic kernel projects easily but typically yields unrestrictive
projected classifiers.

We have been using an axis-aligned bounding box, with bounds learned from
a collection of positive labellings, for a good first separation, and then using
a boosted version of a weak classifier that splits the feature space on a single
feature value (as in [15]). This yields a classifier that projects particularly well,
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and allows clean and efficient algorithms for computing projected classifiers and
expanding sets of labels (see [23]).

The segment finder may find either 1 or 2 segments for each limb, depending
on whether it is bent or straight; because the pruning is so effective, we can
allow segments to be broken into two equal halves lengthwise, both of which are
tested.

3.1 Results

The training set included 79 images without people, selected randomly from
the COREL database, and 274 images each with a single person on uniform
background. The images with people have been scanned from books of human
models [41]. All segments in the test images were reported; in the control images,
only segments whose interior corresponded to human skin in colour and texture
were reported. Control images, both for the training and for the test set, were
chosen so that all had at least 30% of their pixels similar to human skin in
colour and texture. This gives a more realistic test of the system performance
by excluding regions that are obviously not human, and reduces the number of
segments in the control images to the same order of magnitude as those in the
test images.

The models are all wearing either swim suits or no clothes, otherwise segment
finding fails; it is an open problem to segment people wearing loose clothing.
There is a wide variation in the poses of the training examples, although all body
segments are visible. The sets of segments corresponding to people were then
hand-labeled. Of the 274 images with people, segments for each body part were
found in 193 images. The remaining 81 resulted in incomplete configurations,
which could still be used for computing the bounding box used to obtain a first
separation. Since we assume that if a configuration looks like a person then its
mirror image would too, we double the number of body configurations by flipping
each one about a vertical axis. The bounding box is then computed from the
resulting 548 points in the feature space, without looking at the images without
people.

The boosted classifier was trained to separate two classes: the 193 x 2 = 386
points corresponding to body configurations, and 60727 points that did not cor-
respond to people but lay in the bounding box, obtained by using the bounding
box classifier to incrementally build labelings for the images with no people.
We added 1178 synthetic positive configurations obtained by randomly selecting
each limb and the torso from one of the 386 real images of body configurations
(which were rotated and scaled so the torso positions were the same in all of
them) to give an effect of joining limbs and torsos from different images rather
like childrens’ flip-books. Remarkably, the boosted classifier classified each of the
real data points correctly but misclassified 976 out of the 1178 synthetic config-
urations as negative; the synthetic examples were unexpectedly more similar to
the negative examples than the real examples were.

The test dataset was separate from the training set and included 120 images
with a person on a uniform background, and varying numbers of control images,
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|Features||# test images|# control images|False negatives|False positives|

367 120 28 37% 4%

567 120 86 49% 10 %
Table 1. Number of images of people and without people processed by the classifiers
with 8367 and 567 features, compared with false negative (images with a person where no
body configuration was found) and false positive (images with no people where a person
was detected) rates.

reported in table 1. We report results for two classifiers, one using 567 features
and the other using a subset of 367 of those features. Table 1 shows the false
positive and false negative rates achieved for each of the two classifiers. By mark-
ing 51% of test images and only 10% of control images, the classifier using 567
features compares extremely favourably with that of [8], which marked 54% of
test images and 38% of control images using hand-tuned tests to form groups
of four segments. In 55 of the 59 images where there was a false negative, a
segment corresponding to a body part was missed by the segment finder, mean-
ing that the overall system performance significantly understates the classifier
performance. There are few signs of overfitting, probably because the features
are highly redundant. Using the larger set of features makes labelling faster (by
a factor of about five), because more configurations are rejected earlier.

4 Shading primitives, shape representations and clothing

Finding clothed people is a far more subtle problem than finding naked people,
because the variation in colour, texture and pattern of clothing defeats a colour
segmentation strategy. Clothing does have distinctive properties: the patterns
formed by folds on clothing appear to offer cues to the configuration of the
person underneath (as any textbook on figure drawing will illustrate). These
folds have quite distinctive shading patterns [19], which are a dominant feature
of the shading field of a person clad in a loose garment, because, although they
are geometrically small, the surface normal changes significantly at a fold. Folds
are best analysed using the theory of buckling, and arise from a variety of causes
including excess material, as in the case of a full skirt, and stresses on a garment
caused by body configurations. Folds appear to be the single most distinctive,
reliable and general visual cue to the configuration of a person dressed in a cotton
garment.

