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Invariant Descriptors for 3-D
Object Recognition and Pose
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Abstract—Invariant descriptors are shape descriptors that are
unaffected by object pose, by perspective projection, and by the
intrinsic parameters of the camera. These descriptors can be
constructed using the methods of invariant theory, which are
briefly surveyed.

A range of applications of invariant descriptors in three-
dimensional model-based vision is demonstrated. First, a model-
based vision system that recognizes curved plane objects,
irrespective of their pose, is demonstrated. Curves are not
reduced to polyhedral approximations but are handled as objects
in their own right. Models are generated directly from image data.
Once objects have been recognized, their pose can be computed.
Invariant descriptors for three-dimensional objects with plane
faces are described. All these ideas are demonstrated on images
of real scenes.

The stability of a range of invariant descriptors to measure-
ment error is treated in detail.

Index Terms—Computer vision, invariants, pose computation,
recognition.

I. INTRODUCTION

YSTEMS FOR recognizing objects in images have fo-
Scused largely on fixed, polyhedral models (there are a
few exceptions, e.g., [6], [37]—[39]). In general, recognition
proceeds by extracting a collection of features from the image,
hypothesizing a correspondence between these features and an
appropriate set of model features, and determining the position
and orientation (pose) of the model from this hypothesis. The
hypothesis is verified by using the computed pose to predict
further image features and confirming that some or all of
these features are found as predicted. Alternatively, the pose
of a hypothesized model can be predicted separately from
several different sets of features; verification then proceeds
by clustering these predictions in the six-dimensional pose
parameter space.

Many quite successful systems have been developed around
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polyhedral models using these techniques (for example, [21],
[27], {28], [45]). However, there remain a number of signifi-
cant difficulties with this approach:

» Representations of curves as polygonal arcs are not unique
and are extremely sensitive to the thresholds used to
place knots. Current approaches use local measures of
curvature to place knots [3], [28] and produce a wide
variety or representations that depend on initial conditions
and various parameter settings. Similar problems arise in
approximating the surface of a three-dimensional object
with a polyhedron. As a result, these techniques can
break down when dealing with curved objects or curved
surfaces.

In current systems, perspective is approximated by plane
affine transformations. This affine approximation is very
good when one observes an object from a distance that is
an order of magnitude or more greater than the maximum
object diameter along the direction of view [45]. How-
ever, the affine approximation is inappropriate in some
major application areas. The effects of perspective can be
pronounced in aerial photographs, particularly in oblique
views of such features as roadways, landing strips, and
shorelines.

Fast recognition with a large model library is hard us-
ing this approach because recognition is achieved by
trying each model in turn and selecting the model that
best explains the observed image features, leading to a
recognition cost linear in the number of objects in the
library. This can be improved if the models consist of
an arrangement of a small number of subparts (see, for
example, [12]). Unfortunately, this improvement requires
that subparts can be distinguished in the image, which is
a condition that is sometimes hard to satisfy, particularly
with three-dimensional objects. Aspect graph techniques
for recognizing three-dimensional objects (see, for ex-
ample, [22]) exacerbate the problem by vastly expanding
the model base.

Current systems invoke pose in recognition because shapes
measured in images depend not just on the shape of the object
viewed but on its pose and the intrinsic parameters of the
camera as well. In this paper, we construct shape descriptors
that are unaffected by the transformation between the object
and the image plane. These descriptors are at the heart of
the model-based vision systems for planar objects that we
demonstrate in Section III. These systems have important,
novel features:
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¢ Curves are handled as geometric features with an identity
and significance of their own and are not broken into line
segments.

* All perspective effects are fully accounted for. No ap-
proximations are necessary.

* Image curves are represented by invariant shape descrip-
tors, which allow direct indexing into the model library.
As a result, recognition is achieved without reference to
object pose. There is thus a potential for recognition in a
time that is independent of the number of objects in the
model library.

Invariant descriptors appear in a number of guises in con-
temporary vision work but are at present applied unsystemati-
cally. For example, the mainstream practice of transforming
a set of image features into a distinguished coordinate frame
(normally obtained by hypothesizing pose, although Lamdan
et al. used a more sophisticated system of affine invariant
properties based on a system of distinguished frames) and
then making measurements in that frame yields invariant
descriptors. As a second example, the descriptors used by
Grimson et al. [19] to control his tree searching algorithm
are invariant to plane Euclidean actions. A more systematic
application of invariant theory means that invariant descriptors
can be computed without the need for distinguished coordi-
nate frames—furthermore, it is possible to produce all the
functionally independent invariants for a given situation. In
this paper, we introduce the rudiments of invariant theory and
demonstrate a number of applications in vision.

A central theme in this work is the idea of the action of
a group, which is a collection of transformations, that can
be composed and inverted. Groups are very effective models
of a range of physical effects, particularly rigid motion, and
properties that are invariant to such transformations have been
widely studied. In vision, the principal transformation is a
perspectivity, which consists of Euclidean motion in space
composed with perspective projection. The product of two
perspectivities is not necessarily a perspectivity, which leads
to mathematical difficulties; therefore, we focus on the plane
projective group, which contains all the perspectivities as a
subset.

The paper is organized as follows: in Section II, we discuss
the mathematics and ideas underlying our use of invariant
theory and show a broad range of examples of invariants. In
Section III, we show the usefulness of this theory in model-
based vision. We demonstrate an affine invariant representation
for plane curves using conic curves. We build a simple
and effective model-based vision system that uses the affine
invariance of this representation to recognize objects with
planar faces. Because the descriptor does not change whatever
the pose of the object, this system effectively decouples
the problem of identifying objects from that of determining
their pose. In Section IV, we show that it is possible to
recover pose from our invariant representation by solving the
simple problem of backprojecting known conics. In Section V,
we use these pose results to obtain Euclidean invariant de-
scriptors for three-dimensional objects. In Section VI, we
address the effects of noise on invariant descriptors for plane
objects.
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II. INVARIANT THEORY

We adopt the notation that corresponding entities in two
different coordinate frames are distinguished by large and
small letters. Vectors are written in bold font, e.g., = and X.
Matrices are written in monospaced font, e.g., ¢ and C.

The idea of a change of coordinates can be usefully gener-
alized to that of a group action. Given a group G and a space
M, an action of G on the space associates with each group
element g € G a map g: M — M such that

d(z) ==z
(91 % g2)(2) = (91(g2(x))

@
@

where g1,g2 € G, id is the identity element of the group,
and x is the group composition function. Notice that this
definition implies that a group action is reversible because the
inverse of any group element also lies in the group. By far, the
most commonly encountered group actions in computer vision
are the actions of the Euclidean group, which represent rigid
motions. There is an identity, which is given by not moving an
object at all: two rigid motions compose to give a third rigid
motion, and it is possible to undo a rigid motion by moving the
object back to where it came from. An invariant of a group
action is defined as follows:

Definition: An invariant I(p) of a function f(x,p) subject
to a group G of transformations acting on the coordinates  is
transformed according to I(P) = I(p)h(g). Here, g € G and
h(g) is a function only of the parameters of the transformation
and does not depend on the coordinates « or on the parameters
p- I(p) is a function only of the parameters p.

In the cases we study, the effect of a group element is always
given by a matrix Mg, and h(g) is a function of the determinant
of that matrix |My|. We always have I(P) = I(p)[M,|”. In
this expression, w is referred to as the weight of the invariant.
Invariants for which w = 0 are referred to as scalar invariants.
In what follows, we concentrate on scalar invariants, and the
term invariant should be understood to mean scalar invariant,
except where the context clearly indicates otherwise.

An invariant is defined in the context of a particular trans-
formation. We have concentrated much attention on the case
of the plane projective group. This models the situation where
a plane curve is subject to rigid motion in space and projected
using perspective. In fact, there is more to the plane projective
group than just rigid motion and perspective projection, and
the subtle but important distinctions between the two situations
are the subject of active research.

A number of invariants are exploited in vision at present
with varied success. Kanantani [23] demonstrated the value of
using invariants of camera rotation and invariant decomposi-
tions in computing such information as optical flow. Lamdan
et al. [25] used an affine invariant representation of a net of
points for matching (see Weiss [49] for a concise review of
projective invariants).

A. Examples of Invariants

Example 1. Plane Translation: Any element € of the one-
dimensional translation group acts on the plane by the mapping
{«',y'} = {z+e.y}. The y coordinate of any point is

e
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TABLE 1
THE MaxiMuM NUMBER OF DERIVATIVES REQUIRED FOR A SCALAR
DIFFERENTIAL INVARIANT CONSISTING OF DERIVATIVES MEASURED AT A
SINGLE POINT UNDER THREE GROUPS IMPORTANT IN VISION. (THIS ASSUMES
INVARIANCE BOTH TO “GEOMETRIC” ACTIONS AND REPARAMETRIZATION).

Plane Euclidean
group (3 d.of.)

Plane affine
group (6 d.o.f.)

Plane projective
group (8 d.o.f.)

2 5 7

invariant under the action of the group. Nothing can be inferred
from the = coordinate of a point, however.

Example 2. Plane Rotation: The plane rotation group
acts on the plane by the mapping £ = RX, where R is
a 2-D rotation matrix. Any function of the distance
from the origin to a point is a scalar invariant under
the action of this group. Under the action of this
group combined with the multiplicative group, we have
(z,y) == (Macosb + ysind), A(—zsinf + ycosf)),where
the function z2 + 42 is an invariant of weight 2 because z2 +
y? :— A%(z? +y?). In the second case, there is no scalar
invariant, however.

Example 3. The Cross Ratio: Given four collinear points
A, B,C, D, the expression % = %, where AB denotes the
linear distance from A to B, is well known to be invariant
to projection. This expression is known as the cross ratio or
anharmonic ratio of the four points. The cross ratio depends
on the order in which the points are labeled. If the labels of
the four points are permuted, a different value of the cross
ratio results. Of the 24 different labeling possibilities, only six
yield distinct values.

