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Abstract. A standard method for handling Bayesian models is to use Markov chain Monte Carlo methods to
draw samples from the posterior. We demonstrate this method on two core problems in computer vision—structure
from motion and colour constancy. These examples illustrate a samplers producing useful representations for very
large problems. We demonstrate that the sampled representations are trustworthy, using consistency checks in the
experimental design. The sampling solution to structure from motion is strictly better than the factorisation approach,
because: it reports uncertainty on structure and position measurements in a direct way; it can identify tracking errors;
and its estimates of covariance in marginal point position are reliable. Our colour constancy solution is strictly
better than competing approaches, because: it reports uncertainty on surface colour and illuminant measurements
in a direct way; it incorporates all available constraints on surface reflectance and on illumination in a direct way;
and it integrates a spatial model of reflectance and illumination distribution with a rendering model in a natural way.
One advantage of a sampled representation is that it can be resampled to take into account other information. We
demonstrate the effect of knowing that, in our colour constancy example, a surface viewed in two different images
is in fact the same object. We conclude with a general discussion of the strengths and weaknesses of the sampling
paradigm as a tool for computer vision.
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1. Introduction

The Bayesian philosophy is that all information about
a model is captured by aposteriordistribution obtained
using Bayes’ rule:

posterior= P(world | observations)

∝ P(observations|world)P(world)

where the priorP(world) is the probability density of
the state of the world in the absence of observations.
Many examples suggest that,when computational dif-
ficulties can be sidestepped, the Bayesian philosophy
leads to excellent and effective use of data (e.g. exposi-
tions in Carlin and Louis (1996), Gelman et al. (1995),
Grenander (1983), and Grenander (1993); examples of

the use of Bayesian inference in the vision literature
include (Binford and Levitt, 1994; Chou and Brown,
1990; Huang et al., 1994; Jolly et al., 1996; Maybank
and Sturm, 1999; Noble and Mundy, 1993; Pavlovic
et al., 1999a, 1999b; Sarkar and Boyer, 1992, 1994;
Sullivan et al., 1999; Yuille and Coughlan, 1999; Zhu
et al., 2000, among others).

A probability distribution is, in essence, a device
for computing expectations. The problems we are in-
terested in typically involve an important continuous
component, meaning that computing expectations in-
volves estimating integrals, usually over high dimen-
sional domains. One useful technique is to represent the
posterior by drawing a large number of samples from
that distribution. These samples can then be used to
estimate any expectation with respect to that posterior.
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For example, if we wished to decide whether to fight
with or flee from an attacker, we would draw samples
from the posterior on the outcome and estimate ex-
pected utilities for each decision (as averages of the
utilities over the samples) and then choose the decision
with the best utility.

Sampling algorithms are more general than random
search for MAP interpretations precisely because the
results give an approximate representation of the en-
tire posterior. This means that, for example, we can
estimate the covariance of the posterior; resample the
samples to incorporate new information; engage in
multiple calculations for different decisions using dis-
tinct utilities, etc. Sampling isin principle simple and
general,if samples can be drawn from the posterior
efficiently.

This paper demonstrates the strengths and weak-
nesses of sampling methods using two core vision prob-
lems as examples: structure from motion (Section 2);
and colour constancy (Section 3).

Notation: we writeε for a vector, whosei ’th compo-
nent isεi andM for a matrix whosei , j ’th component
is Mij . Sampler jargon that may be unfamiliar is shown
in italics when first introduced.

1.1. Simple Sampling Algorithms

For some probability distributions, direct algorithms
exist for drawing samples (e.g. Ripley, 1987); we are
seldom lucky enough to have a posterior of this type.
Rejection samplingis appropriate for some distribu-
tions. Assume that we wish to draw samples fromp(x)
and have a proposal distributionq(x), from which we
can draw samples easily. Assume also we know some
constant,k, such thatkq(x) ≥ p(x) for all x; we can
draw a sample fromp(x) by drawing a samplex0 from
q(x), and then accepting the sample with probability
p(x0)/(kq(x0)). In importance sampling, to draw a
sample fromp(x), we first draw a large number of
independent samples{s1, . . . , sn} from a proposal dis-
tributionq(x), and then sets= si with probability pro-
portional towi = p(x)

q(x) . As n→∞, the distribution
for the samples will approach p(x). Both rejection
sampling and importance sampling methods can be
wildly inefficient if q(x)approximatesp(x)poorly (the
usual case in high dimensions); in some such cases, a
collection of differentq(x)’s can be pasted together
to obtain a better approximation (e.g. Gamerman,
1997).

1.2. Markov Chain Monte Carlo—
the Metropolis-Hastings Algorithm

Markov chain Monte Carlo methods (Gamerman,
1997; Gilks et al., 1996c) are the standard methods for
sampling complex distributions. In this method, one
constructs a Markov chain whose stationary distribu-
tion is the target distribution. A new sample can be ob-
tained from an old one, by advancing the Markov chain.

The Metropolis-Hastings algorithm is a technique
for constructing a Markov chain that has a particular
desired stationary distribution. Assume that we have a
distributionπ from which we would like to generate
samples. We would like to build a Markov chain which
hasπ as a stationary distribution.

The algorithm will produce a sequence of samples
X1, . . . , Xn, by taking a sampleXi and proposing a
revised version,X′i . The next element of the sequence
Xi+1 will be X′i with probabilityα(Xi , Xi+1); other-
wise, it will be Xi . We will give the form ofα below.

The proposal process is random, too. In particular,
there is a proposal distribution which gives the prob-
ability of proposingX′i from Xi . This can be written
P(Xi → X′i ). Note that the proposal distribution is a
function of X′i , and may be a function ofXi . Now we
assume that ifπ(u) is non-zero, then there are some
valuesv such thatP(v→ u) is non-zero, too.

In this case, we have that

α = max

(
1,

P(X′i → Xi )π(X′i )
P(Xi → X′i )π(Xi )

)
Notice that this expression is qualitatively sensible. If
the chain is at a point whereπ has a very low value and
at the new pointπ has a very high valueandthe forward
and backward proposal probabilities are about equal,
then the new point will be accepted with high proba-
bility. If the chain is at a point whereπ has a very high
value and the proposal process has a high probability
of suggesting points with a very low value ofπ , it is
likely to stay at that point. Finally, if a point which has
high value ofπ is proposed disproportionately often,
it is less likely to be accepted.

A good way to think about the Metropolis-Hastings
algorithm is that it is an improved version of the
“hypothesize and test” process that is common in vi-
sion. Metropolis-Hastings suggests various hypotheses
which, depending on the result of a bookkeeping exer-
cise, are accepted or rejected. This process yields the se-
quenceX1, . . . , Xn. However, for Metropolis-Hastings
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the sequence of hypotheses has very significant se-
mantics; assuming technical conditions on the proposal
process (expounded in, for example, Gamerman, 1997;
Gilks et al., 1996a; Roberts, 1996; Tierney, 1996; these
conditions are usually fairly easily met and all our
samplers meet them), once sufficient iterations have
completed, all subsequentXi are samples drawn from
π(X).

1.3. Burn-in and Mixing

Generally, an MCMC method needs to produce some
number of samples to “forget” its start point. The num-
ber of iterations required to achieve this is often called
the burn-in time. The burn-in may be extremely long
for a poorly designed sampler. There are a very small
number of samplers known to have a short burn-in time
(e.g. Jerrum and Sinclair, 1996).

Once a sampler has burnt in, the sequence of sam-
ples it produces may or may not be correlated; if this
correlation is low, the method is said tomix well. It is
desirable to have an algorithm that burns in quickly,
and mixes well. Burn-in and mixing are related to the
dynamics of the underlying Markov chain. One way to
show that a sampler mixes quickly is to prove that, for
any decomposition of its domain into two disjoint sets
A and B, the conditional probability that the sampler
goes to B given it is in set A, is high. Such proofs of
fast mixing exist for a small number of cases, but re-
quire substantial art (e.g. Jerrum and Sinclair, 1996).
We are aware of no proof that a sampler used for vision
problems is fast mixing. In our examples, as in the vast
majority of cases, the algorithm is used without such
proofs; we show a variety of consistency checks that
suggest that the algorithm has converged.

1.4. The Attractions of MCMC

It is known how to apply this algorithm when the do-
main of support is complicated (for example, samples
may be drawn when the domain of support of the poste-
rior consists of several different spaces of different di-
mensions, Green, 1995; Richardson and Green, 1997).
There are numerous variants to the basic algorithm,
some of which combine deterministic dynamics with
random search in the hope of better mixing (e.g. see
the review in Neal (1993)).

The advantage of viewing Metropolis-Hastings al-
gorithms as a souped up hypothesize and test process
is that it suggests how to build proposal mechanisms.

