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Abstract

We describe a method that recovers an estimate of sur-
face shape and of the irradiance Þeld for a textured sur-
face. The method assumes the surface is viewed in scaled
orthography, and we demonstrate the appropriateness of
this assumption. Our method uses interest points to obtain
the locations of putative texton instances, clusters the tex-
tons into types, and then uses an autocalibrationmethod to
recover the frontal appearance of each texton model. This
yields (a) a dense set of normal estimates, each up to a
two-fold ambiguity (b) a dense set of irradiance estimates
and (c) whether each instance is, in fact, an instance of the
relevant texton. Because we are able to obtain a very large
number of instances of a large number of different textons,
this information is obtained at sites very closely spaced in
the image. As a result, we need only a simple smoothness
constraint to reconstruct a surface model, using EM to re-
solve the normal ambiguity.
We show results on images of real scenes, comparing

our reconstructions with those obtained using other meth-
ods and demonstrating the accuracy of both the recovered
shape and the irradiance estimate. Keywords: Shape from
texture, texture, computer vision, surface Þtting, shading
maps, textons, point features
There are surprisingly fewmethods for recovering a sur-

face model from a projection of a texture Þeld that is as-
sumed to lie on that surface. Global methods attempt to
recover an entire surface model, using assumptions about
the distribution of texture elements. Appropriate assump-
tions are isotropy [23] (the disadvantage of this method is
that there are relatively few natural isotropic textures) or
homogeneity [1, 2]. Current global methods do not use
the deformation of individual texture elements.
Local methods recover some differential geometric pa-

rameters at a point on a surface (typically, normal and cur-
vatures). This class of methods, which is due to Gard-
ing [8], has been successfully demonstrated for a variety
of surfaces byMalik and Rosenholtz [17, 19]; a reformula-
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Figure 1: The top row shows estimates of the frontal ap-
pearance of a texture element for the image of the shirt
depicted in Þgure 2 after 1, 5, 10 and 20 iterations of EM
respectively. Initially the estimate is blurred, because the
slant-tilt estimates are poor, but very quickly it becomes
sharp. The other rows show the frontal appearance of
each of the 12 texture elements found for this shirt. Note
that the clustering could reasonably be criticized, but that
it is not particularly important to identify the correct num-
ber of clusters. Each texton consists of a small patch cen-
tered on some part of the shirt pattern; the more such
patches, the better, because this leads to a very dense set
of surface orientation and irradiance estimates. The two
elements on the bottom right are difÞcult to localize; this
is detected automatically using the Hessian trick of section
3.1 and they are omitted from reconstruction.

tion in terms of wavelets is due to Clerc and Mallat [4, 5].
The method requires texture element coordinate frames to
form a frame Þeld that is locally parallel around the point in
question (see [9] for this point; the assumption is known as
texture stationarity). It is not known how widespread sta-
tionary textures are, but mechanisms of texture production
such as surface damage or painting clearly are not biased
toward stationary textures, though reaction-diffusion equa-
tions might be. As a result, these methods are not known
to work on a large class of textured surfaces.
Perspective views are assumed for most shape from



texture methods. This is important for views of planes, be-
cause a view of a plane spanning a small visual angle can
encompass a very large change in. One usually ignores the
effects of perspective when the range of depths spanned by
the observed scene is small compared to the average depth
(1/10, say). Curved surfaces tend to meet this test. Pairs of
equivalent texture elements that display appreciable per-
spective effects (i.e. two image instances are not within an
afÞne map) are a fortiori far apart in space and so on the
surface � it would be most unwise to use such pairs of el-
ements to make local curvature estimates because they are
far apart on the surface. This means that an orthographic
model is sufÞcient to recover shape estimates for the vast
majority of curved surfaces.

Surface interpolation methods have largely fallen out
of fashion in computer vision, due to the uncertainty re-
garding the semantic status of surface patches in regions
where data is absent. Shape from texture is a problem
where an interpolate has an unquestionably useful role �
it expresses the fact that, because one has a prior belief that
surfaces are relatively slowly changing, incomplete local
measurements of the surface normal can constrain one an-
other and lead to good global estimates of the normal at
some points.

Applications for shape from texture have been largely
absent, explaining its status as a minority interest. How-
ever, we believe that image-based rendering of clothing is
an application with substantial promise. Cloth is difÞcult
to model for a variety of reasons. It is much more resis-
tant to stretch than to bend: this means that dynamical
models result in stiff differential equations (for example,
see [21]) and that it buckles in Þne scale, complex folds
(for example, see [3]). However, rendering cloth is an im-
portant technical problem, because people are interesting
to look at and most people wear clothing. A natural strat-
egy for rendering objects that are intrinsically difÞcult to
model satisfactorily is to rearrange existing pictures of the
objects to yield a rendering. In particular, one would wish
to be able to retexture and reshade such images. This paper
demonstrates methods that will make this possible.

