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Abstract 2 Theory
Although mutual illumination has been largely ignored by
the vision community to date, its effects are easily observed in 2.1 The mutual illumination equation

images. Mutual illumination effects can introduce serious errors
into any shape from shading scheme based on the image irradi-
ance equation, because in the presence of mutual illumination,
radiance is no longer solely dependent on surface orientation.
However, as the magnitude of these effects is strongly related to
the albedo of surfaces and to surface geometry, they can provide
useful cues to absolute surface lightness and to the arrangement
of surfaces.

We report here some theoretical and experimental results
which underline the importance of mutual illumination to visual
modules dealing with shape and with surface lightness. Our ex-
periments are in good agreement with results obtained with a
simple theoretical model. These results show the effects of mu-
tual illumination in pictures of simple objects, and indicate that

these effects must be accounted for in modelling image intensi-
ties.

1 Introduction

‘When one illuminates a world containing any more complex arrange-
ment of objects than a single convex surface, one discovers that light
reaches a surface facet from many sources. Objects reflect light not
just to sensors, but also onto other objects. This leads to a pattern of
measured radiances that can differ significantly from those predicted
by models which assume that radiance is purely a property of the ori-
entation of a surface facet relative to the light source.

A large number of techniques have been proposed for recovering
surface shape from shading patterns (see Horn’s book [6] for a clear
discussion of this field). Such techniques are forced to ignore the ef-
fects of mutual illumination, because the global nature of these effects
makes it difficult to formulate recovering local shape from radiance in-
formation in their presence. Accurately simulating mutual illumination
is, however, recognised to be important in obtaining realistic computer
graphics [3), and the ability to predict mutual illumination patterns is
valuable to photometrists [8].

The basic equation governing mutual illumination in a scene is a
Fredholm equation of the second kind. It is often difficult to deal with
such equations intuitively, and so we supply here a description of the
meaning and display the form of solutions of this equation for some
simple geometries.

Our experimental work indicates that one dimensional approxima-
tions can be applied successfully in situations which have a local trans-
lational symmetry. This work also shows that mutual illumination
effects can not only offer valuable cues to surface lightness perception,
but also confound shape recovery.

In the body of this paper, we discuss theoretical and numerical
approaches to predicting the effects of mutual illumination. We show
results of these approaches for a number of simple yeometries, and
show experimental results obtained from images of real objects. These
results allow us to speculate on the possible value of mutual illumina-
tion effects to visual processes that recover surface shape and surface
lightness.
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We use the photometric terms radiance, irradiance and albedo here,
and explain these terms below:

Irradiance

Irradiance refers to the amount of light falling on a surface, and
is conventionally measured in Watts per square metre.

Radiance

Radiance refers to the amount of light reflected from a surface.
This is in most cases equivalent to the “brightness” of the surface,
and is measured in Watts per square metre per unit solid angle.

Albedo

Albedo refers to the fraction of the light incident on a surface
that is in fact reflected.

Consider a scene consisting of surfaces parametrised in some way
that allows us to write the surfaces as r(u), where the bold font denotes
a vector quantity. At a point u, we denote the surface normal by n(u).
Introduce the term dy, for r(u) — r(v), and assume that all surfaces
are Lambertian. We write the radiance at the point parametrised by
v as N(v). The radiance (“brightness”) N(v) arising from N(u) is:

p(v) < n(v),dy, >< n(u),dyy >
i < dyy, dyy >2

View(u,v) N(u)

Where View(u,v) is 1 if these points have a line of sight from
one to the other, and 0 otherwise, N(u) is the radiance at u, <,>
denotes the dot product operation on two vectors, and p(v) denotes
the albedo of the surface patch parametrised by v. The terms of the
form < n(u),dyy, > / < dyy, duy >¥ express cosines for Lambertian
reflection, and the term 1/ < dyy,du, > expresses inverse square law
effects. Informally, the term p(v)/7 serves to turn incident light into
radiance.

Since we know that the radiance at a point is the sum of that due
to the radiance at all other points and that due to the light source, we
obtain the following equation for the radiance at u:

N(u) = No(u) + p(v) -/1) K(u,v)N(v)dv (1)
where
K(u,v) = %< n(v), d“<"d>u< :gu)'d"” > View(u, v)

Where D refers to the whole domain of the parametrisation, and
No(v) is the component of radiance at v due to the effects of the
source alone. For example, for the simple case of an effective point
light source at infinity, with direction s and brightness B, we have
No(v) = p(v) B < s,n(v) >. We call equation 1, which expresses
energy balance, the mutual illumination equation. Solving this
equation analytically is simplified by assuming that p(v) is constant.
Equation 1 then becomes a Fredholm equation of the second kind, and
K is referred to as the kernel of this equation. It is easy to see that



for physical reasons,

/]KQ(u,v)dudvsl
DJD

for if this were not true, some surface would be contributing extra
energy.