A natural strategy is to take current vision algorithms
and make them produce probabilistic outputs. This ap-
proach is illustrated in Section 3.2; Zhu et al. (2000)
have used it successfully for some recognition prob-
lems. A really attractive feature is that we can use
different, possibly incompatible algorithms as distinct
sources of proposals, and the samples we obtain repre-
sent the posterior incorporatingall available measure-
ments.

Quite often in practice it is easy to come up with a
function f proportional to the posterior. In this case,
the posterior is

f∫
D f (u) du

but the integral—the normalizing constant—can be
very difficult to compute (the best way to do it is to
use a sampling method). An attractive feature of the
Metropolis Hastings algorithm is that we need not know
the normalizing constant for the distribution (because
the constant is cancelled by the ratio).

1.5. Techniques for Building Practical
MCMC Samplers

It is easy to build a sampler using the Metropolis-
Hastings algorithm. It seems to be very hard to build a
goodsampler—one that burns in quickly, mixes well,
and gives a trustworthy picture of the posterior—using
that algorithm. We describe a variety of techniques for
building samplers, and conclude with a discussion of
possible sanity checks.

1.5.1. Gibbs Samplers. It is quite common to en-
counter situations where the target distribution has a
non standard form, but is standard when groups of vari-
ables have fixed values (this occurs in vision problems;
see Sections, 2.3 and 3.2). In this case, it is natural
to adopt a proposal mechanism that fixes one set of
variables and draws a sample from the full conditional
distribution on the other set, and vice versa. This very
useful technique is known asGibbs sampling(named
by Geman and Geman (1984) but apparently due to the
statistical physics literature, where it was known as the
heat bath algorithm, Gilks et al., 1996b, p. 12). Usu-
ally, the group of variables to be sampled is chosen at
random, and sufficient samples are drawn so that each
group of variables is visited many times.

Gibbs sampling is very easy to implement. There
is one considerable danger, which is often quite dif-
ficult to avoid. If the groups of variables are strongly
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Figure 1. Correlated variables cause Gibbs samplers to behave badly. The figure on thetop leftshows 100 samples drawn from a Gibbs sampler
for two independent normal random variables, one with variance one and the other with variance ten. The stars indicate the samples; the line
segments indicate the order in which the samples were drawn. Note that the sampler makes quite large vertical moves (because the variance in
this direction is large). The figure on thetop rightshows 100 samples drawn from this distribution, now rotated by 45◦, using a Gibbs sampler.
In this case, the sampler can make only relatively small vertical and horizontal moves, and so the position of the samples changes relatively
slowly; the 100 samples in the graph on thebottom left, which consist of those of the first graph rotated by 45◦, give a much better picture of
the distribution. On thebottom right, thex-coordinate for the samples drawn from the second sampler (solid line) and thex-coordinates of the
third figure (dashed line). The solid curve (correctly) suggests that the samples drawn from the second sampler are quite strongly correlated.

correlated, then a Gibbs sampler can mix very badly
indeed. The effect is well known (for a full discussion,
see for example, Gilks and Roberts, 1996) and easily
illustrated (see Fig. 1).

1.5.2. The Hybrid Monte Carlo Method. A common
difficulty with sampling methods is that the state of the
sampler appears to perform a slightly biased random
walk. The difficulty with random walk is that it takes a
long time to move any distance along a domain, mean-
ing that if the sampler is started at a point a long way
from the mode of the distribution, it will take a long

time before it reaches the mode. From our perspective,
it is extremely important to have a representation of the
distribution around the mode.

Hybrid Monte Carlo is a method for making propos-
als that causes the state of the sampler to move rather
quickly to the mode, and then explore it. The method
is due to Duane et al. (1987) (and described in detail
in Neal (1993)). Write the state of the sampler asq.
The method requires that the target distribution can be
written as

π(q) = exp{−U (q)}
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Now let us think ofU as a potential function; the
state of the sampler will be the state of a particle
of massm subject to this potential function. This
state can be determined by considering the momen-
tum of the particlep and writing a Hamiltonian for the
particle:

H(q, p) = U (q)+ pTp
2m

We now need to integrate Hamilton’s equations

∂q
∂t
= 1

m
p

∂p
∂t
= −∇qU

to determine the state of the particle. This temporary
excursion into mechanics is actually justified, because
we can exponentiate the negative Hamiltonian of the
particle to get

π ′(q, p) = exp{−H(q, p)}
= π(q) exp

{
−pTp

2m

}
which is a new target distribution for a larger set of
random variables. We now have two proposal moves:

1. Advance time in our particle model by some ran-
domly chosen amount, either forwards or back-
wards. This updates bothq andp. As long as we use
a symplectic integrator, the extent of the advance is
uniform and random, and the choice of forward or
backward is random, the accept probability is one.

2. Fix q and draw a sample forp from the full con-
ditional. This is easy, because the full conditional
distribution inp is normal and is independent ofq.

This sampler has very attractivequalitativebehaviour.
If the state is at a relatively large value ofU , then the
first type of move will travel quickly down the gradient
of U to smaller values, while building up momentum.
But the second move then discards this momentum;
so we have a sampler that should move quickly to a
mode—whereU is small—and then move around ex-
ploring the mode under the influence of the random
choice of momenta. Good values of the particle’s mass
and of the range of time values must be chosen by
experiment.

In practice, the hybrid method seems to be useful
for continuous problems. It is very easy to implement
for the colour constancy example given above, and has

been successfully used on a variety of other continuous
problems (Neal, 1993).

1.6. MCMC and Random Search in Vision

Markov chain Monte Carlo has appeared in the vi-
sion literature in various forms. One common use is
to attempt to obtain an MAP estimate by random
search, usually using the Metropolis-Hastings algo-
rithm (e.g. Geman and Geman, 1984; Geman and
Graffigne, 1986). The Markov random field model is
a spatial model which gives a posterior on image la-
bellings given measurements as a function of measure-
ment values and local patterns of pixel labels (so-called
“clique potentials”; the topic is reviewed in Li (1995)).
A standard method for estimating MAP labellings is
to use an annealed version of the Metropolis-Hastings
algorithm, where the posterior to be sampled is a func-
tion of a parameter that changes during the sampling
process. This parameter is often thought of as tempera-
ture; the intent is that for high values of the parameter,
the posterior has only one mode, and as the temperature
is reduced the state of the sampler will get stuck in that
mode, thereby obtaining a global extremum. It is not
possible to guarantee in practice that this occurs, and
the algorithm has a rather mixed reputation (Collins
et al., 1988; Golden and Skiscim, 1986).

The notion of using a sampling method to perform
inference on a generative model of an image pattern
appears to be due to Grenander (1983). Few successful
examples appear in the literature. In Jolly et al. (1996),
an annealing method is used to estimate an MAP so-
lution for the configuration and motion of a motor car
template in an image. In Zhu (1998), a random search
method is used to find a medial axis transform. In Zhu
et al. (2000), an MCMC method is used to find simple
shapes and road signs. In Green (1996), MCMC is used
to perform inference in various vision-like situations,
including reconstruction from single photon emission
computed tomography data and finding a polygonal
template of a duck in heavy spatial noise. In Phillips
and Smith (1996), inference is performed on a hierar-
chical model to find faces, and a version of MCMC is
used to find an unknown number of disks. Templates are
used for restoration in Amit et al. (1991). Gibbs sam-
plers are quite widely used for reconstruction (Geman
and Geman, 1984; Geman and Graffigne, 1986; Zhu
et al., 1998).

Random search is now a standard method for es-
timating the fundamental matrix in structure from
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motion problems; a review appears in Torr and Mur-
ray (1997). RANSAC—an algorithm for robust fitting,
due to Fischler and Bolles (1981) and appearing in the
statistical literature as Rousseeuw (1987)—proposes
small sets of correspondences uniformly at random, fits
a fundamental matrix to each set, and accepts the set
whose fit gives the largest number of correspondences
with a sufficiently small residual. The number of sets
is chosen to ensure some high probability that a correct
set is found. The main advantage of an MCMC method
over RANSAC is that an MCMC method can produce
a series of hypotheses with meaningful semantics—
indicating, for example, the posterior probability that
a particular point is an outlier, or the posterior proba-
bility that a pair of measurements come from a single
point.

1.6.1. Particle Filtering (or Condensation, or
“Survival of the Fittest”) and Resampling. The most
substantial impact of sampling algorithms in vision has
been the use of resampling algorithms in tracking. The
best known algorithm is known ascondensationin the
vision community (Blake and Isard, 1998),survival of
the fittestin the AI community (Kanazawa et al., 1995),
andparticle filteringin the statistical signal processing
community, where it originated (Carpenter et al., 1999;
Kitagawa, 1987). A wide range of variants and of ap-
plications of particle filtering are described in a forth-
coming book (Doucet et al., 2001). This algorithm is a
modification of factored sampling: one draws samples
from a prior (which represents the state of the world up
to thek−1’th measurement), propagates these samples
through a dynamical model, and then weights them us-
ing the posterior incorporating thek’th measurement.
This set of weighted samples provides a representa-
tion of the prior for the next iteration. The algorithm is
fast and efficient, and is now quite widely applied for
low-dimensional problems.

