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Abstract.
This paper demonstrates an automatic system for telling whether there are human nudes present in an

image. The system marks skin-like pixels using combined color and texture properties. These skin regions
are then fed to a specialized grouper, which attempts to group a human figure using geometric constraints
on human structure. If the grouper finds a sufficiently complex structure, the system decides a human is
present. The approach is shown to be effective for a wide range of shades and colors of skin and human
configurations. This approach offers an alternate view of object recognition, where an object model is an
organized collection of grouping hints obtained from a combination of constraints on color and texture
and constraints on geometric properties such as the structure of individual parts and the relationships
between parts. The system demonstrates excellent performance on a test set of 565 uncontrolled images
of human nudes, mostly obtained from the internet, and 4289 assorted control images, drawn from a wide
variety of sources.

Keywords: Object Recognition, Computer Vision, Erotica/Pornography, Internet, Color, Content
Based Retrieval.

Several typical collections containing over ten
million images are listed in [16]. In the most com-
prehensive field study of usage practices (a paper
by [16] surveying the use of the Hulton Deutsch
collection), there is a clear user preference for
searching these collections on image semantics;
typical queries observed are overwhelmingly ori-
ented toward object classes (“dinosaurs,” p. 40,
“chimpanzee tea party, early,” p. 41) or instances
(“Harry Secombe,” p. 44, “Edward Heath ges-

ticulating,” p. 45). An ideal search tool would
be a quite general recognition system that could
be adapted quickly and easily to the types of ob-
jects sought by a user. The primary recognition
problem in this application is finding, where the
image components that result from a single object
are collected together (rather than naming, where
the particular name of a single isolated object is
determined).

The technology does not exist to build programs
that can find images based on complex semantic
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Fig. 1. The grouping rules (arrows) specify how to assemble simple groups (e.g. body segments) into complex groups (e.g.
limb-segment girdles). These rules incorporate constraints on the relative positions of 2D features, induced by constraints
on 3D body parts. Dashed lines indicate grouping rules that are not yet implemented, but suggest the overall structure of
the kind of model we are advocating. A complete model would contain information about a variety of body parts; occlusion
and aspect information is implicit in the structure of the paths through the grouping process.

notions of content (“the pope, kissing a baby”)
with high recall. However, there are many appli-
cations where low recall is not a problem. In the
Enser study of a stock photo agency, for example,
requesters are seldom burdened with more than
10 pictures, whatever the subject matter. As an-
other example, consider filtering internet connec-
tions for offensive images; as long as a manager
can be reasonably certain that any protracted flow
of such images will result in an alarm — say 50%
recall — the tool is usable. Usually, low precision
is a greater problem because it will confuse and
annoy a user.

Determining whether an image contains a hu-
man nude is a natural problem: this is a form of se-
mantic content which produces strong cultural re-
sponses; marking such images based on textual or
contextual cues can be embarassingly unreliable1;
it is a difficult recognition problem, which stresses
abstraction over geometric matching; and there is
some prospect of producing a usable solution.

1. Background

There is an extensive literature on finding images
using features such as colour histograms, texture
measures and shape measures (e.g. [1, 19, 21, 25,

27, 32, 33, 38, 39, 42, 48, 54, 65, 66, 67, 68, 72]).
Typically, work in this area considers whole image
matches rather than semantic (“a fish is present”)
matches (with the exception of the face match-
ing module in Photobook [53]). This is largely
because current object recognition methods can-
not handle the demands presented by semantic
queries.

Current approaches to recognition rely on de-
tailed geometric models (e.g. [17, 22, 26, 31, 35, 40,
43, 44, 59, 60, 69, 70, 71]) or on parametric fami-
lies of templates (e.g. [34, 45, 46, 55, 62, 63, 56]).
For more complex objects, models consist of com-
posites of primitives, which are themselves either
parametric families of templates (e.g. [13, 30, 37,
49, 57]) or surfaces chosen from “nice” families
(e.g. [8, 9, 12, 41, 47]).

Modelling humans and animals as assemblies
of cylinders has an established history (for exam-
ple, [15, 23, 29, 50, 58, 60, 11]). Early work by
Marr and Nishihara [41] viewed recognition of hu-
mans as a process of obtaining cylinders at a vari-
ety of scales; at the coarsest scale, the whole form
would be a cylinder; at finer scales, sub-assemblies
would emerge. Their approach assumes that only
the components of the image corresponding to the
person sought actually contribute to this process –
i.e. that finding has already occurred.
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Limbs

Fig. 2. A configuration that is prohibited by geometric
constraints on assembling groups. The dashed line repre-
sent the girdle. Neither arms nor legs can be configured to
look like this. There are configurations that are possible
for the one girdle, but not the other.