2.2 Analytic solutions to the mutual illumination
equation

There are several approaches for solving equations of this type (see, for
example, [9]). One well-known solution is given by a Neumann series:

N(w) = Now) + 3

n=1

" / Ko(u, v)No(v)dv
D
Where
Kn(u,v) =/ Knon(u, w)Kp(w,v)dw
D
and
Ki=K,n>2 1<h<n-1)

Ample physical evidence exists that this series converges (in fact,
to prove this for p < 1, notice this series converges for |p|<|| K ||~1
([9], p-50 et. seq.), and that || K [|7'> 1 > p).

When p is small, the solution becomes a solution of the image irra-
diance equation as the effects of mutual illumination will be dominated
by source effects. Thus, to observe experimentally the effects of mu-
tual illumination, we need two set of objects: one white, and the other
black. Qualitative differences in radiance distributions for images taken
of similar arrangements of these objects can then be ascribed to the
effects of mutual illumination.

Although we know the Neumann series will converge, it is not al-
ways possible to say very much about the rate of convergence of the
series. The series has the following physical meaning:

To form the radiance at any point, take the radiance at
that point due to the effects of the source. Now compute

the effects due to rays that are reflected once to arrive at
that point, and add them to this radiance. Now compute

the effects of rays that are reflected twice, and add them.
Continue computing the effects of rays that are reflected n
times untill n is very large. This procedure is often referred
to as “ray tracing”.

The difficulty with this approach is that one may think up objects
sufficiently contorted in shape that rays reflected n times have no sig-
nificant effect, but those reflected n + 1 times do. We show a simple
example in figure 1 (Photometrists call this effect vignetting). This
point is important only for objects with high albedoes, for the effects
of these rays will otherwise peter out rather quickly.

Equation 1 has another useful property, best seen by inspection of
the Neumann series solution. If we consider the Neumann series as an
operator on (integrable!) initial radiance functions (written above as
Ny(u)), it is linear. Loosely, if you want to know the radiance you
would get with two light sources, you may measure radiances under
both separately, and add the results. This is tremendously valuable
from an applications point of view. If we believe that there is a limited
set of types of illumination, for example, that all scenes are illuminated
by a weighted sum of an isotropic ambient illumination and an effective
point source at infinity, we know that this property guarantees that we
need only work out the mutual illumination effects for the two sources
separately, to know the form of the effect for the sum of the sources.

The operator that takes the initial radiance distribution to the radi-
ance distribution observed is, however, a complicated function of global
scene geometry. We can nonetheless claim that this linearity property
means that if we keep on hand a dictionary of the effects of a small
number of different lighting distributions on a number of different ge-
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ometries we are in a strong position for analysing the effects of mutual
illumination in images, because we may compute the effects of any
weighted sum of these lights on these geometries.

Another standard method for solving Fredholm equations of the
second kind, involves expanding Ng(v) on a basis consisting of the
eigenfunctions of the kernel. This leads to an expansion of N(v) on
the same basis. This approach is particularly attractive when the ker-
nel is self-adjoint (or, for real kernels, symmetric), as the eigenfunctions
are guaranteed to be orthogonal. This approach is used by Koenderink
and Van Doorn {8], who call the eigenfunctions “pseudo facets”, refer-
ring to the fact that by employing this expansion one may rewrite the
mutual illumination equation as a form of the image irradiance equa-
tion for a surface with a different geometry. It is a particularly valuable
approach when the eigenvalues diminish quickly, as in this case only
the terms corresponding to a small number of the largest eigenvalues
are necessary to obtain a good approximation to the solution.

2.3 Interpreting mutual illumination information

The kernel of equation 1 contains a tremendous amount of global ge-
omietric information. Our experimental data suggests that it may be
possible to model the contribution of “far-away” surfaces as isotropic
ambient illumination, but that the effects of nearby surfaces are impor-
tant and are anisotropic. Part of our ongoing research involves extract-
ing geometric information from the kernel of this equation, employing
one’s knowledge of its solution, that is, the observed image intensities.
However, it is easy to see that the effects of mutual illumination will be
most prominent in regions where surfaces face one another, and where
they are close, for example, for concave surface patches, or in those
places where surfaces meet to form a concave region.