The attraction of resampling algorithms is that they
can be used to incorporate “new information.” In track-
ing applications, new information comes because a new
frame, with new measurements, has arrived. New in-
formation may come from other sources. In the colour
constancy example, we assume that the algorithm is
told that two patches in two different images are the
same colour (this might occur because a recognition al-
gorithm has a good match to the geometry, and knows
the patches represent the same object). This informa-
tion strongly constrains the inferred colours for other
patches in each view (Section 3).

In recognition applications one often encounters
some form of hierarchical model, which again suggests
resampling. In Ioffe and Forsyth (1999), a sampler is
used to label groups of image segments, using their con-
sistency with observed human kinematics. The human
model used has nine segments. It is foolish to attempt
to label all nine segment groups; instead, their algo-
rithm uses a sampler to label individual segments with
a frequency proportional to the posterior probability of
that label given the image data. The set of individual
segment labels is resampled to propose pairs of labels
for pairs of segments, and so on. In this case, the new
information is the use of an enhanced prior; the prior
for pairs of labels emphasizes pairs of segments that lie
in particular configurations, a property that is meaning-
less for single segments.

2. Example: Large Scale Sampling for Bayesian
Structure from Motion

Structure from motion is the problem of inferring some
description of geometry from a sequence of images.
The problem has a long history and a huge literature;
space does not allow a comprehensive review, but see
Beardsley et al. (1997), Faugeras et al. (1998), Faugeras
and Robert (1996), Gool and Zisserman (1997), and
Hartley and Zisserman (2000). Accurate solutions to
structure from motion are attractive, because the tech-
nique can be used to generate models for rendering vir-
tual environments (e.g. Debevec et al., 1996; Faugeras
et al., 1998; Gool and Zisserman, 1997; Tomasi and
Kanade, 1992).

2.1. Structure from Motion by Matrix Factorisation

Assume m distinct views of n points are given;
correspondences are known. In the influential
Tomasi-Kanade formulation of structure from motion
(Tomasi and Kanade, 1992), these data are arranged
into a 2m× n matrix of measurementsD which must
factor asD = UV, whereU represents the camera
positions andV represents point positions. An affine
transformA is determined such thatUA minimises a
set of constraints associated with a camera, andA−1V
then represents Euclidean structure.

In practice, factorisation is achieved using a singu-
lar value decomposition. This is a maximum likeli-
hood method if an isotropic Gaussian error model is
adopted; for an anisotropic Gaussian error model, see
Morris and Kanade (1998). The formalism has been
applied to various camera models (Poelman, 1993;
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Tomasi and Kanade, 1992; Triggs, 1995); missing data
points can be interpolated from known points (Jacobs,
1997; Tomasi and Kanade, 1992); methods for mo-
tion segmentation exist (Costeira and Kanade, 1998);
and methods for lines and similar primitives are known
(Morris and Kanade, 1998). There are noise estimates
for recovered structure (Morris and Kanade, 1998).
These assume that errors in the estimates of struc-
ture are independent, an assumption that the authors
acknowledge is not always sustainable.

The factorisation method has one important weak-
ness. Because the algorithm has two separate stages,
it does not allow any payoff between model error—
the extent to which the recovered model violates the
required set of camera constraints—and measurement
error—the extent to which model predictions corre-
spond to data observations. This means that the model
cannot be used to identify measurement problems (for
example, tracker errors as in Fig. 5), and so is sub-
ject to reconstruction errors caused by incorporating
erroneous measurements. This is a property of the al-
gorithm, rather than of the problem; becauseU andV
have relatively few degrees of freedom compared with
D, it should be possible to identify and ignore many
unreliable measurements if the full force of the model
is employed. Recent work by Dellaert et al. has shown
how strongly the model constrains the data; they use a
sampling method to average over all correspondences,
weighting them by consistency with measured data, and
obtaining a satisfactory reconstruction. Their method
removes the need to compute correspondences from
structure from motion problems (Dellaert et al., 2000).

2.2. The Posterior on Structure and Motion

It is useful to think of Bayesian models as generative
models (e.g. Grenander, 1983). In a generative structure
from motion model,U andV are drawn from appro-
priate priors. ThenD is obtained by adding noise to
UV. We assume that noise is obtained from a mixture
model; with some large probability, Gaussian noise is
used, and with a small probability, the measurement
value is replaced with a uniform random variable.

The priors onU andV are obtained from constraints
on camera structure. We do not fix the origin of the co-
ordinate system, and represent points in homogenous
coordinates, so ourU and V have dimensions 2m× 4
and 4× n respectively. We assume a scaled ortho-
graphic viewing model with unknown scale that varies
from frame to frame.

All this yields a vector of constraint equations

C(U,V) = 0

which contains elements of the form

3∑
j=1

(ui, j )
2−

3∑
j=1

(ui +m, j )
2

(expressing the fact that the camera basis consists of
elements of the same length),

3∑
j=1

(ui, j ui +m, j )

(expressing the fact that the camera basis elements are
perpendicular), and

v j,4− 1

(from the homogenous coordinates). A natural prior to
use is proportional to

exp

(−CT(U,V)C(U,V)
2σ 2

constraint

)
This prior penalises violations of the constraints quite
strongly, but allows constraint violations to be paid
off one against the other. This approach is in essence
a penalty method. An alternative is to insist that
the prior is uniform if the constraints are all satis-
fied and zero otherwise—in practice, this would in-
volve constructing a parametrisation for the domain
on which the prior is non-zero, and working with that
parametrisation. This approach is numerically more
complex to implement; it also has the disadvantage
that one is imposing constraints that may, in fact,
be violated (i.e. the scaled orthography model may not
be sufficient; the imaging element may be misaligned
with respect to the lens, so that the camera basis con-
sists of elements of slightly different length, etc.).

We can now write a posterior model. Recall that the
noise process is a mixture of two processes: the first
adds Gaussian noise, and the second replaces the mea-
surement value with a uniform random variable. We
introduce a set of discrete mask bits, one per measure-
ment, in a matrixM; these mask bits determine by
which noise model a measurement is affected. A mask
bit will be 1 for a “good” measurement (i.e. one af-
fected by isotropic Gaussian noise), and 0 for a “bad”
measurement (i.e. one which contains no information
about the model). These bits should be compared with
the mask bits used in fitting mixture models using EM



116 Forsyth, Haddon and Ioffe

(see the discussion in McLachlan and Krishnan (1996),
and with the boundary processes used in, among oth-
ers, Blake and Zisserman, 1987; Mumford and Shah,
1989). We introduce a prior onM, π(M), which is
zero for matrices that have fewer thank non-zero ele-
ments in some row or column, and uniform otherwise;
this prior ensures that we do not attempt inference for
situations where we have insufficient measurements.

The likelihood is thenP(D|U,V,M), which is pro-
portional to the exponential of

−
{∑

i, j

(dij −
∑

k uikvkj)
2mij

2σ 2
meas

+ (1−mij )

2σ 2
bad

}

and the posterior is proportional to:

P(D | U,V,M)× exp

(−CT (U,V)C(U,V)
2σ 2

constraint

)
π(M)

Notice that the maximum of the posterior could well
not occur at the maximum of the likelihood, because
although the factorisation might fit the data well, theU
factor may satisfy the camera constraints poorly.

2.3. Sampling the Structure from Motion Model

This formulation contains both a discrete and a contin-
uous component. It is natural to consider using a Gibbs
sampler, sampling from the full conditional on point
positions given fixed camera positions, and from the
full conditional on camera positions given fixed point
positions. This works poorly, because the variables are
very highly correlated—a tiny shift in a point position
given fixed camera positions tends to result in a large
error. Instead, the continuous variables are sampled us-
ing the hybrid method described in Section 1.2; discrete
variables are sampled from the full conditional using
a strategy that proposes inverting 5% of the bits, ran-
domly chosen, at a time. Hybrid MCMC moves are pro-
posed with probability 0.7 and discrete variable moves
are proposed with probability 0.3.

3. Example: Sampling an Unknown Number of
Components for Bayesian Colour Constancy

The image appearance of a set of surfaces is af-
fected both by the reflectance of the surfaces and by
the spectral radiance of the illuminating light. Re-
covering a representation of the surface reflectance

from image information is calledcolour constancy.
Computational models customarily model surface re-
flectances and illuminant spectra by a finite weighted
sum of basis functions and use a variety of cues to
recover reflectance, including (but not limited to!):
specular reflections (Lee, 1986); constant average re-
flectance (Buchsbaum, 1980); illuminant spatial fre-
quency (Land and McCann, 1971); low-dimensional
families of surfaces (Maloney and Wandell, 1986) and
physical constraints on reflectance and illumination
coefficients (Forsyth, 1990; Finlayson, 1996). Each
cue has well-known strengths and weaknesses. The
most complete recent study appears to be Brainard and
Freeman (1997), which uses the cues to make Bayesian
decisions that maximise expected utility, and compares
the quality of the decision; inaccurate decisions con-
found recognition (Funt et al., 1998).