Other systems group regions into stick figures
using reasoning about gravity [36] or knowledge
about the background [7, 73]. Gesture recognition
is now widely studied; constraints on the colour of
skin are commonly exploited [3, 4, 6, 64], though
we are not aware of any use of texture constraints.
Advanced template matching strategies work ex-
tremely well at finding faces [52, 62, 63, 56] and
standing pedestrians (who have a characteristic
“lollipop-like” appearance [51]).

Our application highlights the problems created
by attempting to identify objects primarily on the
basis of material properties. Although color and
texture are useful aids in identifying an object, its
shape must also be correct. As the results below
show, it is insufficient to search for nudes by look-
ing for skin alone; the skin needs to be in pieces of
the right shape, which are attached to one another
in the right ways. We therefore detect nudes by:

1. determining which images contain large areas
of skin-colored pixels;

2. within skin colored regions, finding regions
that are similar to the projection of cylinders;

3. grouping skin coloured cylinders into possible
human limbs and connected groups of limbs.

Images containing sufficiently large skin-colored
groups of possible limbs are then reported as con-
taining nudes.

2. Finding Skin

The color of human skin results from a combina-
tion of blood (red) and melanin (yellow, brown)
[61]. Human skin has a restricted range of hues
and is not deeply saturated. Because more deeply
colored skin is created by adding melanin, one
would expect the saturation to increase as the
skin becomes more yellow, and this is reflected in
our data set. Finally, skin has little texture; ex-
tremely hairy subjects are rare. Ignoring regions
with high-amplitude variation in intensity values
allows the skin filter to eliminate more control im-
ages.

Detection of skin is complicated by the fact
that skin’s reflectance has a substantial non-
Lambertian component. It often (perhaps typ-
ically) has bright areas or highlights which are
desaturated. Furthermore, the illumination color
varies slightly from image to image, so that some
skin regions appear as blueish or greenish off-
white. We have not encountered internet images
which show skin with strong skews in hue derived
from illumination. We believe that information
providers manually enhance their images to avoid
these effects, which are notably unaesthetic.

2.1. Color and texture processing

The skin filter starts by subtracting the zero-
response of the camera system, estimated as the
smallest value in any of the three color planes
omitting locations within 10 pixels of the image
edges, to avoid potentially significant desatura-
tion. The input R, G, and B values are then
transformed into log-opponent values I, Rg, and
By (cf. e.g. [24]) as follows:

L(x) = 105 log10(x+ 1 + n)

I = L(G)

Rg = L(R) − L(G)

By = L(B) −
L(G) + L(R)

2

The green channel is used to represent intensity
because the red and blue channels from some cam-
eras have poor spatial resolution. In the log trans-
formation, 105 is a convenient scaling constant
and n is a random noise value, generated from
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a distribution uniform over the range [0, 1). The
random noise is added to prevent banding arti-
facts in dark areas of the image. The log trans-
formation makes the Rg and By values intensity
independent.

Next, smoothed texture and color planes are ex-
tracted. The Rg and By arrays are smoothed with
a median filter. To compute texture amplitude,
the intensity image is smoothed with a median
filter, and the result subtracted from the original
image. The absolute values of these differences are
run through a second median filter. The resulting
values are a type of median absolute deviation es-
timate of variation (see [28]). These operations
use a fast multi-ring approximation to the median
filter [18].

The texture amplitude and the smoothed Rg
and By values are then passed to a tightly-tuned
skin filter. It marks as probable skin all pixels
whose texture amplitude is small, and whose hue
and saturation values are appropriate. (Hue and
saturation are simply the direction and magnitude
of the vector (Rg, By).) The range of hues consid-
ered to be appropriate changes with the satura-
tion, as described above. This is very important
for good performance. When the same range of
hues is used for all saturations, significantly more
non-skin regions are accepted.

Because skin reflectance has a substantial spec-
ular component, some skin areas are desaturated
or even white. Under some illuminants, these ar-
eas appear as blueish or greenish off-white. These
areas will not pass the tightly-tuned skin filter,
creating holes (sometimes large) in skin regions,
which may confuse geometrical analysis. There-
fore, the output of the initial skin filter is ex-
panded to include adjacent regions with nearly
appropriate properties.

Specifically, the region marked as skin is en-
larged to include pixels many of whose neighbors
passed the initial filter (by adapting the multi-ring
median filter). If the resulting marked regions
cover at least 30% of the image area, the image
will be referred for geometric processing. Finally,
the algorithm unmarks any pixels which do not
satisfy a less tightly tuned version of the hue and
saturation constraints.