Our shape from texture process uses a texture model
and structure from motion lemma from [7]. We recapit-
ulate this material brießy for the reader�s convenience in
sections 1 and 2. The major new material in this paper in-
volves practical applications of this method in a pipeline
where we:
Recover image instances ofmultiple distinct texture ele-
ments, which we do using the interest point method of [15]
(section 3).
Recover the frontal appearance of all elements, which
we do using lemma 2 of [7]. By so doing we can exclude
uninformative elements, obtain irradiance and normal esti-

mates, and (often) signiÞcantly enrich the Þeld of elements
(section 2).
Obtain a surface model and an irradiance map, using
EM to resolve the two-fold ambiguity that results from our
recovery method (section 4).

1 A Texture Model
We model a texture on a surface as a marked point

process, of unknown spatial properties. A point process
is some random procedure that results in points lying on
a surface (exact deÞnitions involve tedious measure the-
ory [6]). Amarked point process is one where each point
carries a mark, drawn randomly according to some mark
density from an available collection (for example, points
might be red or blue; rendered as squares or circles; etc.);
we assume that this collection is discrete.
In our model, the marks are texture elements (texels or

textons, as one prefers; we use the term instances to refer
to the marks that appear in the image) and the orientation
of those texture elements with respect to some surface co-
ordinate system. We assume that the marks are drawn from
some known, Þnite set of classes of Euclidean equivalent
texels. Each mark is deÞned in its own coordinate system;
the surface is textured by taking a mark, placing it on the
tangent plane of the surface at the point being marked and
rotating randomly about the mark�s origin (according to the
mark distribution). We assume that the texture elements do
not occlude one another and are sufÞciently small that they
can be modelled as lying on a surface�s tangent plane at a
point.

1.1 Surface Cues from Viewing Geometry

We assume that we have an orthographic view of a com-
pact smooth surface and the viewing direction is the z-axis.
We write the surface in the form (x, y, f(x, y)), and adopt
the usual convention of writing fx = p and fy = q.
Now consider one class of texture element; each in-

stance in the image of this class was obtained by a Eu-
clidean transformation of the model texture element, fol-
lowed by a foreshortening. The transformation from the
model texture element to the particular image instance is
afÞne. This means that we can use the center of gravity of
the texture element as an origin; because the COG is co-
variant under afÞne transformations, we need not consider
the translation component further.
Furthermore, in an appropriate coordinate system on

the surface and in the image, the foreshortening can be
written as

Fi =

(
1 0
0 cos σi

)

where σi is the angle between the surface normal at mark i
and the z axis.



Figure 2: On the center left, an image of a shirt with the position of each texton instance superimposed as a cross; there
are so many it is difÞcult to resolve them, as the detail from the collar region (inset, left) shows. There are 350 instances
in total, and instances are less dense in the area of darker shading near the arms. Instances from the area indicated do not
result in much surface normal data, because the representation provided by Lowe�s method appears to sensitive to relatively
large changes in brightness. This means that the reconstruction using all instances (top center: textured, bottom center:
untextured) has some problems that result from a large region without data. If one crops the image to the box shown on the
left, the reconstruction, shown on the right is much better.

The transformation from the model texture element to
the i�th image element is then

TM→i = RG(i)FiRS(i)

whereRS(i) rotates the texture element in the local surface
frame, Fi foreshortens it, andRG(i) rotates the element in
the image frame. From elementary considerations, we have
that

RG(i) =
1√

p2 + q2

(
p q
−q p

)

The transformation from the model texture element to the
image element is not a general afÞne transformation (there
are only three degrees of freedom).
Lemma 2 of [7] says that, given a sufÞcient number of

image instances � which number is three or more � of
a small texture element in a scaled orthographic view, the
element can be determined up to rotation in its own coor-
dinate system. The process produces the texture imaging
transformation at each image instance, and yields a factori-
sation that gives the slant-tilt frame (and so p and q) up to
a two-fold ambiguity. Shape from texture is well known to
have strong analogies with structure frommotion [17], and
this lemma can be restated as saying that, given a sufÞcient
number of scaled orthographic views of a plane object, the
object is known (as are the views). This is a self-calibration
result, and should be compared with the known fact that
Þve perspective views of a plane object yield camera cal-
ibration [22]. Furthermore, the process is not limited to
a single texture element � there might be many different
textons.