The magnitude of local effects taken with the magnitude of the am-
bient illumination field, provide strong cues for absolute surface light-
ness information. At least qualitative absolute lightness information
may be extracted, given that we have a reliable source of shape informa-
tion (for example, stereopsis) by comparing the radiance distribution
resulting from the known shape with that observed. An implementa-
tion of this approach would be a major step forward for those studying
surface lightness perception.

We present an analytic solution to the mutual illumination equa-
tion for a simple geometry. This analytic solution indicates the type
of geometric constraints available when only low order terms of the
Neumann series contribute to the solution. For more complex ge-
ometries, we use numerical solutions obtained using a finite element
method. These solutions have been constructed for geometries with a
translational symmetry. Infinite objects are not easy to simulate ex-
perimentally, so that translational symmetries were purely local in the
experiments. However, comparison with experimental results suggests
that using an assumption of translational symmetry does not prevent
a good approximation to observed data. This suggests that in many
cases, a one parameter model is appropriate.

2.4 Solutions for a single translational symmetry

2.4.1 The form of the kernel for a single translational sym-
metry

We consider a coordinate system with translational symmetry along
the y axis, depicted in figure 2. Thus, all relevant shape information is
contained in any plane y = constant. Consider the plane y = 0. Now
for an infinitesimal segment on the boundary of the shape in this plane,
it is clearly the case that we may construct a 2 dimensional kernel by
integrating along the y axis the contribution of the surface facets that
project to this segment

Then consider r(u), r(v), which are three-vectors lying on the sur-
face. In particular, we have the unique decomposition:

r(u) = x(s) +j.y

For some appropriate reparametrisation, with x restricted to the
plane y = 0. We now have, for K* the 2-dimensional version of the
kernel:

K*(s,s") = / Kdy



We can parametrise the 2D kernel in terms of 2 arc length param-
eters s and s*, because all shape information is encapsulated in a set
of plane curves. In particular the normals to surface facets must be
orthogonal to the direction of translational symmetry. Thus we obtain:

K*(s,s*) = % < n(s), x(s*)—x(s) > < n(s"),x(s)—x(s") > I(s,s")

where

“w_o [ dy
Tes) = /.w (< x() —x(), x(5") — x(5) > +3°)°

Carrying out the integration gives us:

_ 1< n(s),x(s*) —x(s) > < n(s*), x(s) ~ x(s") >
- < x(s*) — x(s), x(s*) — x(s) >)3/2
An important analytic solution to the 2 dimensional version mutual

illumination equation is the solution in the case of two planar facets,
which we solve below as an example.

K*(s,s%)

2.4.2 Mutual illumination for two planar facets with a trans-
lational symmetry

Consider the geometry shown in figure 3. For this figure, we have:

sin?(a) 5.5"

2 (s?42s.5%cos(a) + s*2)%

K(s,s*) =

Now, we take a Neumann series to order p2, to find:

N(s) = No(a) + Ni(s) + Na(s)
where
sin(a) [ s*.ds*

Ni(s) = pNo(b
1{e) = pNof®) 2 Lo (824 2s.5%cos(a) + s*2)}

; 2(&) Ly s
Na(s) = p2No(a) (=5 2sv/ J(s")ds"
(a)( 2 ) Lyo (8% + 2s.s*cos(a) + 5’2)5 (")

*2

where

Lay 2
J(s*) = dt
") /,a (s*2 + 25" .t.cos(a) + 12)%

Furthermore, we can obtain the coefficient of the term of order p in
the Neumann series in closed form as:

Liy 1 * L
/ K(sys.)dsﬁ -2 [ s+ s cos(a) — 1]
Lso 2 {(s?+s.5*.cos(a)+s*H)7 ],

This important result finds further application in our finite element
work.

In fact, as Lq, Ly — L — 0o, we can write the entire series for the
image radiance in the closed form:

No(a) + No(b).p.sin’ (%)
N(s)= T oinZ(2))2
(= Fein’(3)
Thus, each plane’s measured brightness receives a constant boost.

A similar result is obtained by Horn [5], despite the fact that he did
not consider inverse square law effects.