3. Grouping People

The human figure can be viewed as an assembly
of nearly cylindrical parts, where both the indi-
vidual geometry of the parts and the relationships
between parts are constrained by the geometry of
the skeleton and ligaments. These constraints on
the 3D parts induce grouping constraints on the
corresponding 2D image regions. These induced
constraints provide an appropriate and effective
model for recognizing human figures.

The current system models a human as a set
of rules describing how to assemble possible gir-
dles and spine-thigh groups (Figure 1). The in-
put to the geometric grouping algorithm is a set
of images in which the skin filter has marked ar-
eas identified as human skin. Sheffield’s version
of Canny’s [14] edge detector, with relatively high
smoothing and contrast thresholds, is applied to
these skin areas to obtain a set of connected edge
curves. Pairs of edge points with a near-parallel
local symmetry [10] are found by a straightforward
algorithm. Sets of points forming regions with
roughly straight axes (“ribbons” [12]) are found
using an algorithm based on the Hough transform.
The number of irrelevant symmetries recorded is
notably reduced by an assumption that humans
in test images will appear at a relatively small
range of scales; this assumption works fairly well
in practice2 but appears to limit performance.

Grouping proceeds by first identifying poten-
tial segment outlines, where a segment outline is
a ribbon with a straight axis and relatively small
variation in average width. Ribbons are checked
to ensure that (a) their interior contains mostly
skin-coloured pixels, and (b) that intensity cross-
sections taken perpendicular to the axis of the rib-
bon are similar from step to step along the axis.
While this approach is successful at supressing
many false ribbons, the local support of the inten-
sity test means that ribbons that contain texture
at a fairly coarse scale (with respect to the size of
the ribbon) are not rejected; as figure 8 indicates,
this is a significant source of false positives.

Ribbons that may form parts of the same seg-
ment are merged, and suitable pairs of segments
are joined to form limbs. An affine imaging model
is satisfactory here, so the upper bound on the as-
pect ratio of 3D limb segments induces an upper
bound on the aspect ratio of 2D image segments
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Fig. 3. Typical control images. The images in the first row are incorrectly classified as containing nudes; those in the
second row pass the skin test, but are rejected by the geometric grouping process; and those in the third row are rejected
by the skin test.

corresponding to limbs. Similarly, we can derive
constraints on the relative widths of the 2D seg-
ments.

Specifically, two ribbons can only form part of
the same segment if they have similar widths and
axes. Two segments may form a limb if: search in-
tervals extending from their ends intersect; there
is skin in the interior of both ribbons; their aver-
age widths are similar; and in joining their axes,
not too many edges must be crossed. There is no
angular constraint on axes in grouping limbs. The
output of this stage contains many groups that do
not form parts of human-like shapes: they are un-
likely to survive as grouping proceeds to higher
levels.

The limbs and segments are then assembled into
putative girdles. There are grouping procedures
for two classes of girdle, one formed by two limbs,
and one formed by one limb and a segment. The
latter case is important when one limb segment
is hidden by occlusion or by cropping. The con-

straints associated with these girdles are derived
from the case of the hip girdle, and use the same
form of interval-based reasoning as used for as-
sembling limbs.

Limb-limb girdles must pass three tests. The
two limbs must have similar widths. It must be
possible to join two of their ends with a line seg-
ment (the pelvis) whose position is bounded at
one end by the upper bound on aspect ratio, and
at the other by the symmetries forming the limb
and whose length is similar to twice the average
width of the limbs. Finally, occlusion constraints
rule out certain types of configurations: limbs in
a girdle may not cross each other, they may not
cross other segments or limbs, and there are for-
bidden configurations of limbs (see figure 2). A
limb-segment girdle is formed using similar con-
straints, but using a limb and a segment.

Spine-thigh groups are formed from two seg-
ments serving as upper thighs, and a third, which
serves as a trunk. The thigh segments must have
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similar average widths, and it must be possible
to construct a line segment between their ends to
represent a pelvis in the manner described above.
The trunk segment must have an average width
similar to twice the average widths of the thigh
segments. The grouper asserts that human figures
are present if it can assemble either a spine-thigh
group or a girdle group.

4. Experimental protocol

The performance of the system was tested using
565 target images of nudes and 4302 assorted con-
trol images, containing some images of people but
none of nudes. Most images encode a (nominal)
8 bits/pixel in each color channel. The target
images were collected from the internet and by
scanning or re-photographing images from books
and magazines. They show a very wide range of
postures and activities. Some depict only small
parts of the bodies of one or more people. Most
of the people in the images are Caucasians; a
small number are Blacks or Asians. Images were
sampled from internet newsgroups3 by collecting
about 100-150 images per sample on several oc-
casions. The origin of the test images was not
recorded4 . There was no pre-sorting for content;
however, only images encoded using the JPEG
compression system were sampled as the GIF sys-
tem, which is also widely used for such images,
has poor color reproduction qualities. Test images
were automatically reduced to fit into a 128 by 192
window, and rotated as necessary to achieve the
minimum reduction.