3.1. The Probabilistic Model

We assume that surfaces are flat, so that there is no
shading variation due to surface orientation and no in-
terreflection. There are four components to our model:

• A viewing model: we assume a perspective view of
a flat, frontal surface, with the focal point positioned
above the center of the surface. As spatial resolution
is not a major issue here, we work on a 50× 50 pixel
grid for speed.
• A spatial model of surface reflectances:because

spatial statistics is not the primary focus of this paper,
we use a model where reflectances are constant in a
grid of boxes, where the grid edges are not known
in advance. A natural improvement would be the
random polygon tesselation of Green (1996).
• A spatial model of illumination: for the work de-

scribed in this paper, we assume that there is a single
point source whose position is uniformly distributed
within a volume around the viewed surface.
• A rendering model: which determines the recep-

tor responses resulting from a particular choice of
illuminant and surface reflectance; this follows from
standard considerations.

3.1.1. The Rendering Model. We model surface re-
flectances as a sum of basis functionsφ j (λ), and as-
sume that reflectances are piecewise constant:

s(x, y, λ) =
ns∑
j=0

σ j (x, y)φ j (λ)
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Hereσ j (x, y) are a set of coefficients that vary over
space according to the spatial model.

Similarly, we model illuminants as a sum of basis
functionsψi and assume that the spatial variation is
given by the presence of a single point source posi-
tioned atp. The diffuse component due to the source

ed(x, p, λ,p) = d(x, y, p)
ne∑

i=0

εiψi (λ)

whereεi are the coefficients of each basis function and
d(x, y, p) is a gain term that represents the change in
brightness of the source over the area viewed. The spec-
ular component due to the source is:

em(x, p, λ,p) = m(x, y, p)
ne∑

i=0

εiψi (λ)

where m(x, y, p) is a gain term that represents the
change in specular component over the area viewed.

Standard considerations yield a model of thek’th
receptor response as:

pk(x, y) = d(x, y, p)
∑
i, j

gi jkεiσ j (x, y)

+m(x, y, p)
∑

i

hikεi

where

gijk =
∫
ρk(λ)ψi (λ)φi (λ) dλ

and

hik =
∫
ρk(λ)ψi (λ) dλ

andρk(λ)is the sensitivity of thek’th receptor class.
The illuminant termsd(x, y, p) andm(x, y, p) follow
from the point source model;m(x, y, p) is obtained
using Phong’s model of specularities.

We write any prior probability distribution asπ . Our
model of the process by which an image is generated
is then:

• sample the number of reflectance steps inx and iny
(kx andky respectively) from the priorπ(kx, ky) =
π(kx)π(ky).
• now sample the position of the steps (ex andey re-

spectively) from the prior
π(ex, ey | kx, ky) = π(ex | kx)π(ey | ky);
• for each tile, sample the reflectance (σ (m) for them’th

tile) for that tile from the priorπ(σ (m));

• sample the illuminant coefficientsε from the prior
π(ε);
• sample the illuminant positionp from the priorπ(p);
• and rendser the image, adding Gaussian noise of

known standard deviationσcc to the value of each
pixel.

This gives a likelihood,

P
(
image| kx, ky, ex, ey, σ

(1), . . . , σ (kxky), ε,p
)

The posterior is proportional to:

P
(
image| kx, ky, ex, ey, σ

(1), . . . , σ (kxky), εi , p
)

×π(ex | kx)π(ey | ky)π(kx)π(ky)

×π(εi )π(p)
∏

m∈ tiles

π(σ (m))

3.1.2. Priors and Practicalities. The spatial model:
We specify the spatial model by giving the number of
edges in thex andy direction separately, the position
of the edges, and the reflectances within each block.
We assume that there are no more than seven edges
(8 patches) within each direction, purely for efficiency.
The prior used is a Poisson distribution, censored to
ensure that all values greater than seven have zero prior,
and rescaled. Edge positions are chosen using a hard-
core model: the first edge position is chosen uniformly;
the second is chosen uniformly, so that the number of
pixels between it and the first is never fewer than five;
the third is chosen uniformly so that the number of
pixels between it and the second and between it and
the first is never fewer than five; and so on. This hard-
core model ensures that edge are not so close together
that pixel evidence between edges is moot.

Priors for reflectance and illumination: Surface
reflectance functions can never be less than zero, nor
greater than one. This means that the coefficients of
these functions lie in a compact convex set. It is easy
to obtain a representative subset of the family of planes
that bounds this set, by sampling the basis functions
at some set of wavelengths. Similarly, illuminant func-
tions can never be less than zero, meaning that the coef-
ficients of these functions lie in a convex cone. Again,
this cone is easily approximated. These constraints on
reflectance and illuminant coefficients are encoded in
the prior. We use a prior that is constant within the con-
straint set and falls off exponentially with an estimate
of distance from the constraint set. Because the con-
straint sets are convex, they can be expressed as a set
of linear inequalities; for surface reflectance we have
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Csσ +b > 0 and for illuminant we haveCi ε > 0. If the
coefficients in these inequalities are normalised (i.e. the
rows of the matrices are unit vectors), then the largest
negative value of these inequalities is an estimate of
distance to the constraint set.

We use six basis elements for illumination and re-
flectance so that we can have (for example) surfaces that
look different under one light and the same under an-
other light. This phenomenon, known asmetamerism,
occurs in the real world; our exploration of ambigui-
ties should represent the possibility. Werepresentsur-
face colour by the colour of a surface rendered under a
known, white light.

3.2. Sampling the Colour Constancy Model

Proposals are made by a mixture of five distinct moves,
chosen at random. The probability of proposing a par-
ticular type of move is uniform, with the exception that
when there are no edges, no deaths are proposed, and
when the number of edges in a particular direction is at
a maximum, no births are proposed. An important ad-
vantage to this approach is that,within each move, we
can assume that the values of variables that we are not
changing are correct, and so apply standard algorithms
to estimate other values. Calculations are straightfor-
ward, along the lines of Green (1995).

Moving the light: Proposals for a newx, y position
for the light are obtained by filtering the image. We ap-
ply a filter whose kernel has the same shape as a typical
specularity and a zero mean to ther , g andb compo-
nents separately; the responses are divided by mean
intensity, and the sum of squared responses is rescaled
to form a proposal distribution. The kernel itself is
obtained by averaging a large number of speculari-
ties obtained using draws from the prior on illuminant
position. Using image data to construct proposal dis-
tributions appears to lead to quite efficient samplers; it
is also quite generally applicable, as Zhu et al. (2000)
(who call it “data driven MCMC”) point out. Proposals
for a move of the light inz are uniform, within a small
range of the current position. The real dataset has no
specularities, and these moves have been demonstrated
only for synthetic data.

Birth of an edge: For each direction, we apply a
derivative of Gaussian filter to the red, green and blue
components of the image and then divide the response
by a weighted average of the local intensity; the result
is squared and summed along the direction of interest.
This is normalised to 0.8, and 0.2 of a uniform distri-

bution is added. This process produces a proposal dis-
tribution that has strong peaks at each edge, and at the
specularity, but does not completely exclude any legal
edge point (Fig. 2). Again, we are using image infor-
mation to construct an appropriate proposal process.
For a given state, this proposal distribution is zeroed
for points close to existing edges (for consistency with
the hard core model), and a proposed new edge position
is chosen from the result. Once the position has been
chosen, we mustchoose new reflectancesfor each of
the new patches created by the birth of an edge. Gen-
erally, if we give the two new patches reflectances that
are similar to that of the old patch, we expect that there
will be only a small change in the posterior; this is
advantageous, because it encourages exploration. Cur-
rently, we average the receptor responses within each
new patch, and then use the (known) illuminant to es-
timate a reflectance that comes as close as possible
to achieving this average value, while lying within the
constraint set. We then add a Gaussian random variable
to the estimated reflectance value; currently, we use a
vector of independent Gaussian components each of
standard deviation 0.5 (the choice will depend on the
basis fitted).

Death of an edge:The edge whose death is pro-
posed is chosen uniformly at random. The death of an
edge causes pairs of surface patches to be fused; the
new reflectance for this fused region is obtained using
the same mechanism as for a birth (i.e. the receptor re-
sponses are averaged, the known illuminant is used to
estimate good reflectances for each patch, and a vector
of independent Gaussian components each of standard
deviation 0.5 is added to the result).