4.1 Grouping folds using a simple buckling model

Garments can be modelled as elastic shells, allowing rather simple predictions
of the pattern of folds using the Von Karman-Donnell equation or a linearised
version of that equation. This is known to be a dubious source of predictions
of buckling force, but the frequencies of the eigenfunctions — which give the
buckled solutions — are accepted as fair predictions of the buckling mode for
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the cases described (this is the topic of a huge literature, introduced in [5]).
The eigenfunctions allow us to predict that garments buckling in compression or
torsion will display long, nearly straight folds that are nearly parallel and nearly
evenly spaced. These folds will be approximately perpendicular to the direction
of compression and will indicate the direction of the torsion. The number of
folds depends on tension in the garment, and is hard to predict.? For torsion,
reasonable estimates of a garment’s size yield on the order of five visible folds.
As figures 4 and 5 indicate, these predictions are accurate enough to drive a
segmentation process.

We apply the simple fold finder described in [20] to the image at twelve different
orientations. Using these twelve response maps, we use non-maximum supression
to find the centre of the fold, and follow this maximum along the direction of
maximum response to link all points corresponding to a single fold. The link-
ing process breaks sharp corners, by considering the primary direction of the
preceding points along the fold.

After finding all of the folds in the image, the next step is to find pairs which
are approximately parallel, and in the same part of the image. If the projections
of the two folds onto their average direction are disjoint, they are considered to
belong to different parts of the image.

From the theory, we expect that multiple folds will be at regularly spaced in-
tervals. Thus, we look for pairs which have one common fold, and consistent
separations. (The separations should either be the same, or one should be dou-
ble the other—if a single fold gets dropped, we do not want to ignore the entire
pattern.) The separation between folds is required to be less than the maximum
length of the folds. Finally, some of these groups can be further combined, if the
groups have almost the same set of folds.

The program typically extracts 10-25 groups of folds from an image. Figure 4
shows one image with three typical groups. The group in 4(b) clearly corresponds
to the major folds across the torso in the image. This is in fact a segmentation
of the image into coherent regions consisting of possible pieces of cloth. The
region covered by the folds in (b) is most of the torso of the figure, and suggests
a likely candidate for consideration as a torso. There are other groups as well,
such as (c), the venetian blinds, and (d), an aliased version of (d), but these
extra segments are easily dealt with by higher level processes.

Any image of man-made scenes will have a number of straight parallel lines
which may have similar shading to folds (see, for example, figure 6). While this
may be initially interpreted as groups of folds—hence as clothing—higher-level
reasoning should enable us to reject these groups as coming from something
other than folds in cloth.

8 This can be demonstrated with a simple experiment. Wearing a loose but tucked-in
T-shirt, bend forward at the waist; the shirt hangs in a single fold. Now pull the
T-shirt taut against your abdomen and bend forward; many narrow folds form.
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Fig. 4. Results of a segmenter that obtains regions by grouping folds that satisfy the
qualitative predictions of the linear buckling theory. (a) An image showing folds corre-
sponding to torsional buckling. (b,c,d) Three groups of folds found by our program. The
group in (b) is, in essence the torso; it contains the major folds across the torso, and
can be used to represent the torso. An edge detector could not extract the outline points
of the torso from this image, since the venetian blinds would result in a mess of edges.
The group of fold responses in (c) is due to the venetian blinds in the background. Such
a large set of parallel lines is unlikely to come from a picture of a torso, since it would
require the torso to be unrealistically long. (d) A group that is an aliased version of
the group in (c). Each group has quite high level semantics for segmenter output; in
particular, groups represent image regions that could be clothing.

4.2 Grouping folds by sampling

An alternative approach is to obtain groups which are samples from a posterior
on groups given image data. This approach has the virtue that we do not need
to come up with a detailed physical model of garment buckling — a process
complicated by cloth anisotropy, etc. A simple likelihood model can be fitted to
groups in real images, instead.

We describe each group of folds by a coordinate system and a series of variables
which describe the scale of the folds, their angle, and their location with respect
to a coordinate system. We also include the change in angle between adjacent
folds (this enables us to describe star-shaped folds). By examining a number of
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Fig. 5. Further ezamples of segmentations produced by our grouping process. The figures
show groups of fold responses, for the torsional (b,f) and azial (d,h) cases. In some
cases, more than one group should be fused to get the final extent of the torso — these
groups are separated by circles in the image. In each case, there are a series of between
10 and 25 other groups, representing either aliasing effects, the venetian blinds, or other
accidental events. Each group could be a region of clothing; more high-level information
1s required to tell which is and which is not.