It is hard to assess the performance of a sys-
tem for which the control group is properly all
possible images. In particular, obvious strategies
to demonstrate weaknesses in performance may
fail. For example, images of clothed people, which
would confuse the grouper, fail to pass the skin
test and so would form a poor control set. Fur-
thermore, a choice of controls that deliberately im-
proves or reduces performance complicates assess-
ing performance. The only appropriate strategy
to reduce internal correlations in the control set
appears to be to use large numbers of control im-
ages, drawn from a wide variety of sources. To
improve the assessment, we used seven types of
control images (figure 3):

• 1241 images sampled5 from an image database
originating with the California Department
of Water Resources (DWR), showing environ-
mental material around California, including
landscapes, pictures of animals, and pictures
of industrial sites;

• 58 images of clothed people, a mixture of Cau-
casians, Blacks, Asians, and Indians, largely
showing their faces, 3 re-photographed from
a book and the rest photographed from live
models at the University of Iowa;

• 44 assorted images from a photo CD that
came with a copy of a magazine [2];

• 11 assorted personal photos, re-photographed
with our CCD camera;

• 47 pictures of objects and textures taken in
our laboratory for other purposes;

• 1200 pictures, consisting of the complete con-
tents of a series of CD-ROM’s in the Corel
stock photo library (titles in the appendix);

• 41 images from CD-ROM 135000 (bald eagles)
in the Corel stock photo library;

• 1660 pictures, consisting of the every fifth im-
age from a series of CD-ROM’s in the second
edition of the Corel stock photo library (see
the appendix for titles).

The DWR images and Corel images were avail-
able at a resolution of 128 by 192 pixels. The im-
ages from other sources were automatically resized
(and, if necessary, rotated) to obtain the minimum
reduction that fit the image into a block this size.
On thirteen of these images, our code failed due to
implementation bugs. Because these images rep-
resent only a tiny percentage of the total test set,
we have simply excluded them from the following
analysis. This reduced the size of the final control
set to 4289 images.

5. Experimental results

Our algorithm can be configured in a variety of
ways, depending on the complexity of the assem-
blies constructed by the grouper. For example,
the process could report a nude is present if a skin-
colored segment was obtained, or if a skin-colored
limb was obtained, or if a skin-colored spine or
girdle was assembled. Each of these alternatives
will produce different performance results. Before
running our tests, we chose as our primary con-
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Fig. 4. Typical images correctly classified as containing nudes. The output of the skin filter is shown, with spines overlaid
in red, limb-limb girdles overlaid in green, and limb-segment girdles overlaid in blue. Notice that there are cases in which
groups form quite good stick figures; in which the groups are wholly unrelated to the limbs; in which accidental alignment
between figures and background cause many highly inaccurate groups; and in which other body parts substitute for limbs.
Assessed as a producer of stick figures, the grouper is relatively poor, but as the results below show, it makes a real
contribution to determining whether people are present.

figuration, a version of the grouper which requires
that a girdle or spine group be present for a nude
to be reported. All example images shown in fig-
ures were chosen using this criterion. For compar-
ison, we have also included summary statistics for
several other configurations of the grouper.

In information retrieval, it is traditional to de-
scribe the performance of algorithms in terms of
recall and precision. The algorithm’s recall is the
percentage of test items marked by the algorithm.
Its precision is the percentage of test items in its
output. Unfortunately, the precision of an algo-

rithm depends on the percentage of test images
used in the experiment: for a fixed algorithm, in-
creasing the density of test images increases the
precision. In our application, the density of test
images is likely to vary and cannot be accurately
predicted in advance.

To assess the quality of our algorithm, with-
out dependence on the relative numbers of control
and test images, we use a combination of the algo-
rithm’s recall and its response ratio. The response
ratio is defined to be the percentage of test images
marked by the algorithm, divided by the percent-
age of control images marked. This measures how
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Fig. 5. Typical false negatives: the skin filter marked significant areas of skin, but the geometrical analysis could not find a
girdle or a spine. Failure is often caused by absence of limbs, low contrast, or configurations not included in the geometrical
model (notably side views, head and shoulders views, and closeups).

well the system, acting as a filter, is increasing the
density of test images in its output set, relative to
its input set.

As the configuration of the algorithm is
changed, the recall and response ratio both
change. It is not possible to select one configu-
ration as optimal, because different users may re-
quire different trade-offs between false positives
and false negatives. Therefore, we will simply
graph recall against response ratio for the different
configurations.