Moving an edge:An edge to move is chosen uni-
formly at random. Within the region of available points
(governed by the hard-core model—the edge cannot get
too close to the edges on either side of it) a new position
is proposed uniformly at random. This is somewhat in-
efficient, compared with the use of filter energies as a
proposal distribution. We use this mechanism to avoid a
problem posed by a hard-core model; it can be difficult
for a sampler to move out of the state where two edges
are placed close together and on either side of a real
edge. Neither edge can be moved to the real edge—the
other repels it—and a new edge cannot be proposed in
the right side; furthermore, there may be little advan-
tage in killing either of the two edges. Proposing uni-
form moves alleviates this problem by increasing the
possibility that one of the two edges will move away,
so that the other can move onto the right spot.
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Figure 2. The proposal distribution for edge birth in thex direction for the Mondrian image shown. The proposal distribution is obtained
by filtering the image, dividing the response by a weighted average of the local intensity, then summing down they-direction. The result is
normalised to 0.8, and 0.2 of a uniform distribution is added. Note that the filtering process leads to strong peaks near the edges; this means that
the proposal process is relatively efficient, but does not completely rule out edges away from strong responses, if other evidence can be found
for their presence (the likelihood component of the posterior).



120 Forsyth, Haddon and Ioffe

Change reflectance and illumination:It is tempt-
ing to use a Gibbs sampler, but the chain moves ex-
tremely slowly if we do this. Instead, we sample re-
flectance and illumination simultaneously using the hy-
brid method of Section 1.2.

Poor behaviour by the Gibbs sampler can be ex-
plained as follows. Assume that the sampler has burnt
in, which means that the current choice of surface re-
flectance and illuminant coefficients yields quite a good
approximation to the original picture. Assume that we
have fixed the surface reflectance coefficients and wish
to change the illuminant coefficients. Now we expect
that the normal distribution in illuminant coefficients
has a mean somewhere close to the current value and
a fairly narrow covariance, because any substantial
change in the illuminant coefficients will lead to an
image that is different from the original picture. This
means that any change in the illuminant coefficients
that results will be small. Similarly, if we fix the illu-
minant coefficients and sample the surface reflectance
coefficients, we expect that the changes that result will
be small.

4. Experimental Procedures

In each case, the sampler can be started at a state chosen
at random, or at a state chosen by a start procedure
(described in more detail in Section 5.4). The main
difference between these methods is that choosing a
start point tends to lead to a sampler that appears to
burn in more quickly.

Figure 3. Left: a typical synthetic Mondrian, rendered using a linear intensity scale that thresholds the specularity.Center: the proposal
distribution forx andy position of the specularity, obtained by image filtering and shown with the highest value white.Right: a rendering of
a typical sample for this case, using the sample’s illuminant; a successful sampler produces samples that look like the image. Results for real
images are shown in colour in Fig. 8.

4.1. Structure from Motion

Results are obtained using the hotel dataset, courtesy
of the Modeling by Videotaping group in the Robotics
Institute, Carnegie Mellon University. We report two
types of experiment: in the first, the sampler is run
on that dataset; in the second, some small percentage
of the points in this dataset are replaced with uniform
random numbers in the range of the image coordinates.
This represents large noise effects. Coordinates in this
dataset appear to lie in the range 1–512. The algorithm
appears to be quite well behaved for a rang of choices
of constant. Values for the constants for Figs. 5, 6, 9
and 10 areσmeas= 1/

√
2, σconstraint= 1/

√
5000;σbad

should be slightly larger thanσmeas (allowing points
to range some distance from the measurement before
the measurement has been disallowed) and we used
σmeas=

√
5 ∗ σconstraint for these figures. Experience

suggests it is possible to useσconstraintvery much smaller
without apparently affecting the freedom with which
the sampler mixes.

4.2. Colour Constancy

As Fig. 3 indicates, the sampler runs on synthetic im-
ages, and makes reasonable estimates of the position
of the edges and the specularity and of illuminant and
surface colours. In this case the basis and constraints
are all known in advance. Applying the sampler to real
data is more interesting. The data set shown in Fig. 8
consists of images originally used in Forsyth (1990).
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These are images of the same set of patches on a
Mondrian of coloured paper patches, photographed
under white, blue, yellow, purple, red and cyan light.
There are no specularities, so we used a diffuse model
for this data set.

The original data has been lost, so we used ver-
sions scanned from the paper; these images were dis-
played on a CRT, photographed from that display, sub-
jected to four-colour printing and then scanned; it is
remarkable that any constancy is possible under the
circumstances. A basis was obtained using the bilin-
ear fitting procedure of Marimont and Wandell (1992).
Determining appropriate constraint regions is more dif-
ficult; we obtained a natural coordinate system using
principal components, and then constructed a bound-
ing box in this coordinate system. The box was grown
10% along each axis, on the understanding that none
of the colours in the Mondrians of Forsyth (1990) were
very deeply saturated. The red, green and blue receptor
responses are represented by numbers in the range zero
to one; we useσcc = 1/64, implying that only the top
six bits in each receptor response are reliable.

5. Assessing the Experimental Results

Sections 2 and 3 phrased two standard vision problems
as inference problems. These are quite nasty inference
problems, with large numbers of both continuous and
discrete variables. It is possible, as these sections indi-
cated, to extract a representation of the posterior from
these problems. Why do we believe that these repre-
sentations are helpful? and how well do they compare
with representations that other methods might offer?

Some cautions must be observed before making
comparisons. Firstly, it is important to apply a real-
ity check to the representations that the sampler pro-
duces, to determine if there is reason to believe that the
sampler has burnt-in. Secondly, comparing a represen-
tation of a posterior given some data with the result of
a method that reports a minimum error solution offers
no more than a perfunctory error check. This is because
the nature of the information produced by the two algo-
rithms is different. The meaningful comparison is with
other possible reports of the properties of the posterior.
Here, no “gold standard” tests are available; there are
no methods that are known to produce more accurate
representations of a posterior density against which we
can test a sampler. However, wecancompare the rep-
resentation produced by the sampler to methods that
are significantly cheaper computationally.

5.1. Reality Checks: Has the Sampler Burnt in and
is it Mixing?

There are convergence diagnostics for MCMC methods
(e.g. see Besag et al., 1995; Roberts, 1992), but these
can suggest convergence where none exists; it is easy to
produce a chain that can pass these tests without having
burnt in. Instead, we rely on general methods. Firstly,
we check to ensure that the sampler can move to a near-
maximal value of the posterior from any start position
within a reasonable number of moves. Secondly, we
check that the state of the sampler moves freely about
the domain that is represented. Third, we have built
various consistency checks into the experiments.

5.1.1. Structure from Motion. Figure 4 shows a se-
ries of samples drawn from the posterior for the struc-
ture from motion problem, with an indication of the
order in which the samples were drawn, indicating that
the sampler is mixing relatively well.

While the sampler’s mixing rate does appear to be
sufficient to give a reasonable estimate of structure of
the posterior around its mode, it is clear that the sam-
pler does not move around the whole domain freely.
This posterior contains a discrete symmetry; for any
fixed value of the mask bits, one can multiplyU by
a square root of the identity on the left andV by a
square root of the identity on the right, and obtain the
same value of the posterior. This creates no particular
difficulty in practice, because these solutions are very
widely isolated from one another. Our sampler does not
move from peak to peak, because the probability that
the hybrid method would obtain sufficient momentum
to cross the very large regions of very low probability is
effectively zero. This is in fact a desirable property; the
symmetry means that accurate estimates of the mean
value ofU andV would be zero.

Consistency checks:In general, we expect that a
sampler that is behaving properly should be able to
identify correspondence errors and produce a stable
representation. There are in fact a number of subtle
tracker errors in the hotel sequence. Figure 5 shows that
the sampler can identify these tracker errors. Figure 6
illustrates that large tracker errors, artificially inserted
into the dataset for this purpose, can be identified, too.

5.1.2. Colour Constancy. The sampler described
here has been run on many synthetic images where
“ground truth” is known, and in each case reaches a
small neighbourhood of ground truth from a randomly
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Figure 4. These plots illustrate the path taken through the state space by the structure from motion sampler. Each plot connects the position of
a given point in every tenth sample, starting at the 100th. The paths have been coded with a grey level for clarity; the early samples are light, and
the path moves through darker grey levels. The fact that these paths repeatedly cross themselves and return to the same regions suggests that the
sampler is mixing rather freely.

selected start point—i.e. “burns in”—within about
1000 samples. The experimental data shown below
suggests the sampler mixes well, because of the wide
spread on the marginal densities on the reflectances.

Consistency checks:The sampler is run on six im-
ages of the same scene, but the fact that these images
are of the same scene is not built into the model. The
spread of samples for surface reflectance coefficients
recovered for a particular surface in a particular image,
is quite wide (see Fig. 8). However, if we compare the
spread of samples for that surface for different images,
the clusters overlap. This means that the representa-
tion is correctly encoding the fact that these surfaces
could be very similar. In fact, as we shall see in Section
5.2, the representation encodes the fact that all surface
patches could be very similar.