2 Frontal Textons, Irradiance and Normals
The development in this section assumes that there is a

single texture element. However, we can deal with multi-
ple texture elements by identifying and clustering instances
separately (section 3). We then recover normal and ir-
radiance information for each element separately, and Þ-
nally reconstruct a surface and irradiance Þeld by fusing
all this information (section 4). We can work with each in-
stance separately because we cluster texton instances with
an afÞne-robust method.

2.1 Recovering Information for a Single Texton
For the moment, assume that all texture imaging trans-

formations are known, but the element is not known. If the
irradiance is unknown, we can assume it is constant over
the texture element (elements are �small�). Write Iµ for
the estimate of the texture element, and Ii for the patch
obtained by applying the known texture imaging transfor-
mation T −1

i to the image texture element i. Then we must
choose Iµ and some set of constants λi to minimize

Σi || λiIµ − Ii ||2

and these constants represent the irradiance Þeld.
Now assume that we have an estimate of the model tex-

ture element and the irradiance Þeld; we can clearly re-
cover the texture imaging transformations by transforming
the lighted model texture element to look like an image
patch. Finally, given all parameters, it is possible to tell
whether an image texture element represents an instance of
the model texture element or not � it will be an instance



if, by applying the inverse texture imaging transformation
and irradiance to the image texture element, we obtain a
pattern that looks like the model texture element. This sug-
gests that we can insert a set of hidden variables, one for
each image texture element, which encode whether the im-
age observation is an instance or not. We now have a rather
natural application of EM.
For the i�th texture element, write θgi for the rotation

angle of the in-image rotation, σi for the foreshortening,
θsi for the rotation angle of the on-surface rotation and
Ti = Ti(θgi , σi, θsi) for the texture imaging transforma-
tion encoded by these parameters. Write δi for the hidden
variable that encodes whether the image texture element is
an instance of the model texture element or not. Write Iµ

for the (unknown) model texture element.
To compare image and model texture elements, we must

be careful about domains. Implicit in the deÞnition of Iµ

is its domain of deÞnitionD� say a nxn pixel grid � and
we can use this. Write T −1

i I for the pattern obtained by
applying T −1

i to the domain Ti(D). This is most easily
computed by scanning D, and for each sample point s =
(sx, sy) evaluating the image at T −1

i s.
We assume that imaging noise is normally distributed

with zero mean and standard deviation σ im. We assume
that image texture elements that are not instances of the
model texture element arise with uniform probability. We
have that 0 ≤ σi ≤ 1 for all i, a property that can be
enforced with a prior term. To avoid the meaningless sym-
metry where illumination is increased and albedo falls we
use a prior that charges for λi different from one We can
now write the negative log-posterior

1

2σ2
im

∑
i

(
|| λiIµ − T −1

i I ||2 δi

)
+

∑
i

(1 − δi)K

+
1

2σ2
light

(λi − 1)2 + L

where L is some unknown normalizing constant of no fur-
ther interest. The application of EM to this expression is
straightforward. Computing expected values of the δ i fol-
lows the usual pattern, but the continuous parameters re-
quire numerical minization. This minimisation is unusual
in being efÞciently performed by coordinate descent. This
is because, for Þxed Iµ, each Ti can be obtained by inde-
pendently minimizing a function of only three variables.
We therefore minimize by iterating two sweeps: Þx Iµ and
minimize over each Ti in turn; now Þx all the Ti and mini-
mize over Iµ.
This process produces normal information automati-

cally, as each Ti is an explicit function of rotation on the
surface, the surface slant and p and q (section 1). However,
there is a two-fold ambiguity, as a rotation on the surface of
180o can be absorbed by the map (p, q) → (−p,−q). Fur-
thermore, the EM CoefÞcients encode the extent to which

an image pattern is, in fact, an instance of a texton. How-
ever, with many image elements the process could be slow.
In fact, increased efÞciency is possible because, although
using all putative instances gives the best estimate of the
frontal element, one runs into diminishing returns quite
quickly. This suggests our strategy of using a subset of
the instances to estimate the frontal element, then Þxing
the appearance of the element and using this to estimate
conÞguration parameters, irradiance and δ�s for all other
instances. Recovery of the frontal appearance of the texton
is good; Þgure 1 shows all frontal textons from the shirt of
Þgure 2. Recall that frontal appearances are estimated by
backprojection and averaging: The relatively crisp images
suggest the image instances have been well registered by
the backprojection process.

3 Finding Instances of Textons
Assume we have a view of a surface textured with scat-

tered instances of multiple elements. The results above in-
dicate that if we can identify enough instances of elements
we can recover normals and irradiance.
For the moment, assume that there is a single element.