5.1. The skin filter

Of the 565 test and 4289 control images processed,
the skin filter marked 448 test images and 485
control images as containing people. As table 1
shows, this yields a response ratio of 7.0 and a test
response of 79%. This is surprisingly strong per-

formance for a process that, in effect, reports the
number of pixels satisfying a selection of absolute
color and texture constraints. It implies that in
most test images, there are a large number of skin
pixels; however, it also shows that simply mark-
ing skin-colored regions is not particularly selec-
tive. This approach cannot yield a useful tool on
its own, because of the high rate of false positives.

Mistakes by the skin filter occur for several rea-
sons. In some test images, the nudes are very
small. In others, most or all of the skin area is
desaturated, so that it fails the first-stage skin fil-
ter. It is not possible to decrease the minimum
saturation for the first-stage filter, because this
causes many more responses on the control im-
ages. Some control images pass the skin filter be-
cause they contain (clothed) people, particularly
several close-up portrait shots. Other control im-
ages contain material whose color closely resem-
bles that of human skin. Typical examples include
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Fig. 6. Typical control images wrongly classified as containing nudes. These images contain people or skin-coloredmaterial
(animal skin, wood, bread, off-white walls) and structures which the geometric grouper mistakes for spines (red) or girdles.
Limb-limb girdles are shown in blue, limb-segment girdles in blue. The grouper is frequently confused by groups of parallel
edges, as in the industrial images. Note that regions marked as skin can contain texture at a larger scale than that measured
by the texture filter. An ideal system would require that limbs not have texture at the scale of the limb, and would be able
to automatically determine an appropriate scale at which to search for limbs.

wood, desert sand, certain types of rock, certain
foods, and the skin or fur of certain animals.

All but 8 of our 58 control images of faces and
clothed people failed the skin filter primarily be-
cause many of the faces occupy only a small per-
centage of the image area. In 18 of these im-
ages, the face was accurately marked as skin. In
12 more, a recognizable portion of the face was
marked. Failure on the remaining images is largely
due to the small size of the faces, desaturation
of skin color, and fragmentation of the face when
eye and mouth areas are rejected by the skin fil-
ter. A combination of the skin filter with filters
for eye-like and mouth-like features might be able
to detect faces reliably. These face images contain
a wider range of skin tones than our images of
nudes: the skin filter appears to perform equally
well on all races.

5.2. The grouping process

The grouper ran on images with sufficient skin
pixels, a total of 448 test images and 485 control
images. The primary grouper marked 241 test im-
ages and 182 control images, meaning that the en-
tire system composed of primary grouper operat-
ing on skin filter output displayed a response ratio
of 10.0 and a test response of 43%. Considered on
its own, the grouper’s response ratio was 1.4, and
the selectivity of the system was clearly increased
by the grouper. Table 1 shows the different re-
sponse ratios displayed by various configurations
of the grouper. Both girdle groupers and the spine
grouper often marked structures which are parts
of the human body, but not hip or shoulder gir-
dles. This presents no major problem, as the pro-
gram was trying to detect the presence of humans,
rather than analyze their pose in detail.
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False negatives occured for several reasons.
Some close-up or poorly cropped images did not
contain arms and legs, vital to the current geo-
metrical analysis algorithm. Regions may have
been poorly extracted by the skin filter, due to
desaturation. The edge finder can fail due to
poor contrast between limbs and their surround-
ings. Structural complexity in the image, often
caused by strongly colored items of clothing, can
confuse the grouper. Finally, since the grouper
uses only segments that come from bottom up
mechanisms and does not predict the presence of
segments which might have been missed by occlu-
sion, performance was notably poor for side views
of figures with arms hanging down.

Some of the control images which were classified
by the skin filter as containing significant regions
of possible skin, actually contain people; others
contain materials of similar color, such as animal
skin, wood, or off-white painted surfaces. The ge-
ometric grouper wrongly marked spines or girdles
in some control images, because it has only a very
loose model of the shape of these body parts. The
current implementation is frequently confused by
groups of parallel edges, as in industrial scenes,
and sometimes accepts ribbons lying largely out-
side the skin regions. We believe the latter prob-
lem can easily be corrected.

In the Corel CD-ROM database, images are
grouped into sets of images with similar content.
False positives tend to be clustered in particular
sets. Table 2 lists the sets on which the system
showed the strongest response. These images de-
pict objects with skin-like colors and elongated
(limb-like) structures. We believe that these ex-
amples could be eliminated by a more sophisti-
cated grouper.