Example 4. Differential Invariants: Differential invariants
are invariant functions of the position and derivatives of a
curve at a single point. Differential invariants are clearly
important in vision. Curvature, torsion, and Gaussian curvature
(all differential invariants under Euclidean actions) have been
widely applied. For example, a scalar projective differential
invariant for plane curves has been known for a long time
[49], [26]. However, this invariant is an extremely large and
complex polynomial in the derivatives of the curve, and it is
not known how useful it will be in practice. Table I shows
the number of derivatives required for a differential invariant
based on measurements at a single point for a plane curve
under a range of group actions. These numbers assume that
the invariant is required to be invariant to reparametrization
as well as to projection, which is the normal case in vision.

Example 5. Differential Invariants Based at More than One
Point: 1t is possible to construct differential invariants based on
derivatives taken at more than one point [4], [48]. This has the
advantage that fewer derivatives need be taken at each point
and appears to be the most practical way to apply differential
invariants. For example, given an open-curve segment, an
invariant can be constructed for any point of the curve from
that point, the tangent at that point, and the end points and
their tangents. We explain this construction in Section II-B.
Other projectively invariant differential structures, for exam-
ple, double points, cusps, and flex points, can be exploited in
a similar way to yield reference points.

frou Uy . Daun Uoar 1
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Example 6. Projective Invariants for Systems of Lines or
Points: A system of four coplanar lines that intersect in a
single point,! is dual to a system of four collinear points. This
system has the familiar cross ratio as its invariant.

For five general coplanar lines, there are two projective
invariants:

It = (Iu311521) /(1521 I531)
and
Iy = (I4911532) [ (1a321521)-

The lines are written in homogenous coordinates as a;x+b;y+
c;iz = 0, and ;4 is the determinant of the matrix {I;,1;,1x},
where U; is {a;, b;, c;} T (see [14]). Furthermore, because points
and lines are dual in the projective plane, we have immediately
that functions are also invariants for a system of five coplanar
points, no three of which are collinear. These invariants have
found important application in machine vision [4], [32] and
photogrammetry [31].

Example 7. Projective Invariants for Pairs of Plane Conics:
A plane conic can be written as z'cx = 0, for z = (z,y,1)
and a symmetric matrix ¢, which determines the conic, where
we assume|c| = 1. A pair of coplanar conics has two scalar
invariants, which we will describe here. Given conics with
matrices of coefficients c; and co, we define

I, = Trace(cl_lq)

Iy, = Trace(cz_lcl).

Under the action £ = TX,c; and cp go to C; = T?¢;T, and
Cy = TlcoT. In particular, using the cyclic properties of the
trace, we find

Io,c, = Trace(T e (T 1T cyT)
= Trace(c; 'c2)

:ICIC‘Z'

A similar derivation holds for I.,.,. Note that cflcz trans-
forms to T_lcl_lczT, which is a similarity transformation,
and therefore, its eigenvalues are preserved. This provides an
alternative demonstration of invariance. Since scaling a matrix
does not affect the conic curve it represents, to evaluate and
interpret these invariants, we need to make some assumption
to set the relative scale of the conic matrices.

Example 8. Homogenous Polynomials: The previous two
examples can be generalized to more general algebraic sets.
Consider the space of homogenous polynomials in n variables,
Zg, -+, Tn—1. Write © for {xo,---,2,—1}. The general linear
group (all matrices T of nonzero determinant) acts on this
space by taking a polynomial p(x) to P(z) = p(Tz). Here,
the coefficient of a monomial in P(z) is determined by
computing the coefficient of that monomial in the expansion
of p(Tz). The degree of a polynomial is preserved under
this action; therefore, we can see it as an action on the
homogenous polynomials of degree k. Furthermore, if we
write p for the coefficients of p, we have for an invariant

LA useful example in vision is a set of parallel lines (that intersect in a
single point at infinity).
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Fig. 1. Projectively invariant measurements of the distance between a num-
ber of different reference points on the side of a motorcar taken using the rear
wheel of the car as a reference conic. These measurements remain stable over
three different views, where the corresponding measurements in the image are
significantly foreshortened. Small changes in the values measured may result
from the fact that features and wheel are not precisely coplanar.

I,I(P) = I(p)|T|”, where T is the transformation matrix,
and |T| indicates the determinant of T. Invariants of this
action formed a major research topic of nineteenth-century
mathematics; an introduction can be found in, for example,
[18]. A modern treatment of some of this work is given by
[44] or by [10].

Example 9. Projectively Invariant Measurements: If there is
a distinguished conic curve in the plane (say, c), then for two
points 1, z2 that do not lie on the conic, the function

(] cap)?

(T cz1)(zd czo)

©)}

is independent of the frame in which the points and the conic
are measured. In turn, this can be used to define a projectively
invariant metric (see [44]). Fig. 1 shows projectively invariant
measurements of the distance between a number of different
reference points on the side of a motorcar taken using the
wheel of the car as a reference conic. These measurements re-
main stable over three different views where the corresponding
measurements in the image are significantly foreshortened.
Example 10. Permutation Invariants: Consider a function
depending on several arguments, for example, one of the
projective invariants of a pair of conics. Although it is possible
to observe a pair of conics, it is not always possible to tell in
which order they should appear as arguments to the function.
In fact, permuting the arguments represents the action of a
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finite group. To avoid having to choose which order the conics
should appear as arguments, we can form functions that are
invariant under this action—these are known as symmetric
functions. In this example, there are two such invariants. Write
f(e1,c2) = I ,. Then, the symmetric functions of these
invariants are

Si(c1ic2) = fer,c2) + flez,c1)
Sz(C]. Cg) = f(cl, Cz)f(Cz, Cl).

It is easy to see that these functions are unaffected by permu-
tations of their arguments. These permutation invariants make
it possible to avoid some kinds of correspondence problems.
They are discussed further in [50].

B. Interpreting Invariants

It is often hard to interpret projective invariants, particularly
when they are constructed using algebraic methods. Invariants
can often be related to a cross ratio resulting from a projec-
tively invariant construction. Another method of interpretation
is to transform to a distinguished frame and measure metric
propetties within this frame. These geometric approaches yield
insight into the properties of invariants. In this section, we dis-
play interpretations for a number of the examples given above.

1) The Invariants of Five Points: Two constructions can be
used to demonstrate the projective invariants of five points
1 -5 in the plane. For the first construction, consider the
lines from z; to each point. This yields a system of four lines
passing through a single point, which is dual to a system of
four collinear points, and the cross ratio of these lines is an
invariant. The second invariant is obtained by constructing the
lines from x» to each point and taking the cross ratio of these
lines. Unfortunately, a wide range of invariants can be obtained
in this way, and the construction does not make it obvious that
only two of these invariants are functionally independent.

The second construction makes the functional independence
more obvious. Since the image of four known points uniquely
determines a projective mapping, we can associate a dis-
tinguished canonical frame with a system of five points by
mapping T - - - T4 to the unit square. The coordinates of the
fifth point in this frame are projective invariants because the
frame is uniquely determined by the other four points.

2) The Invariants of Two Coplanar Conics: The projective
invariants of a pair of coplanar conics can be demonstrated
in a number of ways. First, one can observe that for two
conics C; and Co, the term Cy'Cy undergoes a similarity
transformation, and therefore, its eigenvalues are preserved. A
geometric interpretation of this construction appears in [24].

We are indebted to Maybank [30] for a second interpre-
tation. Two plane conics uniquely determine four points of
intersection (these points are often complex, but this need not
worry us). Choose any point on one of the conics that is not
an intersection point, and construct the four lines from the
intersection to this point. The cross ratio of these four lines
is clearly a projective invariant. Chasles theorem states that
this cross ratio is independent of the base point chosen on the
conic, and therefore, this cross ratio is a unique invariant. We
can now construct a second invariant by choosing an arbitrary
base point on the second conic.

e
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3) A Projective Differential Invariant: We can construct a
projective differential invariant for any given point on an arc.
First, label the end points by, b2, and intersect the tangents
at these end points to obtain a third point bs. The system
consisting of these three points and the given point can be
mapped uniquely to the unit square. Under the action of this
map, the tangent to the given point maps to a line passing
through one vertex of the unit square. The orientation of this
line is then an invariant. A wide range of similar invariants
can be constructed.

C. Constructing New Invariants

In order to apply invariants comprehensively in vision,
it is necessary to compute the invariants of the action of
various groups on a variety of spaces. For the groups we
deal with, it is the case that there are a limited number of
“primitive” invariants and that all other invariants can be
formed from these primitive invariants. For example, plane
curvature is a differential invariant under the action of the
plane Euclidean group. We could square the curvature, take its
logarithm, or form some complicated polynomial in curvature.
These would all be invariant, but we would learn nothing
new from these constructions. The key question is then how
to obtain a functionally independent set of these primitive
invariants.

One method recommends itself immediately. If we write
out the effect of a group action, we obtain a system of
polynomials in the group parameters and the point on which
the group acts. We could then eliminate the group parameters
between these expressions to obtain invariants. Qur experience
has been that in practice, eliminating group parameters is
unmanageable except for very simple situations, and therefore,
more sophisticated methods are required.

A number of cases are fairly easily dealt with. Weyl [50]
provides complete tables of invariants for systems of vectors
under the action of the rotation group, the affine group, and the
general linear group. Weyl discusses the procedure for using
symmetric functions to obtain invariants for the permutation
groups. These invariants can be looked up.

The more interesting case is that in Example 8. Polynomials
represent curves, and therefore, invariants of a system of
polynomials give invariants of a set of curves. In this section,
we give a brief discussion of two important techniques for
constructing these invariants: the infinitesimal method and the
symbolic method. Each method has its attractions.

The infinitesimal method gives invariants as the solutions
to a system of differential equations. It has the attraction
that it works both for algebraic invariants of curves and
surfaces and for differential invariants. This approach has the
disadvantage that solving these equations cannot, at present,
be done wholly by a symbolic algebra package but requires
some human assistance. We have found that for some group
actions, particularly the action of the 3-D rotation group on
algebraic surfaces, solving the equations is difficult.