We must now Þnd image patches that appear to be in-
stances of the same texture element. There is some his-
tory of doing this successfully by clustering image patches
(e.g. [13, 16]). A particularly simple and effective mech-
anism has been made available by recent work on rep-
resenting image patches around interest points. Schmid
and Mohr demonstrated that one could match objects by
identifying interest points in an image and then build-
ing representations of the image around those points [20].
The key observation in this work is that an appropriately
chosen representation can (a) distinctively identify im-
age patches and (b) be robust to afÞne transformations.
Such representations are now widely used in recognition
(e.g. [14, 15, 20]; points are matched to points in images
of models) and tracking (e.g. [15]; points are matched to
points in the next frame). Furthermore, one can build a
texture representation by identifying points that repeat and
are good for matching [11, 12]. However, the emphasis
in these last papers is on reducing the number of interest
points by identifying patches that are uncommon within
one scene and match well across views. Instead, we use
interest points to obtain patches that match within a Þxed
scene and we want a dense set of texton instances.
A comparison of methods

by Mikolajczk and Schmid [18] is unequivocally in favour
of the method of Lowe [15], which we use. We adopt this
method. We obtain the descriptors for the scene by apply-
ing Lowe�s program (which he has kindlymade available at
http://www.cs.ubc.ca/ lowe/keypoints/).
These descriptors are then clustered using k-means to Þnd



Figure 3: On the left, a view of a model in a spotted dress. In the center left, a textured view of the reconstruction obtained
using our method. This reconstruction used 1200 texton instances, in 8 clusters. Note the relatively Þne detail that was
obtained by the reconstruction, including the two main folds in the skirt (indicated with arrows). Typically, rendering
texture on top of the view produces a better looking surface, so we show the surface without texturing on the center right;
arrows indicate the reconstructed folds in the geometry. Notice that the fold in the skirt is well represented. The smoothing
term is generally good at resolving normal ambiguities, but patches of surface that are not well connected to the main
body can be subjected to a concave-convex ambiguity, as has happened to part of the skirt�s bodice here. On the right, the
irradiance map estimated using our method.

descriptors that appear to represent instances of the same
texture element. Because the descriptors produced by
Lowe�s program are invariant under rotation and transla-
tion and robust to quite substantial foreshortening, each
cluster should represent instances of a potential texture el-
ement. There is little reason to attempt to extract heavily
foreshortened instances, because a fortiori they must re-
sult in poor estimates of surface normal and of element ap-
pearance (there are few pixels on the element). We must
now determine(a) which putative instances are, in fact, in-
stances and (b) which textons are useful. This information
emerges from the process of recovering frontal textons.

3.1 Handling Multiple Textons
It is relatively straightforward to deal with multiple tex-

tons (Þgure 1, Þgure 2). We Þrst cluster putative instances
using k-means; note that the value of k isn�t crucial here, as
long as it is neither too small nor too large. This is because
if k exceeds the number of texton classes, some elements
will be represented by more than one cluster. The only con-
sequence of processing these clusters independently is (in
principle) a slight reduction in the accuracy with which the
frontal appearance of the element can be estimated. This
doesn�t appear in practice.
Each cluster is then processed independently, to pro-

duce independent frontal appearance, normal and irradi-
ance estimates at the instance centers. The irradiance esti-
mates for a given element are known up to a single miss-
ing scale factor. We can Þx the scales for one element, and
must now scale all others to be consistent with that element

(which we do by smoothness).
Bad elements are those that cannot produce reliable es-

timates of p and q; for example, consider an element that
has a constant grey level, or is a single point. We iden-
tify bad elements by looking at the Hessian of the Þtting
criterion. If this has small eigenvalues, then the estimates
of p and q are unreliable. Generally, we expect this phe-
nomenon to be a property of the texture element rather than
of instances, and so we remove texture elements whose
Hessian has too small a norm. Once we have done so,
nothing further need be done to merge estimates of p and
q obtained from different texture elements. Note that, in
principle, one might extend this trick and use the Hessian
as a guide to an appropriate weighting of the Þtting error,
but we see no practical advantage in doing so.

4 Fitting a Surface and an Irradiance Map
We now have a set of points (xi, yi) at which we know

measurements of the gradient up to a two fold sign ambigu-
ity: either di = (p, q) or di = (−p,−q). Furthermore, we
have an estimate � from the expected value of the hidden
variable in the previous section� of the reliability of these
measurements. We accept only measurements for which
these expected values exceed a threshold (0.8 for what fol-
lows). There are three possibilities at each point that has
been accepted: First, di = (p, q); second, di = (−p,−q);
third, the measurement does not derive from the surface
(a bad texton match, say). We encode these states using a
missing variable, and apply EM.