(b)

Fig. 6. There are parallel folds that appear without clothing, too; (a) An image of an
architectural curiosity. (b) One of four groups of folds found in the image. It is certainly
expected that in images of man-made scenes, there will be a large number of nearly-
parallel lines, which may be interpreted as groups of folds. Other cues should allow us
to determine that this is not in fact clothing.

groups in real images, we estimate a probability distribution on the parameters
of the coordinate system. This allows us to describe how likely a group with
those parameters is. We also estimate the probability distribution for individual
folds within a group.
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(a) (b)

Fig.7. The Markov Chain Monte Carlo method can be used to group folds together.
(a) The original image. (b) Folds marked by hand, but grouped automatically. This is
the most popular grouping of the image, after 10,000 iterations. Note that parallel folds
are grouped together, and that the outline of the figure is largely ignored.

The folds are grouped by running a reversible-jump Markov Chain Monte Carlo
algorithm (as in [17]. If a fold has a high likelihood of belonging to a particular
group, an assignment of the fold to that group should be fairly stable. In other
words, it will have a high probability in the stationary distribution. The assign-
ments which appear most frequently over a large number of iterations are taken
to be the correct grouping. Proposal moves for this MCMC grouper are:

1. Add a new group. Two folds which have not previously been assigned to
another group are combined to form a new group.

Delete a two-fold group.

Change the parameters of a group.

Add a fold to a group. An unassigned fold is assigned to an existing group.
Remove a fold from a group

Change the group of a fold. Change the group assignment of a fold.

S Uik N

After several thousand iterations, we observe that the MCMC spends a relatively
high proportion of its time in certain states. We take the grouping in the most
popular state to be the best grouping of folds for the images. Figure 7 shows an
image, and the most popular grouping of folds. (The lower-level fold finder is
not yet robust enough to generate reliable folds, so the putative folds here were
marked by hand.) Parallel groups are taken to be a unit, and the edge of the
figure is largely ignored, as desired.
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4.3 Choosing primitives and building representations

Clothing is an interesting case because it is not obvious that folds are the right
primitive to use. This raises the standard, difficult question that any theory based
on primitives must address — how do we determine what is to be a primitive?
As a possible alternative to our current fold-finder, we have been studying a
mechanism for determining what should be a primitive following the ideas of [1,
2]. We obtain a large set of images of regions showing regions of folds, at the
same orientation and scale. There is a comparison set, containing non folds that
are not easy to distinguish from the folds using crude methods (e.g. a linear
classifier on principal components). As measurements, we use spatial relations
between filter outputs, for a reasonable set of filters at a variety of scales. We
take uniform samples of subimages from each set.
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Fig. 8. A representation of the decision tree used to find fold primitives. Each leaf
contains a few windows representative of image windows classified at that level; on
the left, clothing, and on the right, non-clothing. Below each leaf is the number of
clothing and non-clothing windows that arrived at that leaf, out of a total of 128 in
each category. 110 clothing and 2 non-clothing windows arrive at one leaf, strongly
suggesting this combination of filter outputs is an appropriate clothing primitive.

The task is now to explore the structure of the clothing set with respect to the
non-clothing set. We do this by setting up a decision tree; each decision attempts
to split the set at the leaf using an entropy criterion. The measurement used is
the value of the output of one filter at one point — the choice of filter and point
is given by the entropy criterion. The approach can be thought of as supervised
learning of segmentation — we are training a decision tree to separate windows
associated with objects to from those that are not. We split to several levels — a
total of twelve leaves in the current experiments — and then use the representation
at each leaf as a primitive. In particular, a leaf is defined by a series of filter
outputs at a series of points; at each leaf we have an estimate of the frequency of
observation of this pattern given clothing, and given no clothing. The remaining
task is to postprocess the set of primitives to remove translational redundancies.



335

Fig. 9. Folds in clothing result from buckling and have quite characteristic shading and
spatial properties, which are linked to the configuration of the person. (a) shows the
probability that an image window centered at each point contains a clothing primitive,
using automatically defined primitives sketched in figure 8; (b) shows lines of primitives
linked together using an extremisation criterion. Note that edges are in general not
marked, and that the process is insensitive to changes in albedo; these properties are a
result of the learning process.
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5 Conclusions

For recognition systems to be practically useful, we need a system of representa-
tion that can handle a reasonable level of abstraction and that can support seg-
mentation from quite general backgrounds. These requirements strongly suggest
representations in terms of relations between primitives. We have shown that,
using a simple primitive that is obviously convenient and useful, it is possible to
build relational representations that are quite effective at finding naked people
and horses. Furthermore, we have shown that a grouping process that finds such
assemblies can be learned from data. These representations are crucially limited
by the crude primitives used.

Primitives need not just be stylised shapes. The stylised appearance of folds in
clothing means that we can study the appearance of clothing in a reasonably
effective way. These are shading primitives. Although it is currently difficult to
know how to choose primitives, the problem appears to be statistical on its face.
Statistical criteria appear to be able to suggest promising choices of shading
primitives from image data.
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