The symbolic method is, in our experience, easy to use for
algebraic invariants of curves and surfaces, but we are not
aware of any way of using it to obtain differential invariants.
The major attraction of the symbolic method is that it seems
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TABLE 11
THE MINIMUM NUMBER OF FUNCTIONALLY INDEPENDENT SCALAR
INVARIANTS FOR PLANE ALGEBRAIC CURVES UNDER A VARIETY
OF GROUPS IMPORTANT IN VISION. (BRIEF
DEFINITIONS OF EACH GROUP APPEAR IN THE TEXT.)
Plane Plane Plane
Euclidean affine projective
group group group
Curve (no. of d.o.f.) (3 dof) (6 d.o.f) (8 d.of)
conic (5) 2 0 0
cubic (9) 6 3 1
quartic (14) 11 8 6
2 coplanar conics (10) 7 4 2
five lines (10) 7 4 2
a conic and two lines (9) 6 3 1

possible to write a straightforward program that will generate
all primitive invariants for a given situation without requiring
human assistance.

This section focuses mainly on three groups:

* The plane Euclidean group consists of translations, rota-
tions, and reflections of the plane and is sometimes called
the group of plane rigid motions.

* The plane affine group consists of plane translations and
all two by two matrices with nonzero determinant. This
group in homogenous coordinates is given by the group of
all three by three matrices of nonzero determinant, whose
third row is (0,0, 1).

* The plane projective group is given in homogenous
coordinates by the set of all three by three matrices with
nonzero determinant.

The infinitesimal method is, however, applicable to all Lie
groups.? The symbolic method works for a wide range of Lie
groups (see [47]).

1) The Infinitesimal Method.:

It is important to know how many functionally independent
primitive invariants are available in a given situation. In this
section, we use ideas from the theory of Lie groups to show
that given a group of dimension m acting on a geometric
structure with n degrees of freedom, there are at least n — m
functionally independent primitive invariants. This counting
argument can also be used to predict the number of derivatives
required for a differential invariant and provides the results of
Tables I and II. This approach yields one way of constructing
invariants as well.

We exploit the notion of an orbit. The orbit of a group
action through a point is given by taking every element of the
group and applying it to that point. For example, the orbits of
the one-dimensional translation group acting on the plane are
lines; the orbits of the plane rotation group are circles centered
at the origin. Because the action of the group is invertible,
orbits cannot intersect. In this section, we also exploit the
idea of the dimension of a group. This is meaningful only
for continuous groups, for example, the rotation or translation
groups, which can be expressed by smooth functions of a

ZLoosely speaking, a Lie group is a group that has a smooth parametrization,
and these parameters determine the group. An important feature is the fact

that group elements in a neighborhood of any point can be obtained from
tangent vectors at that point by a process called exponentiation.
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number of parameters. The dimension of the group is then the
smallest number of parameters that can be used; for example,
the dimension of the three-dimensional rotation group is three.

Two properties of orbits are particularly important:

» The dimension of an orbit cannot be greater than that of

the group.

* Invariants are constant on orbits.

These points make it possible to estimate the number of
primitive scalar invariants. If the space on which the group
acts has dimension n and the group has dimension m, the
orbits divide the space up into nonintersecting “slices” of
dimension ! < m, where [ is the dimension of the highest
dimensional orbit. The primitive scalar invariants are, at least
locally, coordinates for the slices; therefore, a given slice can
be specified by the values of the primitive scalar invariants.
To specify an [-dimensional subspace of n-dimensional space,
one must generically fix n — [ coordinates. Thus, there are
n — | primitive scalar invariants. Although we show below
how to compute I, we normally assume that the orbits have
dimension m and that there are n — m invariants. The count-
ing argument yields the results of Table II. For certain ge-
ometries, every orbit will have dimension less than m, and
there are more than n — m invariants. This is known as an
isotropy. The best known example is the case of two lines
11,15 and two points z;, 2 not lying on the lines (both points
and lines are expressed in homogenous coordinates). This
geometry has eight degrees of freedom and one projective
invariant (IT21) (1T 22) /(1T 22)(1E 21).

This counting argument extends to differential invariants. In
this case, we need invariance to the effects of reparametriza-
tion as well. Assume the group of geometric actions (actual
movements of the curve rather than reparametrizations) has m
degrees of freedom, and the invariant involves d derivatives.
Then, since the derivatives of a curve are completely indepen-
dent, we are considering for a plane curve 2(d + 1) degrees of
freedom. In the dth derivative of the curve, we encounter the
dth derivative of the reparametrization. Thus, we need consider
only d reparametrization degrees of freedom, and therefore, to
have an invariant, we must have 2(d+ 1) > [+ d, or d >
| — 2. These points are illustrated in the worked example
below. Although it is possible to compute , in general, we
assume that the orbits are m dimensional, and therefore, d >
m — 2. This argument yields the results of Table I and can be
applied to the case of differential invariants based at more than
one point as well. In general, fewer derivatives are required as
more points are considered. In this case, some care is required
because orbits occasionally have dimension less than m.

This view of invariants as functions that are constant on or-
bits provides a conceptually simple procedure for constructing
them. The gradient of any function that is constant on an orbit
must be normal to that orbit. Thus, for a scalar invariant @,
if the vector fields V;(z) span the tangent space to the orbit
passing through z for all z in the parameter space, then

Vi v®d=0, V:
and the scalar invariants can be obtained by solving these
equations.

Vector fields that span the tangent space to the orbit passing
through z for all z in the space on which a group acts are well
known in the theory of Lie groups. These fields are known as
the infinitesimal generators of the group’s action. To find the
infinitesimal generators at a point, we compute the effect of
an infinitesimally small group action.? The rank of the system
of generators gives the dimension of the largest orbit and can
be used to predict isotropies. We have, therefore, a mechanical
process for constructing invariants of a connected Lie group’s
action:

« Construct the infinitesimal generators of the group’s ac-
tion V.

« The invariants are the solutions of the set of partial
differential equations V; - v® = 0,V i.

This process constructs a function that is locally invariant;
this means that it will be constant on connected components.
For a connected group, the function is then a scalar invariant.
If the group is not connected, like the general linear group,*
it is possible for the function to be constant on the connected
component but to have different values on distinct connected
component. We deal only with connected groups and can
largely ignore these difficulties.

Our experience is that the appropriate technique for solv-
ing these systems is to solve one cquation and express the
remaining equations in terms of the solutions of the first.
This method for solving such systems is discussed briefly in
[36] and in more detail in [2]. This procedure of repeatedly
changing variables will always find a solution if the system is
integrable® [2]. A system of PDE’s for functions constant on
an orbit found using the procedure detailed is integrable.5

D. The Symbolic Method

An elegant process for finding invariants of forms under
the action of a range of groups by using simple symbolic
manipulations was devised by a number of nineteenth century
mathematicians. This section briefly sketches this process,
which is not widely known, and is uniquely well adapted to
modern techniques of symbolic computation. More detailed
discussions can be found in [1], [9], [50], {43], for example.

A binary conic can be written as aooxg + ap1Tor1 +
a1z3. When the relation agoa;y = af; is satisfied, it is
possible to write the conic as the product of two linear factors.
One may, however, write any conic as the square of a linear
factor for symbolic purposes only, as long as one does not
exploit this relation. To do this, it is necessary to insist that
only quadratic monomials in symbols can be interpreted.

Thus, write this form as (agxo + cax1)?. The terms ag, a1
are phantom symbols with no meaning of their own. Conven-

3This can be done by taking a set of vectors that span the group’s
tangent space (also known as its Lie algebra) and for each V', in this set,
exponentiating €V, and computing the action of the resulting group element.
We then differentiate the result of this action by € and set € to zero. The details
of this process are explained in [36].

4The general linear group is not connected because taking the determinant
gives a smooth map from the group to a set that is not connected. Thus, there
are two connected components: the matrices with positive determinant, and
the matrices with negative determinant.

5i.e. the commutator of two generators is a linear combination of generators.

% Apply Frobenius’ theorem [5].

e
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tionally, these phantom terms are written with Greek letters.
The only collections of symbols that can be interpreted are

a01

2 2
Qg = GQo, Qo) = 5 ay =ai.

Since, for example, the product aa? is ambiguous (it could
be interpreted as either agpai; or as a%l, which are not
the same thing), it cannot be interpreted. The terms «; are
phantoms; they are only meaningful when they appear as the
monomials shown. To make it possible to express such terms
as aj) unambiguously, one must admit different symbolic
representations of the form. The form can then be written as
{aozo + a121)? = (Boxo + B1z1)? = (voxo + nr)?=---,
introducing as many of these symbolic roots as is convenient.
agoar; can then be represented as o337

The power of the symbolic method lies in the theorem that
the invariants under the action of the general linear group of a
m-ary n-ic form” can be expressed as monomials in brackets.
In the case of a binary form, a typical bracket is (a3), which
is interpreted as meaning

Qo 0
det{ 4 A }

For an m-ary form, the bracket has m symbols. In this case, the
bracket is interpreted as the appropriate m by m determinant.
For a ternary form,® the bracket (@/3v) is thus a three by three
determinant. At least the primitive invariants can be written
as a product of brackets, satisfying the constraint that each
symbol appears exactly n times; otherwise, there would be
phantom symbols in groups that could not be interpreted.
Products of brackets are subject to a system of relations.
For example, (aa) = 0 and (af3)™ = 0 for n odd because
when the phantom symbols are replaced with meaningful ones,
(aB)™ has the same meaning as (3e)"; yet, (af)" = —(Ba)™.

To find the invariants of a m-ary n-ic form, in effect,
one writes out the monomials satisfying these constraints
and prunes the set using a system of relations to obtain the
monomials that are independent. In fact, since the number
of independent invariants is known and finite, it is possible
to obtain a complete set of invariants rather quickly because
one need not examine all possibilities. This process yields
nonscalar invariants, whose weight is given by the number
of parenthesized terms.

For example, the invariant of a binary conic® can be written

as (a,@)Z:
(aB)® = 0B} + a3 B2 ~ 2a0a1 o
—(1/2)(ad; — 4agoany).

This is —(1/2) times the discriminant, which is a well
known invariant of quadratic equations. As a second exam-
ple, a ternary cubic form agoozd + aoo17371 + ageerizs +
a011T0Z + agr2ToT 132 + a022%0T3 + a11173 + u112l‘f372 +
0122%175 + agaeT3 is written as (agzo + @121 + as1y)? =

7A homogenous polynomial of degree n in m variables.
8i.e. a projective plane curve in homogenous coordinates.