Figure 7 graphs response ratio against response
for a variety of configurations of the grouper. The
recall of a skin-filter only configuration is high, at
the cost of poor response ratio. Configurations G
and H require a relatively simple configuration to
declare a person present (a limb group, consist-
ing of two segments), decreasing the recall some-
what but increasing the response ratio. Configu-
rations A-F require groups of at least three seg-
ments. They have better response ratio, because
such groups are unlikely to occur accidentally, but
the recall has been reduced.

6. Discussion and Conclusions

This paper has shown that images of nudes can
be detected using a combination of simple visual
cues—color, texture, and elongated shapes—and
class-specific grouping rules. The algorithm suc-
cessfully extracts 43% of the test images, but only
4% of the control images. This system is not
as accurate as some recent object recognition al-
gorithms, but it is performing a much more ab-
stract task (“find a nude” rather than “find an
object matching this CAD model”). It is detect-
ing jointed objects of highly variable shape, in a
diverse range of poses, seen from many different
camera positions. Both lighting and background
are uncontrolled, making segmentation very diffi-
cult. Furthermore, the test database is substan-
tially larger and more diverse than those used in
previous object recognition experiments. Finally,
the system is relatively fast for a query of this
complexity; skin filtering an image takes trivial
amounts of time, and the grouper - which is not
efficiently written - processes pictures at the rate
of about 10 per hour.

The current implementation uses only a small
set of grouping rules. We believe its performance
could be improved substantially by techniques
such as

• adding a face detector as an alternative to the
skin filter, for initial triage,

• making the ribbon detector more robust,
• adding grouping rules for the structures seen

in a typical side view of a human,
• adding grouping rules for close-up views of the

human body, and/or
• extending the grouper to use the presence of

other structures (e.g. heads) to verify the
groups it produces.

• improving the notion of scale; at present, the
system benefits by knowing that people in the
pictures it will encounter occupy a fairly lim-
ited range of scales, but it is unable to narrow
that range based on internal evidence. In-
specting the result images suggests that per-
formance would be improved significantly by
a process that allowed the system to (i) reason
about the range of scales over which texture
should be rejected and (ii) narrow the range
of scales over which symmetries are accepted.
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Table 1. Overall classification performance of the system, in various configurations, to 4289 control images and 565 test
images. Configuration F is the primary configuration of the grouper, fixed before the experiment was run, which reports a
nude present if either a girdle, a limb-segment girdle or a spine group is present, but not if a limb group is present. Other
configurations represent various permutations of these reporting conditions; for example, configuration A reports a person
present only if girdles are present. There are fewer than 15 cases, because some cases give exactly the same response.

system response test control test control
configuration ratio response response images images recall precision

marked marked

skin
filter 7.0 79.3% 11.3% 448 485 79% 48%
A 10.7 6.7% 0.6% 38 27 7% 58%
B 12.0 26.2% 2.2% 148 94 26% 61%
C 11.8 26.4% 2.2% 149 96 26% 61%
D 9.7 38.6% 4.0% 218 170 39% 56%
E 9.7 38.6% 4.0% 218 171 39% 56%
F (primary) 10.1 42.7% 4.2% 241 182 43% 57%
G 8.5 54.9% 6.5% 310 278 55% 53%
H 8.4 55.9% 6.7% 316 286 56% 52%

Finally, once a tentative human has been identi-
fied, specific areas of the body might also be ex-
amined to determine whether the human is naked
or merely scantily clad.

This system is an example constructed to il-
lustrate a modified concept of an object model,
which is a hybrid between appearance modelling
and true 3D modelling. Such a model consists of
a series of predicates on 2D shapes, their spatial
arrangements, and their color and texture. Each
predicate can be tuned losely enough to accomo-
date variation in pose and imaging conditions,
because selection combines information from all
predicates. For efficiency, the simplest and most
effective predicates (in our case, the skin filter) are
applied first.

In this view of an object model, and of the
recognition process, model information is available
to aid segmentation at about the right stages in
the segmentation process in about the right form.
As a result, these models present an effective an-
swer to the usual critique of bottom up vision, that
segmentation is too hard in that framework. The
emphasis is on proceeding from general statements
(“skin color”) to particular statements (“a gir-
dle”). As each decision is made, more specialised
(and thereby more effective) grouping activities
are enabled. Such a model is likely to be ineffec-
tive at particular distinctions (“John” vs “Fred”),
but effective at the kind of broad classification re-
quired by this application—an activity that has
been, to date, very largely ignored by the object
recognition community.