Assume for the moment that there is no sign ambiguity.
We must now Þt a surface to gradient data. We represent
the surface with radial basis functions, a natural choice for
scattered data interpolation. We use φj(x, y) = 1/((x −
xj)2 + (y − yj)2 + ε2) as a basis function and we require
that the normal measurement be orthogonal to the tangent
of the Þtted surface. If we write pi for the measured x-
derivative at xi = (xi, yi), etc., we must minimize

∑
i∈points

(
∂h

∂x
(xi) − pi)

2 + (
∂h

∂y
(xi) − qi)

2

where h is a linear function of the vector of surface coefÞ-
cients a so that the error is quadratic in the surface coefÞ-
cients. We should like to impose a smoothness constraint,
and have found in practice that penalizing large coefÞcients
is quite sufÞcient (for this method, see, for example [10]).
Incorporating the hidden variables, the log-likelihood be-
comes

∑
i

⎡
⎢⎣

δ1
i

1
2σ2

l

{
( ∂h

∂x
(xi) − pi)

2 + ( ∂h
∂y

(xi) − qi)
2
}

+

δ2
i

1
2σ2

l

{
( ∂h

∂x
(xi) + pi)

2 + ( ∂h
∂y

(xi) + qi)
2
}

+

δ3
i K

⎤
⎥⎦

+λaT a + C

where C is a constant of no further interest and λ adjusts
the weight of the smoothness term with respect to the error
term. From this point, the application of EM is straight-
forward; the expression for the re-estimates of the hidden
variables are the usual, and when known values of the hid-
den variables are substituted the minimization problem in-
volves solving a linear system. As a result, the method
is very much faster than that of [7]; it appears to produce
much better surfaces, too. A direct method is possible,
too. One uses the approximating surface to evaluate the
slant and tilt at each texton instance, recovers the image
instance to its frontal frame, and compares with the re-
covered appearance of the texton. In principle, this ap-
proach should lead to an improved representation because
one can then couple the process of estimating whether an
image pattern is a texton instance with that of estimating
the approximating surface. In our experience, this does not
materially change the recovered surface, probably because
there are so many instances that are good that the accuracy
added in principle is not signiÞcant in practice. Starting
the method is straightforward. In all the examples shown,
we start with a vertical cylinder.

4.1 Recovering an Irradiance Map

At each acceptable measurement is an estimate of irra-
diance relative to other instances of that texton. This esti-
mate is available because we must shade the texton to get
it to agree with the image. We can recover a relative irradi-
ance Þeld if we can scale each class of textons with respect

to a reference class. This, again, is a maximization prob-
lem. We approximate the scattered irradiance Þeld with
radial basis functions. Write Li for the irradiance estimate
at the data point xi = (xi, yi), and φj(x, y) for the radial
basis function 1/((x − xj)2 + (y − yj)2 + ε2). We wish
to scale the irradiance value for each class of textons with
respect to the Þrst class (say), using a scaling value sk for
the k�th class. We must then minimize∑

i ∈ class 1 (Li −
∑

j
ajφj(xi))

2+

∑
k ∈ other classes

{∑
i∈class(skLi −

∑
j
ajφj(xi))

2
}

+

λ
∑

j
a2

j

(where the last term is a smoothness term, as above) with
respect to the s�s and the a�s. This is a straightforward
linear system.

5 Results
It is always difÞcult to evaluate a reconstruction

method, particularly if ground truth is not available. For
most interesting cases of shape from texture, it is not; fur-
thermore, synthetic images are an unreliable guide. Fig-
ure 2 demonstrates just how rich a set of feature points we
obtain, suggesting that a competent reconstruction method
should be able to obtain detail at quite a Þne scale. In the
lowest third of that image there are relatively few accu-
rate orientation estimates because some dark patches mean
that many instances are poorly rectiÞed. We ascribe this
phenomenon to strong shading differences following [18],
who note that Lowe�s method is affected by strong changes
in illumination. If one reconstructs incorporating the scat-
tered good measurements that remain in this area, the re-
construction is poorer than if one omits them (Þgure 2).
This implies that a rich set of feature points is truly help-
ful.
Our reconstructions are qualitatively accurate, too. Fig-

ures 3 and 4 show reconstructions of different dresses.
Note the reconstructions have been able to identify the vis-
ible folds in the dress, and the overall fall of the garment.
Again, we attribute this to the dense set of texton instances
meaning that we can reconstruct surface detail at quite a
small scale. Furthermore, the irradiance maps in these re-
constructions appear reasonable, offering some guide to
the folds on the original garment (see Þgure 4).
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