%i.e. a homogenous quadratic in two variables.

freLu vy - aLn Lo 1
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(Bozo + Pra1 + Bex2)® = (yozo + M1 + 1222)* = -+, ,
where symbols are interpreted as

9 1
Qa0 = ——apo1, etc.
3
The invariants of a ternary cubic form (i.e., a cubic curve) can
be written as

S = (afv)(aBé)(avb)(Bv8)
T = (afy)(aBs)(aye)(By9)(5ed)?

S and T are familiar from the nineteenth century literature on
projective plane curves (e.g., [42], where they appear written
out in full'®). S is an invariant of weight four, and T is an
invariant of weight six. There is one scalar invariant S3/T2.
These invariants are naturally a great deal more complicated
when written as polynomials in the coefficients of the form.

The bracket monomials for a single form represent invari-
ants under the action of the general linear group. As Weyl
[50] shows, invariants under the action of other groups can be
obtained by adjoining further forms and then specializing the
values of these forms. In effect, this specialization confines the
group action to actions that leave the extra forms unchanged.
As an example, we consider the action of the plane affine
group on a plane curve. The projective plane is often thought
of as the affine plane together with a line at infinity; the
affine plane can be seen as the projective plane less a line
at infinity. The plane affine group is then the set of plane
projections that take the line at infinity to itself. The invariants
of this action are obtained by taking the invariants of a system
consisting of the original form p(z,z1,z>) and a linear form
I = lpxg + lixy + laxo, and then setting Iy = 0, and [, = 0,
and I, = 1.

As a second example, the action of the rotation group on
a degree n surface in three-dimensional space is given by a
system of three forms: a homogenous 4-ary form expressing
the surface in projective three space, a linear form whose value
is specialized as in the first example because we want an affine
subset of that space, and a conic (known as the absolute conic,
which is familiar in the vision literature from the work of
Maybank and Faugeras), whose value is specialized to ensure
that the affine actions we obtain are only the orthogonal affine
actions and, hence, represent the rotation group. Further details
are beyond the scope of this discussion; the reader is referred
to Weyl [50], particularly pp. 255-258 and to Turnbull [47].

The symbolic method largely fell out of use because it was
seen as merely a computational trick. However, our experience
has been that as a computational trick for generating invariants,
it is extremely well adapted to modern symbolic computation
with surprisingly little effort required.

3 _
Qg = apoo,

I11. INVARIANTS IN MODEL-BASED VISION: RECOGNIZING
CURVED PLANAR OBJECTS USING ALGEBRAIC INVARIANTS

This and the following three sections treat different aspects
of the application of invariant theory to model-based vision. In
this section, we demonstrate recognition of plane objects using

"Some confusion can be caused by the fact that different authors use
different conventions about constant multipliers.

T3S LHINGU, UalIuNuYS, WINGU NIIYUUi
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TABLE II1
THE JOINT SCALAR INVARIANTS COMPUTED FOR THE INDICATED PAIRS OF
CONICS FOR THE FOUR DIFFERENT IMAGES OF A COMPUTER TAPE FROM
DIFFERENT POSITIONS AND ANGLES, SHOWN IN FIG. 1. (NOTE THAT THE
JOINT SCALAR INVARIANTS FOR THE COPLANAR CONICS a, b FOR THE
Four IMAGES ARE EFFECTIVELY CONSTANT. FURTHERMORE, THE VALUES
OF THE INVARIANTS FOR DIFFERENT PAIRS OF CONICS ARE DIFFERENT.)

First joint Second joint

Conics invariant invariant
Conics @ and b

from Fig.1(a) 3.419 3.546
Conics a and b

from Fig.1(b) 3418 3.543
Conics a and b

from Fig.1(c) 3.414 3.538
Conics a and b

from Fig.1(d) 3.407 3.528
Conics b and ¢

from Fig.1(a) 3.022 3.021
Conics b and ¢

from Fig.1(b) 3.023 3.021

the conic invariants of Example 7 above. In the following
three sections, we discuss the range of Euclidean invariant
descriptors for three-dimensional objects, which are obtained
by computing the pose of a number of planes. We have used
the term object to refer to the object modeled, the term model
to refer to the object model (which will be a pair of coplanar
conics), and the term descriptor to refer to the viewpoint-
invariant description of shape that we exploit.

A. Objects Containing Algebraic Curves

First, we consider objects that consist of a pair of coplanar
conics. These objects are modeled by their joint projective
invariants (Section II, Example 7), yielding a representation
that is invariant to Euclidean motion and perspective, i.c.,
the joint invariants calculated for image curves will have the
same values as those calculated from object curves, whatever
the object pose and the camera parameters. In practice, these
descriptors are stable and have sufficient dynamic range to
discriminate between distinct pairs of conics (see Table III,
and Fig. 2).

We implemented a model-based vision system that recog-
nizes objects of this type using the following signal flow:

» Edge Detection: This system uses a local implementation

of Canny’s [7] edge detector to mark image edges.

* Curve Extraction: The edgels found are then chained
into a system of curves; sharp corners are broken, straight
lines and image curves that are too short for conic fitting
are rejected. Single pixel drop-outs in edges are repaired
using a simple following algorithm.

* Conic Fitting: Edgel chains are passed on to an exact
conic fitter, which works by computing the kernel of the
scatter matrix for that chain (see, for example, [13]).
Curves that are judged not to be exact conics (by a
check on the eigenvalues of the scatter matrix) are not
considered further.

* Computing Shape Descriptions: For all pairs of exact
conics, the joint scalar invariants are formed.

4

Fig. 2. Four images of a computer tape with fitted conics in overlay. In these
images, the conics have been drawn three pixels thick to make them visible.
These conics were used to obtain the joint scalar invariants shown in Table IIL

* Model Matching: A hash table is then used to pair values
of joint scalar invariants with the descriptions of the
labels.

Our present system works on a model base of 15 objects.
Some typical examples of this system in use are demonstrated
in Fig. 3.

Models are acquired by imaging an object, on its own, under
favorable lighting conditions and from an arbitrary viewpoint.
As long as the object is the only object visible in the image
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Fig. 3. Two views of labels consisting of pairs of ellipses on card in cluttered
scenes. These labels are conceptually similar to Nielsen’s [34] labels but
use different invariants. The labels come from a model base of 15 labels.
These labels are positioned at different angles and distances to the camera
and are recognized by their invariant descriptors. Model instances are found
by detecting edges, pruning edges that are too short or are obviously not
conics, fitting conics to all edges, and computing invariant descriptors for
every pair of fitted conics. These descriptors are then used to index into
the model base. The labels are correctly identified in each case, and their
corresponding number is superimposed on the image.

and its conics are sharply defined, the recognition system can
be used to compute the object shape descriptors directly from
these images. A library entry consists of a pair of projective
invariant values, each with a tolerance and an associated label
number. The ease with which models can be acquired is a
significant advantage of using projective invariants as shape
descriptors.

B. Representing General Curves by Conics

For more general curves, we can still exploit algebraic
invariants if the general curve is represented by an algebraic
curve. However, the representation must have the following
crucial frame independence property:

Given an observation of a data set in a transformed frame,
the representation computed for this set is exactly the original
representation transformed according to the change of frame,

We refer to the process of constructing a representation with
this property as invariant fitting,

1) Affine Invariant Fitting: It is possible to construct a
representation with this property for the affine group if the
fitting metric used is algebraic distance. The algebraic distance

T N
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of a set of points z; from a curve Q(x) = 0 is given as

> (@)

T
Unfortunately, algebraic distance as it stands does not give a
useful metric for curves'! because for any polynomial Q, the
curve Q(x) = 0 is the same as the curve kQ(xz) = 0, for
k # 0. We must therefore fix a convention for the scale of the
curve, which is a process known as normalization. In general,
we normalize a curve with coefficients p by N(p) = 1, where
N is an algebraic invariant of p. As the following theorem,
proved in [13], shows, this guarantees that the representation
has the desired properties:

Theorem 1: Let I(p) be an invariant of the polynomial
form Q(z, p) under the affine group of linear transformations
G. Assume ] is homogenous of degree n with weight w.
Let (p) be the parameter vector determined by minimizing
3 Q%(z;, p) over a set of points ; subject to the constraint
N(p) = I(p) = constant. If the point set is transformed
under the affine group (or some subgroup) G, ie., ¢ = T, X,
let 7, be the corresponding transformation matrix for the
coefficients p. The coefficients of the polynomial fitted to the
point set in the new frame are given by (P). Assume that n
is odd or that w is even (or both). Under these conditions,
we have

(p) = ky - Ty(P)

where k; is a scalar depending on g € G.

The theorem applies to algebraic curves of higher degree
as well as to conics. It is possible to show that a solution
to this fitting problem exists. We do not yet know under
what circumstances it is unique. The fitting problem presents
interesting numerical difficulties; currently, it is solved using
a subdivision technique [13]. We are currently investigating
using polynomial continuation (see, for example [33]) for
solving this problem.

Note that the theorem applies only to collections of points
that are in affine correspondence. A version that applies to
curves can be obtained by noting that the algebraic distance
must now be integrated with respect to some affine invariant
parameter. In our experience, it is possible to obtain acceptable
fits in practice by simply summing the algebraic distance over
the points on the curve.

2) Projectively Invariant Fitting: The approach used for
affine invariant fitting requires some modification for the
projective case; a function on the projective plane is given by
the ratio of two homogenous polynomials of the same degree
with the result that algebraic distance is not well defined. This
is because scaling any point on the projective plane gives an
equivalent representation of the same point. If we measure
the algebraic distance of a point (x,y, 1) from a curve in one
frame, the point in the new frame that has the same algebraic
distance will be some scaling of (X,Y,1). There are three
ways to proceed:

* Assume that a distinguished conic, or three distinguished

lines, are available, and use these to define a projec-

1t is perfectly good for polynomials.
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tive version of algebraic distance; in the case of the
distinguished conic d, this would be given by

QQ(wivp)
; 2($i»d)

The theorem would then go through.

* Notice that because objects and the viewing area of
the camera are small and because we are dealing with
perspectivities, the errors incurred by this scaling problem
tend to be small. Accept these small errors and proceed.

* Transform the curve to a distinguished, canonical frame,
which is determined by intrinsic geometrical properties of
the curve itself. For example, inflections, cusps, or, more
practically, points of contact of bitangent lines determine
a distinguished frame in which fitting can proceed. This
approach is more general in that a wide range of invariant
measurements can be made in the distinguished frame.