5.2. Attractive Properties of Sampled
Representations

There are three attractive properties of the sampled rep-
resentations we have derived:

• they provide a covariance estimate for inferred state;
• they can be resampled to incorporate new infor-

mation;
• they appear to be stable to perturbations of the input

data set.

We describe these properties below.

5.2.1. Covariance. The samplers described produce a
representation of the posterior probability distribution,
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Figure 5. Two (cropped) frames from the hotel sequence showing a single sample reconstruction. Squares correspond to measurements with
mask bit one (i.e. the measurement of that point in that frame is believed correct); a white cross on a dark background corresponds to a
measurement with mask bit zero (i.e. the measurement of that point in that frame is believed incorrect); grey diamonds correspond to model
predictions. The extent to which a diamond is centered within a square gives the extent to which a model prediction is supported by the data. In
the right frame, at several locations the tracker has skipped to another feature for unknown reasons. In each case the reconstruction identifies the
data point as being erroneous, and reprojects to a point in a significantly different position from the measurement reported by the tracker and
lying where a correct measurement would be as seen by the position relative to the surface texture on the object.

given a data set. A particularly attractive feature is that
special datasets require no additional analysis. For ex-
ample, if every element in the image has the same
colour, we expect the colour constancy sampler to pro-
duce a very wide spread of samples for the surface
reflectance; similarly, if a structure from motion data
set is obtained by a camera translating in its plane,
the sampler will return a set of samples with substan-
tial variance perpendicular to that plane without further
ado. A second attractive feature is that both expecta-
tions and marginal probability distributions are easily
available: to compute an expectation of a function, we
average that function’s value over the samples, and to
compute a marginal, we drop irrelevant terms from the
state of each sample.

Figure 7 illustrates the kind of information a sam-
pler can produce for the structure from motion data; in

particular, the sampler reflects the scatter of possible
inferred values for a single point.

Figure 8 show a set of typical results a sampler
can produce from real images for the colour constancy
problem. The spatial model identifies edges correctly.
Groups of samples drawn for the same surface re-
flectance under different lights intersect, as we expect.
Furthermore, groups of samples drawn for different
surface reflectances under the same light tend not to in-
tersect, meaning that these surfaces are generally seen
as different. The figure shows a rendering of samples
under white light, to give some impression of the vari-
ation in descriptions that results.

5.2.2. Resampling to Incorporate New Information.
Assume that we are engaged in colour constancy. We
construct a representation of surface colour, and new
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Figure 6. We perturb the hotel sequence by replacing 5% of the data points with draws from a uniform distribution in the image plane. The
Bayesian method, started as in Section 5.4.1, easily discounts these noise points; the figure shows the same frames in the sequence as in Fig. 5,
uncropped to show the noise but with a sample reconstruction indicated using the same notation as that figure.Squares correspond to measurements
with mask bit one (i.e. the measurement of that point in that frame is believed correct); a white cross on a dark background corresponds to
measurements with mask bit zero (i.e. the measurement of that point in that frame is believed incorrect); grey diamonds correspond to model
predictions. The extent to which a diamond is centered within a square gives the extent to which a model prediction is supported by the data.

Figure 7. Black points show an overhead view of a single sample of the 3D reconstruction obtained using 40 frames of 80 points in the hotel
sequence, rotated by hand to show the right-angled structure in the model indicating that the structure is qualitatively correct; the cloud of grey
points are samples of the position of a single point, scaled by 1000 to show the (very small) uncertainty available in a single point measurement.

information arrives—what do we do? If the representa-
tion is probabilistic, the answer is (relatively) straight-
forward; we adjust our representation to convey the
posterior incorporating this new information. For ex-

ample, assume we have a sampled representation of the
posterior for two distinct images. We are now told that
a patch in one image is the same as a patch in another—
this should have an impact on our interpretation of both
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images. The sampled representation is well suited to
determining the effect of this information.

In particular, we have samples of

P(σa, state a| image a)

and

P(σb, state b| image b)

where we have suppressed the details of the rest of
the state in the notation. We interpret “the same” to
mean that each patch is a sample from a Gaussian dis-
tribution with some unknown meanα and a known
standard deviation. We would like to obtain samples
of

P(α, state a, state b| image a, image b)

(image a will be abbreviated as “im a”, etc.). Now we
have that

P(im a, im b| state a, state b, α)

is proportional to∫ (
P(im a, state a| σa)P(σa | α)×
P(im b, state b| σb)P(σb | α)

)
dσa dσbπ(α)

Now the term inside the integral is:

P(state a,σa, image a)

π(σa)
× P(state b,σb, image b)

π(σb)

× P(σb | α)P(σa | α)

We have two sets of samples,
∑a and

∑b. We en-
sure that these samples are independent and identically
distributed by shuffling them (to remove the corre-
lations introduced by MCMC). This means that, for
the conditional density for thei ’th sample, we have
P(
∑a

i | i )= P(state a, σa, image a). Now we con-
struct a new sampler, whose state is{i, j, α}. We ensure
this produces samples of the distribution

5(i, j, α) =

(
P(σa(i ) |α)×

P(σa( j ) |α)π(α)
)

π(σa(i ))π(σb( j ))

We now use thei ’s and j ’s as indexes to our previous set
of samples. We can marginalise with respect toσa and
σb by simply dropping their values from the sample.

The result is a set of samples distributed according to
the desired distribution:∫ (

P(im a, state a| σa)P(σa | α)×
P(im b, state b| σb)P(σb | α)

)
dσa dσbπ(α)

Building a sampler that obtains samples of{i, j, α}
space according to the desired distribution involves
technical difficulties beyond the scope of this paper.
The approach essentially chooses pairs consisting of a
sample from the set for image a and a sample from the
set for image b; these pairs are chosen with a frequency
that is higher when the values inferred for a particular
patch are similar. Of course, this trick extends to more
images.

Figure 8 shows results obtained by assuming that a
single surface patch in each of the six images is the
same. Typically, a small number of sets of samples
have a very much higher probability than all others, so
that a sampled representation consists of a large num-
ber of copies of these samples, interspersed with one
or two others. This results in very much reduced vari-
ance in the rendering of the patch that is known to be
similar for the six images, because the error balls for
this surface patch intersect in a relatively small region.
However, this doesnot mean that the variance for the
inferred reflectances for the other patches must be re-
duced. It is reduced (Fig. 8), but this is because the
representations recovered for each separate input im-
age (correctly) captures the possibility that each of the
surface patches is the same. This is another important
reality check that strongly suggests the sampled rep-
resentation is trustworthy: the algorithm has been able
to use information that one patch is the same in each
image to obtain a representation that strongly suggests
the other patches are the same, too.

5.2.3. Stability of the Recovered Representations.
Reconstructions cannot be compared on the basis of
accuracy, because “ground truth” is not available.
However, we can demonstrate that sampled represen-
tations are stable under various perturbations of their
input. In structure from motion, small errors in tracker
response for some points could lead to significant per-
turbations of the reconstruction for all points, because
the reconstructed point positions are not independent—
they are coupled by the reconstructed camera configu-
rations.

Small errors in tracker response actually occur: in
the 40 frames of the hotel sequence that we used,
six point measurements in nine frames are affected



126 Forsyth, Haddon and Ioffe



The Joy of Sampling 127

by small tracker errors as shown in Fig. 5. These
(very small) errors affect the reconstruction obtained
using the factorisation method because the factorisa-
tion of a matrix is a function of all its entries (or equiv-
alently, the reconstructed point positions are coupled
by the reconstructed camera configurations).

To compare the stability of the methods, we now
introduce larger tracker errors; a small percentage of
data points, randomly selected, are replaced with draws
from a uniform distribution on the image plane. If these
points are included in the factorisation, the results are
essentially meaningless. To provide a fair comparison,
we use factorisations obtained using the method of Sec-
tion 5.4.1 (these are the start points of our sampler).
These reconstructions are guaranteed to ignore large
error points but will ignore a significant percentage of
the data.

In comparison, the sampler quickly accretes all
points consistent with its model, and so gives sig-
nificantly more stable measurements (cf Torr and
Zisserman, 1998, which uses maximum likelihood to
identify correspondences). Because the reconstruction
is in some unknown scaled Euclidean frame, recon-
structions are best compared by comparing angles sub-
tended by corresponding triples of points, and by com-
paring distances between corresponding points scaled
to minimize the errors. The sampled representation is
significantly more stable under tracker errors and noise
than a factorisation method (Figs. 9 and 10).