In our system, volumetric primitives enable a
grouping strategy for segments, and object iden-

tity comes from segment relations. As a result,
the recognition process is quite robust to individ-
ual variations, and the volumetric constraints sim-
plify and strengthen grouping. In our opinion, this
view of volumetric primitives as abstractions used
primarily for grouping is more attractive than the
view in which the detailed geometric structure of
the volumetric primitive identifies an object. Re-
cent work has shown that representations of this
form can be learned from image data [20]. Impor-
tant cues that are currently absent from our rep-
resentation, such as the characteristic variation in
width along a body segment due to musculature,
might be incorporated with some sort of proba-
bilistic model once the grouping process is over.

This purely bottom up approach has some
weaknesses:

• Resurrecting dead hypotheses is impossi-
ble. Once one test has rejected an assembly,
no hypothesis containing that assembly can
succeed. Even a relatively small error rate in
the early tests can lead to substantial prob-
lems. This is a standard problem in bottom-
up recognition, which is usually dealt with by
setting a high standard for hypothesis rejec-
tion and then doing a lot of work on verifica-
tion.

• Handling ambiguity is difficult. We expect
some types of image group to be more easy
to confuse than others. Typically image ev-
idence varies in different ways depending on
the hypothesis. For example, a skin coloured
region could be a (closed) eye, but never a
nostril.
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Fig. 7. The response ratio, (percent incoming test images marked/percent incoming control images marked), plotted
against the percentage of test images marked, for various configurations of the nude finder. Labels “A” through “H”
indicate the performance of the entire system which looks for configurations of skin-like ribbons. Here “F” is the primary
configuration of the grouper, and other labels correspond to asserting a nude is present based on different groups. The label
“skin” shows the performance obtained by checking the number of skin-like pixels alone. The labels “a” through “h” indicate
the response ratio for the corresponding configurations of the grouper, where “f” is again the primary configuration of the
grouper; because this number is always greater than one, the grouper always increases the selectivity of the overall system.
The cases differ by the type of group required to assert that a nude person is present. The horizontal line shows response
ratio one, which would be achieved by chance; the grouper beats chance significantly. While the grouper’s selectivity is less
than that of the skin test, it improves the selectivity of the system considerably. Key: A: limb-limb girdles; B: limb-segment
girdles; C: limb-limb girdles or limb-segment girdles; D: spines; E: limb-limb girdles or spines; F: (two cases) limb-segment
girdles or spines and limb-limb girdles, limb-segment girdles or spines; G, H each represent four cases, where a human is
declared present if a limb group or some other group is found.

• It does not fuse or split groups. One in-
stance may lead to many image groups. For
example, lighting may cause one body seg-
ment to appear as two image segments; sim-
ilarly, a straight arm may appear as only
one image segment representing two body seg-
ments. These groups should be fused or split,
respectively.

• Prioritizing hypotheses is important; not
all acceptable groups are equally likely. The
current mechanism generates all acceptable
groups, but cannot determine whether any are
superior to others. A natural enhancement
is to determine the value of the posterior for
each acceptable group; but this does not deal
with the difficulties above.

• Uniqueness is a problem; there is no mech-
anism that prevents the simultaneous use of
two groups that contain almost the same seg-
ments. The solution to this problem is to see
the groups as evidence rather than instances
— thus, several similar groups may be evi-
dence for one, rather than many, instances.
Uniqueness reasoning at the evidence level is
notoriously unreliable — one image segment
may genuinely represent evidence of two body
segments. However, uniqueness reasoning at
the instance level is much more plausible —
two people cannot occupy the same volume of
space, for example, and visibility reasoning is
possible, too.
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Fig. 8. All the control images in the dessert sequence that were marked by the system, with groups overlaid. These images
contain large regions of skin-coloured material, with texture at a scale invisible to the skin filter. Since there are many
edges in the skin filter output, a large collection of symmetries appears and limb or girdle groups are virtually guaranteed.
As many ribbons contain coarse scale texture features, these false positives suggest that a local verification mechanism that
looked more carefully at the intensities in a ribbon at an appropriate scale, would improve the performance of the system.

Table 2. The titles of CD-ROM’s in the Corel library to
which the system responded strongly, tabulated against the
response. In each case, the sample consisted of 20 images
out of the 100 on the CD-ROM. Figure 8 shows the skin
filter output for the marked images from the dessert series,
with groups overlaid.

Response Title (s)
60% Desserts
40% Caverns, Colorado plateau,

Cuisine
35% Barbecue and salads
25% Fabulous fruit, Colors of autumn
20% Decorated pumpkins, Fashion,

Copenhagen–Denmark
15% Beautiful women, Fungi,

Cowboys, Flowers close up,
Acadian Nova Scotia, Antique postcards,
Fire fighting, Images of Egypt,
Fruits and nuts

All these difficulties point to the need for a top-
down revision mechanism that can advance groups
past tests that they have failed, fuse and split
groups, and collect many groups as evidence for
one instance. We are currently experimenting
with the use of Markov chain Monte Carlo meth-
ods for this purpose.