C. Recognizing Planar Objects

We can now extend the model-based vision system de-
scribed in Section III-A to cope with more general objects.
The system is extended in the following respects:

* Curves that are not conics are no longer discarded. We
discard lines, however, because fitting a conic to a line
is unfruitful.

* We interpose a fitting stage between the curve extraction
stage and the stage that computes invariants. In this fitting
procedure, we compute an affine invariant fit and assume
that the small errors are tolerable.

A block diagram appears in Fig. 4. An implementation of this
system worked on a library of five gaskets in cluttered scenes.
Several examples of this system’s output appear in Fig. 5. It
is sensitive to occlusion, however, because the relationship
between the conic fitted to a curve and that fitted to a piece
of the original curve is not well understood ([40] discusses
some of the noise issues that appear in fitting conics to small
number of data points).

This system is different from earlier model-based vision

systems in a number of important ways:

* Curves are not segmented into polygonal approximations.

* It is unnecessary to search the model base. The invariant
descriptors index a model directly.

* At this stage, no pose information is involved in recogni-
tion. It is therefore possible to identify an object without
knowing where it is. Section IV shows that, given that
the model has been identified, pose recovery is simple.

* It is straightforward to acquire models for this system
because the descriptors used are projectively invariant.
The invariant descriptors measured in any view of the
object have the same value so that they can be calculated
directly from conics fitted to curves extracted from an
image of the object. The object can be imaged from any
viewpoint, and no correction for aspect ratio or camera
parameters is required. The model library then consists of
the pair of invariants and error thresholds for each object.

Image

Detect edges

Prune curves

Fit conics

Compute invariants

Index into library

Fig. 4. The Block diagram of a model-based vision system for objects
consisting of pairs of general coplanar curves.

IV. POSE DETERMINATION: A SINGLE PLANE IN SPACE

A single plane in space is the simplest of three-dimensional
objects. In this section, we show that once an object has
been positively identified, the extra constraints offered by its
known identity can be exploited to determine the transfor-
mation parameters between the object frame and the camera
frame.

Invariant fitting allows a pair of coplanar curves to be
modeled by a pair of coplanar conics. By construction, the
modeling conics undergo the same projective distortion that
the original curves do. Consequently, the problem of pose
determination is equivalent to the following:

Given a known pair of conics on the world plane and
their corresponding conics in the image, determine the
transformation between the two planes.

Previous methods for pose determination have concentrated
on sets of points and lines [17], {45], [46]. However, apart from
consideration of circles [8], [29], very little attention has been
paid to pose recovery from plane curves. The novel aspects
of the method described below lie first in the use of equiform
invariants to recover pose for algebraic curves and second
in recovering pose for arbitrary plane curves using invariant
algebraic curve representation.

A. Back Projection of a Conic Pair

A perspective projection between the image plane and the
object plane is determined by six parameters'? (three transla-

12 Assuming a fixed camera with known calibration.

gt — e e
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(b) )

Fig. 5. Six examples of the model-based vision system working automati-
cally on real objects. Model instances are found by detecting edges, fitting
conics to all edges, and computing invariant descriptors for every pair of
fitted conics. These descriptors are then used to index into the model base.
(a) shows a gasket viewed approximately frontally. Models of the gaskets
were made using images like this. (b) shows the gasket shown in (a), seen
in a different view. The gasket was recognized and labeled correctly, despite
the large change in viewing angle. (c) shows a cluttered scene containing four
gaskets, and (d) shows the gaskets correctly recognized and labeled. (¢) shows
another cluttered scene also containing four gaskets, and (f) shows the gaskets
labeled in that scene. Note that the micrometer incorrectly recognized as gasket
3 can easily be dealt with by verifying the model using backprojection of the
original image curves used to construct the invariant description.

tion and three rotation) that give the pose of the object relative
to the camera. Each conic has five independent parameters;
therefore, the solution is overdetermined (ten constraints on
six unknowns). We have developed and assessed a number of
methods for pose recovery, including

1) Solving for the T matrix (z = T - X) directly and then
decomposing the matrix to give the six pose parameters.
A projective mapping can be defined by four world
points and their images [20]. Taking four world and
image points sets up a system of eight linear simulta-
neous equations in the elements of the 7" matrix, which
are solved by Gaussian elimination. We obtain four
points from the conic pair by extracting intersections
between the curves or bitangent lines. These features
are both preserved under projection and relatively stable
to numerical errors and noise. In general, the points are
complex but produce the correct, real 7' matrix.

PIUM Ay L S TUUNR LU TUGD LG, S I IS, WG I I
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World
Axes

1.=px+qy+r
‘World Plane

Image Plane

T

Fig. 6. Camera and world plane geometry. The camera and induced z axes
lie in the same plane. The induced XY plane and the world XY plane both
lie in the plane z = px + qy + 7. XY centered at (0,0, r). Hence, a rota-
tion 6 and translation (¢, t, ) in the world plane maps the induced coordinate
axes onto the world axes.

2) Decomposing the projective transformation into two
transformations, each dependent on different pose pa-
rameters. The first transformation is a central projection
(perspectivity) from the image plane to a plane parallel
to the world plane. The second is an equiform transfor-
mation between this plane and the world plane. This is
described in more detail below.

A full discussion of the different methods and their ambigui-
ties is given in [41], including experimental evaluations based
on real images. We found that the equiform-based method
produces the most stable (to camera calibration and conic
fitting errors) and unambiguous results.

B. Pose Recovery via Equiform Invariants

The transformation between camera and world coordinate
systems can be accomplished by a Euclidean 3D rotation and
a translation. Here, we parameterize the transformation matrix
to make explicit the dependence on plane orientation (a similar
decomposition was used in [45]). The world plane (see Fig. 6)
is expressed in camera coordinates as

z=pT+qy+r. C))

We define a rectangular world coordinate system on the world
plane by X and Y axes. The position and orientation of these
axes can be given relative to the camera coordinate frame
using an induced rectangular coordinate frame also lying on
the world plane. The induced frame has its X and Y axes
lying in the world plane centered at (0,0,r) and has the X
axis lying in the same plane as the camera z axis. Hence,
the induced frame position and orientation depends only on p,
g and . A rotation and translation within the plane maps the
induced coordinate frame onto the world frame. The rotation is
represented by @ and the translations by ¢, and ¢, (see Fig. 6).
Hence, the position and orientation of the world axes depends
on 0,t;,t, and on p,q and r.

The perspective mapping 7' may be decomposed into two
transformation matrices, an equiform matrix H(r,0,t;.t,),
and a central projection matrix M(p, ¢). An equiform mapping
is a combination of a plane Euclidean transformation and an
isotropic scaling. It preserves angles and ratio of lengths. The

Euclidean mapping is the rotation and translation represented
by ,t,, and t,. The scaling is represented by r. Hence, T
may be written T = M(p,q) - H(r,0,t.,t,), where

JEED S L’ S—
V1iep2 T+ +a2 /1402 0
_ V1+4p?
M= 0 V1+pP+¢? 0 ®)
i S———
i ey
a -0 Bty —otg
H=\|p a —aty —ft, (6)
0 0 r

where a = cosf and 8 = sinf.

The key idea is to use properties of the curves that are
equiform invariants. These are unaffected by r,0,%.,t, (ie.,
H) and thus generate equations only involving p and q. Thus,
pose recovery proceeds in two stages: The equations generated
by the equiform invariants are solved for p and g, and the
remaining parameters are recovered using this information.
The equiform invariant we use is a ratio of the trace and
determinant of the upper 2 X 2 submatrix of the conic matrix

_ (trace®™?[c]) 2

I(c) = detzxz[c] )

where trace?*2[c] = A + ¢ and det??[c] = A - ¢ — B2,
Geometrically, this is related to the aspect ratio and area of
the conic.

We have ¢ = k- (TT)cT and T = M H. Thus

(tracezxz[MT -c- M])2

I =
(©) = e T o]

®

since the equiform invariant eliminates the effect of H. When
multiplied out, this gives a quartic in p and ¢ for each
conic ¢ = +c¢y,cy. In general, there should be 16 solutions
that satisfy the intersections of these quartics, but we have
never observed more than four distinct real roots in any system.
This is a remarkable feature of the polynomials, which reduces
the ambiguity of the solution to reasonable size. Using these
four values for p and ¢ to determine the other pose parameters
gives four distinct solutions. The quartics cannot be solved
in closed form. We find a solution by continuation [33].
Continuation is a robust method of tracking the roots of a
polynomial.

To determine the remaining pose parameters, we first obtain
7 (the scaling parameter) by minimizing the difference between
the areas of the conics projected onto the plane z = pr +
gy + r and the model conics. Then, we perform an in-plane
rotation and translation to match the induced and model conics.

We now have four distinct pose solutions. We eliminate
three of the solutions by choosing the one that produces the
best match of the model conics to the image conics back
projected onto the world plane. Details of this appear in [41].
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Fig. 7. There are two objects in the image, and we report pose results only
for the nearer object. Under the objects, the calibration grid used to find the
pose by Tsai’s method is visible.

C. Implications for Model Acquisition

Recognition requires knowing only the invariant descriptors
for the model. Computing pose, however, requires that the
coefficients of the model conic in the object plane be known.
If the object curves are known conics (this occurs in the case
of the labels), then there is no difficulty. One needs to choose a
coordinate system on the object plane within which to express
these conics, and a sensible choice is the natural frame of
one of the conics (e.g., for an ellipse, the center as origin and
coordinate axes aligned with the principal axes).

However, if the object curves are not conics, it is necessary
to fit conics to them, using the invariant fitting method. If the
object curves are known in the world plane coordinate system,
then the fitting process produces the model conics directly. If
the curves are not known in the world frame, then they can
be obtained by fitting conics in an image (using the invariant
fitting method) and projecting these fitted conics back to the
world plane. Back projection requires that the transformation
between the object plane and the image plane be known. This
can easily be recovered by imaging the object together with
a known calibration pair of conics (or a single circle) that is
coplanar with the object curves. The calibration conics then
determine the transformation between the image plane and the
world plane.