←
Figure 8. A: images of the same set of patches on a Mondrian of coloured paper patches, photographed under white, blue, purple, red,
aqua and yellow light and scanned from Forsyth (1990), used as inputs to the sampler.B: renderings of typical representations obtained by
the sampler, in each case shown under the coloured light inferred (so that in a successful result, the inferred representation looks like the image
above it). Note the accuracy of the spatial model, and the robustness to image noise.C: renderings of typical representations under the same
(white) light, so that a successful result implies similar renderings.D: The first two components of surface reflectance samples, plotted on
the same axes for four different surfaces. Each sample is colour keyed to the image from which it was obtained; red samples for the red image,
etc, with black corresponding to the white image. The circles show samples of the reflectance coefficients for the blue surface at the top left
corner of the Mondrian; the stars for the yellow surface in the second row; the plusses show samples for the orange surface in the top row of the
Mondrian and the crosses for the red surface in the bottom row. Each surface generates a “smear” of samples, which represent the uncertainty in
the inferred surface reflectance, given the particular image input. There is an important consistency check in this data. Notice that the smear of
samples corresponding to a particular surface in one image intersects, but is not the same as, the smear corresponding to that surface in another.
This means that the representation envisages the possibility of their being the same, but does not commit to it.E: The first two components of
surface reflectance samples, plotted on the same axes for four different surfaces. These come from the samples shown as D, resampled under
the assumption that the blue surface in the top left hand corner of the Mondrian is the same for each image. We use the same representation and
axes as in that figure. Notice that this single piece of information hugely reduces the ambiguity in the representation.F: Samples of reflectances
returned for each patch on the Mondrian using the images shown as A (above), under each light, rendered under white light. There are four
hundred samples per patch and per illuminant, each rendered as a small square; thus, a patch for which there is very little information shows a
salt-and-pepper style texture. The rows show samples for the same patch under different illuminants; each column corresponds to an illuminant
(in the order aqua, blue, purple, red, white and yellow). Notice the very substantial variation in appearance; white pixels denote samples which
saturated. Notice also that for each patch there are samples that look similar.G: The samples obtained when all samples are resampled, assuming
that the right (blue) patch is the same patch in each image.H: The samples obtained when all samples are resampled, assuming that the sixth
(yellow) patch is the same patch in each image. Notice the substantial reduction in variance; while this constraint does not force the other patches
to look the same, they do because they are in fact the same surface.

5.3. Comparing Different Algorithms for Obtaining
Covariance Estimates

Probability distributions are devices for computing ex-
pectations. Computing an expectation is an integration
problem; for high dimensional problems like those de-
scribed here, “the curse of dimensionality” applies, and
quadrature methods are not appropriate (e.g. the review
of numerical integration methods in Evans and Swartz
(2000). This leaves us with two possibilities: a random
or quasi-random method, or an analytic approximation
to the integral. Applying quasi-random methods to the
problems described here appears to pose substantial
technical difficulties; we refer the interested reader to
Evans and Swartz (2000) and Traub and Werschulz
(1999).

The analytic approximation most currently used in
computer vision is based on Laplace’s method (de-
scribed in Evans and Swartz (2000) and in the form
we use it in Ripley (1996, p. 63); we shall call the ap-
proximation Laplace’s method in what follows). This
approach models a unimodal posterior distribution with
a normal distribution, whose mean is at the mode of the
posterior and whose covariance matrix is the inverse of
the Hessian of the posterior at the mode. In essence,
the approximation notes that the main contribution to
an expectation computed using a “peaky” probability
distribution is at the mode; the contribution of the tails
is estimated by the Hessian at the mode.
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Figure 9. The factorisation method is relatively unstable under noise. We compare reconstructions obtained from the uncorrupted data set with
reconstructions obtained when 5% of the entries inD are replaced with draws from a uniform distribution in the image plane; to represent the
factorisation method fairly, we use the start points obtained using the algorithm of Section 5.4.1 (which masks off suspect measurements).Left
shows a histogram of relative variations in distances between corresponding pairs of points andright shows a histogram of differences in angles
subtended by corresponding triples of points. Note the scales—some interpoint distances are misestimated by a factor of 3, and some angles are
out byπ/2.

Figure 10. The Bayesian method is stable under noise. We compare reconstructions obtained from the uncorrupted data set with reconstructions
obtained when 5% of the entries inD are replaced with draws from a uniform distribution in the image plane.Leftshows a histogram of relative
variations in distances between corresponding pairs of points andright shows a histogram of differences in angles subtended by corresponding
triples of points. Note the significant increase in stability over the factorisation method; relative errors in distance are now of the order of 10%
and angular errors are of the order ofπ/40.

Laplace’s method is a natural linearisation, and has
been used for estimates of covariance in the struc-
ture from motion literature (Morris and Kanade, 1998).
However, as Fig. 11 indicates, the estimates it produces
can differ substantially from the estimates produced by
a sampler. As we have seen (Section 5.1), the sampler
appears to mix acceptably, so this is not because the
samples significantly understate the covariance (com-

pare Fig. 11 with Fig. 4, which shows the order in
which samples were drawn for the samples of Fig. 11).
Instead, it is because Laplace’s method approximates
the probability density function poorly.

This is because the log of the posterior consists
largely of terms of degree four. In such cases, the
Hessian can be a significantly poor guide to the struc-
ture of the log-posterior a long way from the mode.
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Figure 11. We compare the sampled representation of the posterior for the structure from motion problem with a representation obtained
using an analytic approximation. Each of the six plots depict three different estimates of marginal posterior probabilities for point position in
a plane parallel to the optical axis. (The points are the same points as in Fig. 4.) Samples are shown as a scatter plot. In each case, the one
standard deviation ellipse for the covariance estimate obtained from Laplace’s approximation is the largest of the three shown, and substantially
overestimates covariance; its orientation is often misleading, too (it is plotted in light grey). In each case, the second largest ellipse is the one
standard deviation ellipse obtained using Laplace’s approximation and assuming that point and camera positions are independent; this is still
an overestimate, but is a better estimate than that from Laplace’s approximation (it is plotted in dark grey). Finally, the smallest ellipse in each
case is obtained from the sample mean and covariance (it is plotted with the darkest grey). Laplace’s approximation appears to significantly
overestimate the covariance; this is almost certainly because the Hessian at the mode is a poor guide to the behaviour of the tails of the posterior
for this problem.

In particular, it overestimates the weight of the tails
and therefore overestimates the covariance. This is be-
cause it is a purely local estimate of the structure of
the posterior—we cannot rely on the second derivative
of a function at a point necessarily to convey helpful
information about what the function is doing a long
way away from that point. In comparison, each sample
involves (at least!) a comparison of values of the pos-
terior at that sample and at the previous sample, so that
the samples are not relying on a local estimate for the
structure of the posterior.

No really useful comparison is available for the
case of colour constancy. All current colour con-

stancy algorithms report either exact solutions, or mini-
mum error solutions. Laplace’s method should produce
absurd covariance estimates, because the domain of
integration is heavily truncated by the constraints of
Section 3—the tails make no contribution, and it is un-
reasonable to expect a sensible approximation from the
method.

5.4. Speed

Both samplers are relatively slow. Samples take longer
to draw for the structure from motion problem (2000
samples for 40 views of 80 points in about a day on a
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300 MHz Macintosh G3 system in compiled Matlab)
than for the colour constancy problem (1000 samples
in an hour in compiled Matlab on the same computer).
While this is irritatingly slow, it does not disqualify
the technology. In particular, it is important to keep in
mind that cheaper technologies—the Laplace approxi-
mation estimate of covariance in Section 5.3 comes to
mind—may offer significantly inaccurate representa-
tions. There are several possibilities for speedups:

• An intelligent choice of start point: there is no par-
ticular reason to start these samplers at a random start
point and then wait for the gradient descent compo-
nent of hybrid MCMC to find the mode. Instead,
we can start the sampler at a decent estimate of the
mode; we describe relevant methods below.
• A faster mixing rate: generally, the better a sam-

pler mixes the fewer samples one needs to draw, be-
cause the samples increasingly mimic IID samples.
It isn’t clear how to build a truly fast-mixing sampler.
The best strategy appears to be to use image data to
structure the proposal distribution (as in Section 3
and Zhu et al., 2000), but there are no proofs that
this leads to a fast-mixing sampler.
• Lower per-sample cost: it is unlikely that a de-

cent representation of covariance will be available
with fewer than 1000 samples. This means that each
sample should be cheap to obtain. Current possi-
bilities include: a faster integrator in the hybrid
MCMC method (we used a symplectic Runge-Kutta-
Nystrom method from Sanz-Serna and Calvo, 1994,
with no effort to choose the fastest overall integra-
tor); a grouping of the variables that allows an effi-
cient Gibbs sampler (separating cameras and points
leads to a standard form but a sampler that makes
only minuscule changes of state for each sample, for
the reason illustrated in Fig. 1); and fitting a Gaussian
at each sample and using this Gaussian to propose a
new state.1

5.4.1. Starting the SFM Sampler. The sampler’s
state is given by(U,V,M). We show examples for
(m, n)= (40, 80) and(m, n)= (24, 100). This means
the domain of the sampler is then 23200 (resp. 22400)
copies of<640 (resp.<592). The relations between the
discrete and the continuous variables are complex; for
small errors, a sampler started at a random point burns
in relatively quickly, but for large errors, the burn in
can be very slow.