Our view of models gracefully handles objects
whose precise geometry is extremely variable,
where the identification of the object depends
heavily on non-geometrical cues (e.g. color) and
on the interrelationships between parts. While our
present model is hand-crafted and is by no means
complete, there is good reason to believe that an
algorithm could construct a model of this form,
automatically or semi-automatically, from a 3D
object model or from a range of example images.
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Appendix Control CD titles

We used each image from: CD-ROM’s 10000
(Air shows), 113000 (Arabian horses), 123000
(Backyard wildlife), 130000 (African speciality an-
imals), 132000 (Annuals for American gardens),
172000 (Action sailing), 173000 (Alaskan wildlife),
34000 (Aviation photography), 38000 (American
national parks), 44000 (Alaska), 49000 (Apes) and
77000 (African antelope), in the first series of
CD’s.

We used every tenth image from: CD-
ROM’s 186000 (Creative crystals), 188000 (Clas-
sic Antarctica), 190000 (Interior desighn), 191000
(Clouds), 195000 (Hunting), 198000 (Beauti-
ful women), 202000 (Beautiful Bali), 207000
(Alps in spring), 208000 (Fungi), 209000 (Fish),
212000 (Chicago), 214000 (Gardens of Eu-
rope), 218000 (Caverns), 219000 (Coast of Nor-
way), 220000 (Cowboys), 221000 (Flowers close
up), 225000 (Freestyle skiing), 226000 (Ama-
teur sports), 227000 (Greek scenery), 228000
(Autumn in Maine), 230000 (Canada), 234000
(Decorated pumpkins), 237000 (Construction),
238000 (Canoeing adventure), 240000 (Arthro-
pods), 243000 (Acadian Nova Scotia), 246000
(Bhutan), 250000 (Industry and transportation),
251000 (Canadian farming), 255000 (Colorado
plateau), 261000 (Historic Virginia), 263000
(Antique postcards), 267000 (Hiking), 268000
(African birds), 275000 (Beverages), 276000
(Canadian rockies), 279000 (Exotic Hong Kong),
281000 (Exploring France), 282000 (Fitness),
285000 (Fire fighting), 291000 (Devon, England),
292000 (Berlin), 294000 (Barbecue and salads),
297000 (Desserts), 298000 (English countryside),
299000 (Images of Egypt), 302000 (Fashion),
304000 (Asian wildlife), 308000 (Holiday sheet
music), 310000 (Dog sledding), 311000 (Ever-
glades), 314000 (Dolphins and whales), 318000
(Foliage backgrounds), 322000 (Fruits and nuts),
325000 (Car racing), 327000 (Artist textures),
329000 (Hot air balloons), 332000 (Fabulous
fruit), 333000 (Cuisine), 336000 (Cats and kit-
tens), 340000 (English pub signs), 341000 (Colors
of autumn), 344000 (Canadian national parks),
346000 (Garden ornaments and architecture),
350000 (Frost textures), 353000 (Bonsai and Pen-
jing), 354000 (British motor collection), 359000
(Aviation photography II), 360000 (Classic avia-

tion), 363000 (Highway and street signs), 367000
(Creative textures), 369000 (Belgium and Luxem-
bourg), 371000 (Canada, an aerial view), 372000
(Copenhagen, Denmark), 373000 (Everyday ob-
jects), 378000 (Horses in action), 382000 (Cas-
tles), 384000 (Beaches), 394000 (Botanical prints),
396000 (Air force), 399000 (Bark textures) and
412000 (Bobsledding) in the second series of the
Corel stock photo library6

Notes

1. Incongruities occasionally receive media attention; in
a recent incident, a commercial package for avoiders
refused to allow access to the White House childrens
page[5].

2. The iconography of pornography is such that subjects
typically occupy most of the image.

3. Specifically, alt.binaries.pictures.erotica,
alt.binaries.pictures.erotica.male,
alt.binaries.pictures.erotica.redheads
and alt.binaries.pictures.erotica.female.

4. In retrospect, this is an error in experimental design.
It appears to be the case that the material posted by
each individual typically has significant correlations as
to content; a record of who posted which image would
have improved our understanding of the statistics of the
test set. The “clumpy” nature of this sort of content
could be used as a cue to improve recognition.

5. The sample consists of every tenth image; in the full
database, images with similar numbers tend to have
similar content.

6. Both libraries are available from the Corel Corporation,
whose head office is at 1600 Carling Ave, Ottawa, On-
tario, K1Z 8R7, Canada.
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