D. Pose Results

We describe two examples. The first compares the accuracy
of determining absolute pose for a label with pose by Tsai’s
[46] calibration method for the same plane. The second
compares the measured relative motion for a nonconic object
(a gasket) rotated on a calibration table.

The pose parameters extracted from a real image (that of
Fig. 7) are shown in Table IV. The object was placed on a
calibration grid so that plane parameters could be compared
with those found by Tsai’s method. Instead of showing p and
g, we use the plane parameters slant (o) and tilt (1) because
these give a better indication of the size of the measurement
errors (o = cos™ ({14 p% +¢*}71/2) and 7 = tan~! (¢/p)).
There is excellent agreement between conic pair based pose
and Tsai’s method.

T N
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TABLE IV
THis TABLE COMPARES THE PLANE PARAMETERS FOUND
UsING THE CoNIC PaiR wiTH THOSE OBTAINED FROM TSAI'S
CALIBRATION METHOD FOR THE IMAGE SHOWN IN FIG. 7.
(ANGLES ARE IN DEGREES AND DISTANCES IN MILLIMETERS.)

method o T r
conic pair 54.6° 85.0° 353.7
Tsai 55.6° 86.2° 365.0

Fig. 8. We are able to represent objects that do not have conic features
using the frame-invariant fitting theorem. This representation allows pose
recovery as well as recognition. The gasket curves represented by conics
are the outer gasket curve and the large circular hole. The gasket was rotated
on a calibration table, the estimated relative motion was found by 7 matrix
decomposition and the actual motion was compared.

TABLE V
As THE GASKET IN FiG. 8 Is ROTATED IN ITS PLANE BY 20°, THE
ESTIMATED POSE CHANGES BY A SIMILAR AMOUNT. (THE PLANE
POSITION, GIVEN BY &, T AND r REMAINS FAIRLY CONSTANT).

position o T r (mm) 6
1 35° 94° 280 182°
2 35° 90° 277 163°
3 36° 88° 277 144°

As an example of relative motion, we can recover the angle
that an object has been rotated between consecutive images
(with fixed camera). The object used was a gasket, which we
represent by two coplanar conics using the invariant fitting
technique. The curves used are the outer boundary and the
large circular hole (see Fig. 8). The gasket was rotated through
20° in its plane each time. Therefore, the plane parameters
0,7, and r should remain constant. Table V shows the good
agreement between actual and experimental estimation of
relative motion.

V. RECOGNIZING THREE-DIMENSIONAL OBJECTS

The motivating principle of our recognition techniques is
that descriptors should be unaffected by viewpoint. So far,
we have only considered invariants of planar objects. An
important factor in extending these recognition techniques to
3-D objects is that the secure framework of the plane projective
group is no longer available. In the systems described above,
we have modeled perspectivities (Euclidean motions of a
plane in three space followed by perspective projection) by
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TABLE VI
ANGLE BETWEEN PLANES FOUND BY T' MATRIX DECOMPOSITION FOR A NUMBER
OF OBIECTS CONTAINING TwWO LABELS ON DIFFERENT PLANES. (THE CAMERA’S
POSITION AND ORIENTATION IS CHANGED BETWEEN VIEW 1 AND VIEW 2.)

object a b c d e f g

view 1 0.6° 16.2°  332° 47.1° 60.3° 78.8°  90.6°
view 2 3.4° 12.8°  284°  45.1° 61.8° 749°  92.1°
actual 0.0° 15.0°  30.0° 45.0° 60.0° 75.0°  90.0°

actions of the plane projective group. This model is valid in
that perspectivities are a proper subset of projectivities and
has the advantage that there are standard methods available
for generating invariants. Thus, unfortunately, 3-D objects
force us to study perspectivities, which are harder to man-
age than projectivities because they do not form a group
(the composition of two perspectivities is not guaranteed to
be a perspectivity). For three-dimensional objects, invariant
descriptors will consist of Euclidean invariants, rather than
projective invariants. Euclidean invariants are object properties
unaffected by Euclidean motions. From this point of view,
the perspective mapping simply makes Euclidean invariants
harder to observe. To summarize, perspective projection en-
sures that the image curve is a complicated function of the
object’s Euclidean invariants, its position, and its orientation.
In the examples below, we show that image curves provide
enough constraints to determine at least some of the Euclidean
invariants from a single view.

A. Rigidly Coupled Planes

To illustrate the extraction of Euclidean invariants, we
consider a constrained class of objects. These are objects that
have pairs of curves lying on different, rigidly connected plane
faces. An important Euclidean invariant in this case is the
angle between the plane faces (though there are many others,
which are discussed below). If this angle can be extracted from
perspective views of the object, then it is an invariant shape
descriptor and can be used to distinguish between objects with
different angles.

The method of extracting this angle is based on pose, but
it may be thought of as a “black box” into which are fed
the image curves and from which emerges the angle. We
assume that the curves are algebraic. If they are not, we can
fit algebraic curves using affine invariant fitting. Then, it is a
simple matter to recover the orientation of the planes using the
method described in Section IV and, hence, the angle between
them. Although some of the elegance obtained by using the
plane projective group has been lost, this approach manages
to retain the important ability of invariants to index directly
into a model base at the cost of assuming a constrained class
of models. The feasibility of accurately extracting this angle is
illustrated by the results in Table VI. This compares the image
measured and actual angle for a series of objects similar to
the one shown in Fig. 9.

B. Circle Examples

As a further example of extracting Euclidean invariants from
a constrained class of models. We consider three examples of

Fig. 9. This is a typical object used to measure the accuracy of recovering
the angle between rigidly coupled planes. The object is composed of two
planes set at 60° to each other. Each plane contains a pair of ellipses, each
of which define a label in the model base.

objects that contain circles of equal radius. The advantage of
having world conics that are circles is that plane orientation
can be recovered directly from the single image curve, rather
than requiring two curves, as is the case for noncircular
conics. Furthermore, if the circle’s radius is known, the plane
is completely defined (i.e., its distance from the camera is
recovered as well). The details of recovering the orientation
and center of the circle are given in the appendix. The
disadvantage of using circles is that there is a two-fold
ambiguity in the recovered plane.

For two circles in three dimensions, there are a number of
invariants:

* The angle between the planes. This invariant may be
recovered even if the radius of the circle is not known. It
depends only on the orientations of the planes, which are
recoverable without requiring knowledge of circle radius.

* The ratio of circle radius to distance between circle
centers. Again, this may be recovered from the image
without knowledge of the radius value.

* The vector joining circle centers. This vector has three
degrees of freedom that may be expressed as:

— its length (this requires that the object scale is
determined), written d,
— the angle between the vector and normal of first
plane, written 6,,,
— the angle between the vector and normal of second
plane, written 6,
Note that angles and ratios of lengths do not in general
require object scale to be known. Another useful mea-
surement of this vector (which is functionally dependent
on the first three) is the angle between the vector and the
vector product of the normals, written §,,.
The accuracy and usefulness of these invariants is discussed
in the following example.

1) Calibration Objects: A typical object is shown in Fig. 10.
We tested three such objects where the angles between the
faces were 0, 45 and 90°. Results are given in Tables VII and
VIII. Table VII gives the ambiguous solutions. Clearly, some
of the measures (e.g., distance) are insensitive to ambiguity,
whereas others (e.g., angle) are not. The results in Table VIII
exemplify the different accuracies of pose-determined invari-

e
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TABLE VII
DETERMINING EUCLIDEAN INVARIANTS USING CIRCLES Has A FOUR-FoLD AMBIGuITY. (THis TABLE
INDICATES THE RANGE OF THE AMBIGUOUS SOLUTIONS. IN THis CASE, THE FOURTH SOLUTION IS THE

CORRECT ONE. 0,

IS THE ANGLE BETWEEN THE VECTOR CONNECTING THE CIRCLE CENTERS AND THE

NORMAL TO THE iTH PLANE, 6., IS THE ANGLE BETWEEN THE VECTOR CONNECTING THE CENTERS AND THE CROSS PRODUCT OF THE PLANE
NORMALS, AND d, IS THE DISTANCE BETWEEN THE CENTERS OF THE CONICS.) (Note: Angles are in degrees and distances are in millimeters.)

invariant actual solution 1 solution 2 solution 3 solution 4
angle 90.0 80.9 67.9 66.6 89.3
d. 49.5 479 48.6 485 49.3
On, 45.0 35.8 36.4 45.7 46.2
Ony 45.0 459 44.1 46.3 44.6
B 90.0 83.7 83.7 83.9 83.9
TABLE VIII

STABILITY OF RECOVERED EUCLIDEAN INVARIANTS GIVEN BY CIRCLES. (THIS SHOWS THE VARIATION
OVER A RANGE OF OBJECTS AND VIEWS. ONLY THE CORRECT SOLUTION 1S GIVEN. A TYPICAL OBJECT IS
SHOWN IN FiG. 10).

object angle distance ©Onl On2 Qu
1 actual 90.0 49.5 45.0 45.0 90.0
1 view 1 89.3 49.3 46.2 44.6 83.9
1 view 2 88.2 49.7 46.1 45.8 73.3
2 actual 45.0 64.7 67.5 67.5 90.0
2 view 1 44.1 64.1 70.0 66.0 799
2 view 2 44.5 63.8 67.4 68.1 834
3 actual 0.0 70.0 90.0 90.0 —
3 view 1 4.6 72.6 81.4 82.0 -
3 view 2 0.9 64.9 87.0 87.8 -

Fig. 10. Each plane contains a circle. This is a typical object used to measure
the accuracy of recovering the angle between rigidly coupled planes. In this
case, the planes are at 90° to each other.

ants. The angle between the planes is consistently accurate;
however, the other angles are far less consistent. The ex-
planation for this is that the angle between planes does not
depend on their distance from the camera. However, the
other angles are functions of the center separation. Thus, any
error that may result from a slight fitting error or incorrect
object measurements directly degrades these angles. This is
particularly clear in the third object (the coplanar case),
where less than a 4% error in the center separation causes
a 10% error in angle. This illustrates another criteria for
shape descriptors—that they should be first-order insensitive
to calibration errors.