The values ofU andV depend strongly onM. If
M has a 1 in aposition corresponding to a signifi-

cant tracker error, then that error can strongly affect
the values ofU and V. This effect slows down the
convergence of the sampler, because incorrect values of
the continuous parameters mean that many data points
lie a long way from the values predicted by the model,
so that there is little distinction between points that
correspond to the model and points that do not.

We start the sampler at a fair initial estimate of the
mode. We obtain an initial value for the maskMa by
sampling an independent distribution on the bits that
tends to deemphasize points which are distant from
corresponding points in the previous and next frames.
In particular, thei , j ’th bit ofMa is 0 with probability
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problem where the quantity of data swamps the number
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unimportant; the main issue is to choose the value to
be small enough that large tracker errors are masked
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are then obtained by a sweep algorithm which fixes
U (resp. V) and solves the linear system forV
(resp.U), and then swaps variables; the sweeps con-
tinue until convergence (which is guaranteed). We
now compute an affine transformationA such that
CT (UaA,A−1Va)C(Ua A, A−1Va) is minimised;
thenUs=UaA andVs=A−1Va. We now draw a sam-
ple from the full conditional on each bit in the mask
matrix, givenUs andVs to obtainMs The start state
is then(Us, Vs, Ms).

5.4.2. Starting the Colour Constancy Sampler.The
sampler converges if started from a random sample
from the prior, but this is slow and unnecessarily in-
efficient. A good guess at edge positions follows by
choosing a set of edges at maxima of the edge proposal
distributions, censored to ensure the hardcore model
applies. Similarly, a start point for the light position
follows by choosing the maximum likelihood position
from the proposal distribution; once the specular posi-
tion is known, an estimate of illuminant colour follows.
Finally, for each patch we obtain a reflectance estimate
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from the average colour within the patch and the illu-
minant colour. This yields a start point from which the
sampler converges relatively quickly.

6. Discussion—Ups and Downs
of Sampling Methods

Good samplers are fast, burn in quickly, and mix well.
It can be proven that some samplers are good (at least
in theory) and some are obviously bad; most are merely
mysterious as to their behaviour. It is possible to build
samplers that yield representations that pass a wide
range of sanity checks, and some of these are fairly
fast. This is probably the best that can be hoped for in
the near future.

6.1. Points in Favour of Using Sampled
Representations

There are several points in favour of using sampled
representations: The strongest is thesimple manage-
ment of uncertainty that comes with such methods.
Once samples are available, managing information is
simple. Computing expectations and marginalization,
both useful activities, are particularly easy. Incorporat-
ing new information is,in principle, simple. The output
of a properly built sampler is an excellent guide to the
inferences which can be drawn and to the ambiguities
in a dataset. For example, in Fig. 7, we show uncer-
tainty in the position of a single point in space (deter-
mined by a structure from motion method) as a result
of image noise. No independence assumptions are re-
quired to obtain this information; furthermore, we are
not required to use specialised methods when the cam-
era motion is degenerate—if, for example, the camera
translates within a plane, the effect will appear in scat-
ter plots that vary widely along the axis perpendicular
to the plane.

The main benefit that results is simpleinformation
integration. Building vision systems on a reasonable
scale requires cue integration; for example, what hap-
pens if colour reports a region is blue, and shape says
it’s a fire engine? this contradiction can only be re-
solved with some understanding of the reliability of the
reports. A properly-built Bayesian model incorporates
all available information, and is particularly attractive
when natural likelihood and prior models are available
(e.g. examples in Sections 2 and 3). In principle, sam-
pling can work for arbitrary posteriors.

Another feature of sampled methods is that they can
handlecomplex spatial models. The main difficulty
with such models is domains with complicated topolo-
gies. For example, it is simple to deal with a domain
which consists of many components of different dimen-
sion (Green, 1995). This means that a spatial model can
be part of the posterior. For example, in Section 3, we
model the layout of a Mondrian as a grid of rectangles,
where neither the position nor the number of the hori-
zontal and vertical edges of the grid are known. Instead,
these are inferred from data. This offers the prospect
of unifying information about coherence, spatial lay-
out and model appearance by performing segmentation
with explicit spatial models. Sampling methods are a
standard approach to performing inference using spa-
tial models (Geyer, 1999; Moller, 1999).

6.2. The Problems with Samplers

While samplers are in principle generic, in practice
building a good sampler requires a significant degree
of skill. The number of samples requiredcan be very
large. Vision problems typically consist of large num-
bers of discrete and continuous variables. If a posterior
is a complicated function of a high dimensional space,
with many important modes, an extremely large num-
ber of samples may be required to support any use-
ful representation (either as samples, or as a mixture
model or some other simplified parametric model fit-
ted to samples). However, for most well phrased vision
problems, we expect to see a small number of quite
tight modes in the posterior, suggesting that the rele-
vant portion of the posterior could be represented by
manageable numbers of samples; furthermore, an ac-
curate representation of tails is a less significant need
than a reasonable description of the modes.

Samplers are currently relativelyslow. However, it
is possible to build samplers that are fast enough that
useful solutions to real vision problems can be obtained
in reasonable amounts of time. Generally, the prospect
of understanding how to buildbettersystems precedes
understanding how to buildfastersystems.

Sampled representations have a claim touniversal-
ity . Any conceivable representation scheme appears
to rest on the presence of samples. For example, one
might wish to approximate a posterior as a mixture
model. To do so, one can either fit the model to a set
of samples, or compute various integrals representing
the error; but good numerical integrators in high di-
mensions are based on sampling methods of one form
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or another. This suggests that, unless a problem can be
persuaded to take a series of manageable parametric
forms for which deterministic algorithms for comput-
ing fits are available, one is stuck with the difficulties
that come along with sampling methods.

Vision problems often have a form that iswell
adapted to sampling methods. In particular, there is
usually a preponderance of evidence, meaning that the
posterior should have few, large, well-isolated peaks,
whose location can be estimated. Furthermore, it is
commonly the case that computer vision algorithms
can compute values for some variables given others are
known. The Metropolis-Hastings algorithm gives a
framework within which such algorithms can be in-
tegrated easily, to produce a series of hypotheseswith
meaningful semantics.

Samplers are poorly adapted to problems that lead to
large domains which have essentially uniform prob-
ability . This might occur, for example, in an MRF
model where there may be a very large number of
states with essentially the same, near-maximal, pos-
terior probability, because each is a small number of
label-flips away from the extremum. The difficulty is
not the sampler, but the representation it produces. It
is quite easy to set up examples that require very large
numbers of samples to represent these regions, partic-
ularly if the dimension of the domain is large. A fair
case can be made that such problems should properly
be reparametrised (perhaps by imposing a parametric
form) whatever strategy is to be adopted for address-
ing them: firstly, because large domains of essentially
uniform probability suggest that some problem param-
eters don’t have any significant effect on the outcome;
secondly, because estimates of the mode will be ex-
tremely unstable; and thirdly, because any estimator
of an expectation for such a problem must have high
variance.

When can samples be trusted?Typically, the first
k samples must be discarded to allow the sampler to
“burn in”. The rest represent the posterior; but what is
k?. The usual approach is to start different sequences at
different points, and then confirm that they give compa-
rable answers (e.g. Gelman and Rubin, 1993; Geweke,
1992; Roberts, 1992). Another approach is to prove
that the proposal process has rapid mixing properties
(which is extremely difficult, e.g. Jerrum and Sinclair,
1996). Rapid mixing is desirable, because the faster
the sampler mixes, the lower the variance of expecta-
tions estimated using samples (Geyer, 1999). The only
mechanism available for many practical problems is

to structure one’s experimental work to give checks
on the behaviour of the sampler. For example, in the
work on structure from motion the sampler was able to
identify bad measurements and gave stable reconstruc-
tions (Section 5.2); similarly, in the work on colour
constancy the resampling algorithm correctly reduced
the variance in the inferred colour of other patches
when informed that some patches had the same colour
(Section 5.2).

6.3. Reasons to be Cheerful

Interesting vision problems are well-behaved enough
to make samplers quite practical tools. Firstly, in most
vision problems there is an overwhelming quantity of
data compared to the number of parameters being stud-
ied; as a result, it is usual to expect that the posterior
might have a very small number of quite well-peaked
modes, so that exploration of the domain of the sam-
pler can be restricted to small subsets. Secondly, there
is a substantial body of algorithms that make good es-
timates at the position of these modes (e.g. derivative
filters estimating the position of edges; factorisation
estimating structure and motion; etc.), so that a sam-
pler can be started at a good state. Finally, many vision
problems display a kind of conditional independence
property that allows a large problem to be decomposed
into a sampling/resampling problem (e.g. Section 3,
and Ioffe and Forsyth, 1999).
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