2) Glasses: As a final example, we use a constrained class
of models consisting of circles on parallel planes. In this case,
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the ratio of plane separation to circle radius is an Euclidean
invariant. If the circle radius is known, the plane separation
is recoverable. This is illustrated in Table IX and Fig. 11.
The results show that the liquid height can be monitored
very accurately. Discrepancies can be attributed to the glass
having sides that are not exactly parallel. In fact, for a class
of models consisting of a pair of parallel planes, the pose may
be recovered from a single known conic on each plane (the
conics do not have to be circles).

V1. EVALUATING THE STABILITY OF INVARIANTS

In order for invariants to be useful in vision applications,
they must be accurate and stable. Errors are introduced by
the sensor, the feature extraction scheme, and the numerical
precision of the computation. In this section, we derive ex-
pressions that characterize the propagation of error, and we
report experiments performed to test four plane projective
invariants: the cross ratio, the projective invariants of five
coplanar points, the projective invariants of two coplanar
conics, and a nonEuclidean metric. We emphasize that in the
case of the conics, we investigate only the stability of the
invariants of exactly fitted conics.

A. Experimental Setup

The experiments consist of measurements of invariants
in images of patterns for which the value of the invariant
is known for various viewing positions. To make the low-
level processing and feature extraction as straightforward as
possible, the test patterns consisted of simple convex polygo-
nal shapes, which produce well-defined, sharp edges. The
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TABLE IX
REsuLTs OF USING CIRCLES FOR MONITORING LiQuip HEIGHT. (THE
IMAGES ARE SHOWN IN FIG. 11. THE UPPER RIM HAD A 32-MM RADIUS
AND THE INNER GLASS A RADIUS OF 30 MM. NOTE, FOR PARALLEL
PLANES, THERE IS NO AMBIGUITY IN CIRCLE SOLUTIONS BECAUSE, IN
GENERAL, ONLY ONE OF THE FOUR SOLUTIONS WILL BE PARALLEL.)

angle between actual recovered
Fig.11 planes separation separation
upper 2.5° 38 mm 38.6 mm
lower 2.3° 84 mm 87.7 mm

Fig. 11.  For a pair of circles on parallel planes, the ratio of circle radius to
plane separation can be recovered from any view except the degenerate view.
Curves extracted are superimposed in white. Results are given in Table IX.

patterns were generated directly via the Postscript language
and rendered on a laser printer.

To collect data, the test patterns were mounted on a plat-
form on an optical bench that could be precisely rotated
and translated with respect to the camera: a Sony model
DXC-3000 CCD broadcast-quality video camera. The source
of illumination was fixed with respect to the camera and
positioned to provided reasonably uniform illumination for all
the positions of the test patterns. The intensity was chosen
so that a small lens aperture could be used to assure that
the test pattern was within the depth of field of the camera
for the entire experiment. The focal length of the lens was
kept constant for the entire experiment, and the aperture was
adjusted so that the video level for the white areas of the
test pattern was approximately 90 IRE. The video output of
the camera was digitized with a spatial resolution of 640 by
484 pixels and intensity resolution of 256 grey levels by a
Symbolics frame grabber installed in a Symbolics 3670 Lisp
Machine.
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For each of the patterns, two sequences of images were
taken. For the first, the pattern was positioned at a distance
of 26 cm from the focal plane of the camera and rotated
about a vertical axis in increments of 5°, where the angle
is measured between the optical axis of the camera and the
normal to the plane of the pattern. For the second sequence, the
pattern was translated along the normal to the image plane in
various increments from 26 to 210 cm. In addition, to test the
reliability of each invariant with respect to spatial quantization,
the images from the rotation sequence were resampled to 75%
of their original size by linear interpolation of the pixel values.

The resulting images were segmented into networks of
edges and vertices. Our current approach to segmentation
uses the zero crossings in the second derivative of image
intensity to define the location of feature boundaries [7] and
then approximates these boundary pixel chains by straight line
segments [3]. Feature points are localized as curvature extrema
in the chains.

B. Results

1) The Cross Ratio: In what follows, we avoid correspon-
dence issues by assuming that points are uniquely labeled. To
determine the numerical sensitivity of the cross ratio, we apply
the law of propagation of error:

2 [ der(zy, 3o, @ z4)\?
varz[cr($17x2,$3,$4)]=z< 1’3;.7 — )

=1

. var2($i)
from which it follows that

varler(zy, €2, T3, £4)]  |er(zy, T2, T3, 4))- 9

Thus, the variance of the cross ratio is proportional to the
magnitude of the cross ratio itself. A large cross ratio occurs
when two or more points are near each other on the line.
It is also reasonable to expect that the variance of the cross
ratio will be significant if the separation of two points is of
approximately the same magnitude as the variance in point
position.

The cross ratio was tested using a pattern consisting of
three sets of four concentric squares alternately filled black
and white designed to have cross ratio values cry = 2%,
crp = 12, and cr¢ = 4, respectively. The value of the cross
ratio is computed twice for each set of concentric squares, first
using the four upper corners and then the lower four corners
of the diagonal. The two values should be equal. To guarantee
that the points are collinear, we projected them on the straight
line computed as the best eigenvector fit {11] of all eight points
of the diagonal of the concentric squares.

Note the following points:

* For the rotation sequence of this test pattern, we found
that when the pattern was tilted beyond 60°, the feature
detector was not able to recover all four corner vertices of
the smallest squares of the test pattern, and consequently,
the cross ratio could not be computed.

The third and fourth rows of Table X contain the values of
the cross ratio for the nonreduced and reduced image sizes

e
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TABLE X
EXPERIMENTAL RESULTS OF THE CROSS RATIO INVARIANT. (“REDUCTION” REFERS TO
IMAGES THAT WERE ROTATED AND THEN RESAMPLED USING LINEAR INTERPOLATION.)
motion range cr4 crg cre
design values 25 12 4
Rotation 0° « 60° 2.69 +0.02 119 +0.1 4.02 £0.06
0° « 50° 2.69 +0.02 12.00 £0.06 4.00 +0.06
Reduction 0°  50° 2.69 +£0.03 12.0 £0.2 4.00 £0.05
Translation 26 « 92 cm 2.74 £0.03 12.3 £0.2 4.08 £0.05
All 2.72 £0.04 12.2 £0.3 4.05 £0.07
ofcr 0.02 0.02 0.02
TABLE XI
EXPERIMENTAL RESULTS OF THE COPLANAR FIVE-POINT INVARIANT. “REDUCTION” REFERS
TO IMAGES THAT WERE ROTATED AND THEN RESAMPLED USING LINEAR INTERPOLATION
motion range TA; TA, 1B 1By 1Cy ICy
design values 0.618 2.618 0.401 4.41 0.858 1.197
Rotation 0° < 80° 0.60 +0.02 2.7 £0.1 0.401 +0.003 44 £0.1 0.853 +0.003  1.199 +0.005
0° « 70° 0.613 £0.006 2.65 £0.03 0.401 £0.003 4.40 £0.05 0.859 +0.002 1.196 +0.003
Reduction 0° « 70° 0.61 +0.01 2.71 £0.07 0.402 £0.008 4.40 +0.05 0.858 +0.003 1.199 +0.005
Translation 26 — 205 em 0.610 £0.007 2.68 £0.06 0.412 +0.007 4.27 £0.09 0.852 +£0.004  1.211 +0.009
All 0.61 +0.01 2.64 £0.09 0.404 +0.008 4.38 +0.09 0.856 +0.005 1.201 +0.009
o/l 0.02 0.03 0.02 0.02 0.006 0.007

over the same range of angles. These results demonstrate
that the cross ratio is stable with respect to spatial
quantization noise.

* In the translation sequence, the patterns become too
small for the feature detector to recover the four vertices
necessary to evaluate the cross ratio at distances greater
that 92 cm.

* In the last row of Table X, we have computed the ratio
of the standard deviation to the mean of the cross ratio
of the previous row. The fact that these values remain
constant for different values of the cross ratio agrees with
the relation of (14), which predicts that the variance of
the value will be proportional to the value of the cross
ratio itself.

In conclusion, we can observe from these results that the cross
ratio is not only stable but also accurate since the design value
of each test pattern lies within one standard deviation of the
experimentally measured values.

C. Five Coplanar Points

As Example 6 shows, five coplanar points give rise to two
invariants, which can be written as

I = 14311501
| = 81io21
Iyo1 153
I = Iy91I530
IyzoIsn

where I;;; is the determinant of the matrix {pipjpk}, and
p;. are the homogenous coordinates of the kth point. If a
triple of points is collinear, the point matrix M;;, becomes
singular, and the corresponding invariant is undefined. Note
that reordering the points is an action of the permutation group
on five symbols and that by taking symmetric functions of
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these two basic invariants, we can construct functions that
are invariant to projection and relabeling. For simplicity, we
assume that each point is uniquely labeled so that the problem
does not arise. The law of propagation of error yields

A
Var2[]1(P1aP2»P37P4,P5)] 22 ('—1> var2(:c,')

™
i=1 Oz,

oL\’
+ <8y1> var{y;).

If p1, Py, P3, P4, Ps are five coplanar points, it follows that

var[I1(py, P2, P3, P4, P35)] ¢ |11 (10)

and that

(1n

This implies that given estimates of the value of the invariant
and of the error introduced by the sensor and feature extraction
scheme, we can estimate the accuracy of the invariant.

The pattern devised for measuring the five-point invariant
consists of three black pentagons of varying shape on a white
background. The five points used to compute the invariants
are the vertices of the pentagon. The values of the invariant
for each pentagon are given in Table XI.

Note the following points:

Var[12(p17p2!p3vp4zp5)] X |12|

* For this pattern, we found that the maximum usable angle
in the rotation sequence was 80°. For angles greater than
this, the feature detector does not find the corners reliably.
Consequently, since all five points are not available, the
invariants cannot be calculated. For angles greater than
70°, the feature detector is able to recover all the vertices
but with poor localization accuracy.
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TABLE XII
THE EXPERIMENTAL RESULTS OF THE TWO COPLANAR CONIC INVARIANT. “REDUCTION” REFERS
TO IMAGES THAT WERE ROTATED AND THEN RESAMPLED USING LINEAR INTERPOLATION

motion range 14B, IAB, IAD, ITAD, ICD, ICD,
design values 4.47 5.46 -304 —70.1 9.02 6.46
Rotation 0° — 70° 4.46 +0.06 3.44 £0.02 -30.1 £0.6 —69.7 £0.4 9.02 £0.06 6.46 +0.03
0° « 65° 4.47 £0.01 5.43 £0.01 -30.3 £0.3 —69.5 £0.3 9.04 £0.03 6.45 +0.02
Reduction 0° — 65° 447 +0.01 5.46 £0.02 —-30.1 £0.6 —70.3 +0.1 8.98 +0.09 6.47 +0.02
Translation 26 < 210 cm 4.47 £0.01 5.46 £0.02 —30.1 £0.2 —68.5 +£0.6 9.02 £0.03 6.46 +0.01
All 4.46 £0.01 5.44 £0.02 —30.1 £0.5 —69.7 £0.8 9.01 £0.06 6.45 +0.03
a/I2(x10™%) 5 7 6 2 7 7
TABLE XIII
THE RESULTS OF THE NONEUCLIDEAN DISTANCE TESTS. (“REDUCTION” REFERS TO
IMAGES THAT WERE ROTATED AND THEN RESAMPLED USING LINEAR INTERPOLATION.)
motion range 8(T3.24) 6(Xy.x3) M. 22)
design values 0.381 1.096 0.0222
Rotation 0° « 70° 0.382 +0.003 1.096 +0.009 0.0221 £0.0007
0° - 65° 0.385 +0.001 1.091 40.006 0.0222 £0.0005
Reduction 0° « 63° 0.378 +0.005 1.097 £0.006 0.0218 £0.0007
Translation 26 « 210 cm 0.379 £0.007 1.102 £0.004 0.0227 £0.0004
All 0.381 +0.009 1.096 £0.008 0.0221 £0.0007

* For angles less than 70°, the five-point invariant is stable
under spatial quantization noise.

* For the translation sequence, the maximum usable dis-
tance is 210 cm. Beyond this distance, the pattern be-
comes too small for the feature detector to recover the
five vertices that are necessary to evaluate the invariants.

* In the last row of Table XI, we have computed the ratio
of the deviation to the mean of the invariants of the
previous row. These results agree with the relation of
(15). Note that the ratio for pattern C is slightly lower
than the others. This is because the feature detector is
able to localize vertices with greater precision when their
incident edges form an angle close to 90°, which is the
case in this pattern.

These results demonstrate that the five-point invariant is not
only stable but also accurate.

D. Two Coplanar Conics

Example 5 gives projective invariants for a pair of coplanar
conic curves.

The pattern for measuring the invariants of two coplanar
conics consists of four pentagons. The vertices of each penta-
gon define a unique ellipse. The design values of the invariants
of these pairs of conics are given in Table XII. Out of the six
possible pairings of the conics, we have chosen the AB, AC,
and C'D, whose invariants are given in Table XII.

The limits for recovering all the necessary features under
rotation, reduced rotation, and translations sequences were
70°, 65°, and 205 cm, respectively. The results are shown
in Table XII. These were produced in the same way as those
of the previous sections.

We see that this invariant is both stable and accurate since
the design value falls within one standard deviation of the
measured values. However, unlike the previous cases where

the propagation of error is proportional to the values of
the invariants, here, the relationship is quadratic due to the
quadratic dependence of the coefficients of the conic on the
coordinates of the vertices. The last row of Table XII illustrates
this relationship.

E. NonEuclidean Distance

The cross ratio can be used to introduce a distance in the
image plane that is invariant under projective transformation.

Definition: The projective distance § between two points
z1 and z2 on a line with respect to two points m; and m,
on the line is given by

8(z1, ) = klogler(zq. 22, m1, m2)]

12)

where k is an arbitrary real or complex constant.

A 2-D generalization is possible if there is a distinguished
conic in the plane (Example 7). Then, for two points ¢, and
T that lie on the plane but not on the conic c, the function

(z]cas)’
Texy)(xd cxo)

= f(‘rlv 1'2)
cos h2(6(x1, x2))

cos? (6(x1, x2))

(z
if |f(l’1,£2)| >1

otherwise
(13)

defines a distance 4 that is independent of the frame in which
the points and the conic are measured [44].

The same pattern used for testing a pair of coplanar conics
was used for testing nonEuclidean distance, and therefore,
the orientation limits that held for that case hold for the
tests of nonEuclidean distance. The reference conic ¢ (18)
is determined by one of the pentagons. We measured three
distances on the figure. The results of these experiments are
shown in Table XIII.

e



FORSYTH et al.: INVARIANT DESCRIPTORS FOR 3D OBJECT RECOGNITION

Although the Euclidean distance between the selected points
changed by over a factor of 3 when the pattern was rotated,
the nonEuclidean distance remains essentially constant.

VII. DISCUSSION

We have demonstrated a simple, efficient model-based vi-
sion system that uses the principle of invariance to recognize
objects, without regard to pose. We have shown that once an
object has been identified, its pose can easily and accurately be
recovered. Extensive generalization of this work is possible:

* The invariant fitting theorem works for algebraic curves
of any degree. Higher degree curves have richer systems
of invariants in general, but the complexity of the numeri-
cal problem in fitting the curves is massively increased. It
may be possible to solve these problems to create richer
invariant descriptors for plane curves.

* The invariant fitting theorem applies only to point sets that
are within projection. To obtain an invariant representa-
tion for curves requires integrating algebraic distance with
respect to a projectively invariant parameter. However,
simply summing algebraic distance at all the points on
the sampled curve leads to useful invariants in practice.

* The projectively invariant function associated with a
single conic (2.1) can be turned into a metric as in
Section VI-E. It should be possible to use this function
to avoid having to back project models to verify the
hypothesis that an instance has been found by checking
that pairs taken from a range of nearby features have the
right function values. Using this scheme allows richer
models, yet the precise camera calibration needed to
compute pose and backproject in conventional hypothesis
verification is unnecessary.

* The system for working with nonalgebraic curves using
algebraic representations is sensitive to occlusion. It may
be possible to overcome this difficulty by using the
projective differential invariants described in Section II
(Examples 4 and 5) or by exploiting the projectively
invariant function associated with one of the conics (2.1).
This would proceed by fitting a conic to an image curve,
assuming that it had not been occluded. The projectively
invariant distances between other image features could
then be used for recognition—a correct system of values
for the distances both recognizes a model and verifies that
the original curve was not occluded. A system of this kind
would be robust to occlusion if each model consisted of
the projectively invariant distances between a range of
features for several different object curves. Such a model
could be recognized as long as one object curve and a
number of object features were not occluded.

* Differential invariants based at more than one point yield
another approach to occlusion sensitivity for general
curves. For example, given a concavity in a smooth
curve, we can construct the bitangent that closes off the
concavity and two lines tangent to the concavity and
passing through the points of tangency of the bitangent.
This construction is projectively invariant; therefore, we
can consider the system that consists of the four points of
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tangency and a variable point that runs along the curve.
This system will yield at least two invariants for each
position of the variable point without taking any further
derivatives. By plotting one invariant against the other,
we obtain a signature for the curve that is projectively
invariant and invariant to reparametrization.

* A unifying theme of this paper has been recovering prop-
erties that are invariant to a group action—unfortunately,
plane perspectivities do not form a group. However, the
really important group in vision is the three-dimensional
Euclidean group. We have shown an example where
Euclidean invariants could be recovered despite the dis-
torting effects of perspective. We believe that a better
understanding of perspectivities is important to progress
in vision. The course most likely to succeed in avoiding
the effects of perspective involves computing Euclidean
invariants from data observed under perspective.

* Some of the polynomial systems encountered, for ex-
ample, the systems in p and ¢ in pose recovery or
the systems in the rotation invariants of a surface, are
overdetermined—there are more equations than there
are unknowns. These extra constraints may usefully be
exploited, for example, in reducing ambiguities and are
the subject of active ongoing research.

* Recognizing curved surfaces from a single perspective
view is an important problem that has not been addressed
here. Recent work suggests invariant theory can make an
important contribution to this problem [16].

APPENDIX A
POSE FROM CIRCLES

The problem here is, given a known circle on the world
plane and its corresponding conic in the image, determine the
pose of the world plane.

The solution is in two stages:

1) Determine the orientation of the plane.

2) Determine the distance of the plane from the camera

origin.

The method!? exploits the property, unique to a conic that
is a circle, that the back-projected curve must have equal
coefficients for X2 and Y2 and no term in XY.

1) Plane Orientation: The conic in the image is az? +
bry + cy? + dx + ey + f = 0. We assume that the origin is
at the principal point, and the distances are measured in
units of focal length (i.e., the focal length can be set to unity).
Then, the image curve defines a cone az? + bry + cy® +
dzz + eyz + fz® = 0 in 3D. The matrix in the quadratic
form representation of this cone (z% cz where ¢ = {z,y, 2})
may be diagonalized in the standard manner by a 3D rotation
of the coordinate system to the eigen-vector frame. We have
¢’ = R¥cR; and z' = Rz, where Ry = (e1,e,€e3) is the
matrix of orthonormal eigen vectors and

A 000
C/ = 0 )\2 0
0 0 X

13We are grateful to C. Longuet-Higgins for this solution. An independently
developed solution, similar to this one, appeared in [8].



990

where {\1, s, A3} are the eigenvalues in ascending order.
Equality of the z2 and y? coefficients is achieved by a second
rotation about the 3’ axis by an angle § = +tan™! %31:—;53
which sets both of the coefficients to A,. There is therefore
a two-fold ambiguity in the recovered orientation. We have

¢” = Rl c'Ry and 2’ = Rz’ where

cos §# 0 sin @
R2 = 0 1 0
—sin & 0 cos 8

The composite rotation from image plane to the plane that in-
tersects the cone in a circle is thus =’/ = (R.)"z. where
R. = RyRo, and consequently, the normal to the plane in the
camera coordinate system is n = R.(0, 0, —1)T (the ~1 allows
for the right-handed coordinate system). Thus, the normal is
n = —(Re13,Re23, Re3a).

2) Plane Distance: In the 2" coordinate system, the circle
has the equation (2’ — a)? + 3% = ,\4%\35’_’27 where o? =
(Aa=2g (/\M—’\’)zm . If the circle has radius p in this plane, then
2=dy =/ ;—;}ép is the perpendicular distance of the plane
from the origin. The center of the circle is at R.(c,0, dJ_)T
in the camera frame.
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