2.4.3 Numerical solutions: the finite element method

We consider a curve I, representing a section of a geometry with trans-
lational symmetry. We can write equation 1 for this geometry as:

0]

Now approximate I' by a set of linear elements I';, so that T' is
approximated by 3_; T;. Then equation 2 becomes:

N(s) = No(s) + p/FK(s,s")N(s‘)ds*
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N(s)= No(s)+pE/ K(s,s*)N(s")ds" (3)
7 Jn
Assume N(s) is constant in these elements. We consider N(s;) for
a node at the centre of an element, a process known as collocation.
Then the mutual illumination equation becomes:

N{(si) = No(s;) + pz N(Sj)-/r‘ K(si,s*)ds™
; 5

Call fr, K (s4,5")ds* = K;. Since we know Kj; in closed form (see
above: we used a linear approximation to I' precisely because we have
this result in closed form), we need not use numerical integration, and
can generate the matrix with 4, j°th component K;;.

The advantages of a finite element method are considerable: we may
in fact allow p to vary over the geometry, we may use any illumination,
and we can quickly and easily model any geometry with a translational
symmetry. It is also easy to model self occlusion effects.

To obtain a solution, we need to solve the matrix equation

(I- PK)N = Ny

For P a diagonal matrix expressing the spatial variation of p. We
used Gaussian elimination to solve this equation for N.

3 Results

3.1 Preliminary information

All images were taken with a CCD camera, with its automatic gain
control defeated. Objects were either of matte white paper, with no
visible surface texture, or were painted with either matte white or
matte black enamel spray paint. The ratio of reflectance for the white
paper to paper painted black was at least 40:1, and the paper painted
black looked deep black in bright light.

1t is difficult in practice to provide a point source at infinity, with-
out involving mutual illumination effects other than those one wishes to
measure. We therefore used a diffuse light source and took control im-
ages at each stage to ensure that the illumination over the area viewed
was near uniform. Unfortunately, this means that the assumption in
the theoretical development that all surfaces, even those outside the
picture, are evenly illuminated, does not accurately reflect the circum-
stances of these experiments. Nonetheless, our experimental results
agree extremely well with those predicted by the theory.

The philosophy behind these experiments was to look for qualita-
tive differences between pictures of black objects and pictures of white
objects. The image intensity function in pictures of black objects will
conform to the expectation that the only source of illumination is a sin-
gle distant light, and the image intensity function in pictures of white
objects will show as well the effects of mutual illumination. All graphs
show image intensity plotted against distance along a section.

3.2 A corner

We imaged an intersection between two planar patches for different
values of the corner angle. The intersection was viewed along the an-
gle bisector. The illuminant direction for each figure is indicated in the
figure captions. We exploit the translational symmetry in this config-
uration and show the images as sections across the grey level function,
but stress that the original image was a proper picture. It can be seen
quite clearly from figures 5-10 that mutual illumination causes a signif-
icant qualitative effect (similar to the well-known “roof edge”) in these
images. Clearly, shape estimation based on image irradiance alone
will err grossly and qualitatively for these images unless the effects of
mutual illumination are taken into account.

Horn [5] constructed a numerical solution to a similar equation
for this geometry and obtained the typical roof-edge signature, and
recognised this to be a cue for concave polyhedral edges. Brady [1]
makes this point too, and demonstrates the output of a roof edge finder
that found a concave intersection of planar patches in this way.’

In fact, the typical signature is a roof edge, or, more accurately, a



pair of rather “peaky” reflexes only when the illuminant lies along the
angle bisector. This is clearly shown in figures 9 and 10. When the
illuminant lies off the angle bisector, these reflexes are superimposed
on a step edge, as shown in figure 5 and figure 7. The size of these
reflexes is a powerful cue for albedo. Figure 7 shows how these reflexes
vary dramatically in size with albedo. This implies that they could
be employed as a cue to absolute surface lightness and to the angle
of the intersection, perhaps by matching the qualitative appearance of
the reflex to a “dictionary” of known shapes.

Typically, human observers appear to see a light patch on one side
of the intersection of two planes, and a dark patch on the other (look
at the corner of a room: the effect is present in figure 4, but may
be reduced by the reprographic process). These patches are relatively
narrow in extent (of the order of small numbers of millimetres), and
run parallel to the intersection. One cannot explain these patches as
the result of the effects of mutual illumination alone, as it is clear from
figure 7 and from figure 5 that mutual illumination causes both sides
of the step edge to increase in brightness. Some form of contrast effect
may, however, be responsible.

3.3 Concave cylinders on a black background

Figure 12 shows the radiance profile for a concave black cylinder on a
black background. Figure 13 shows the radiance profile for a concave
white cylinder on a white background. For this case, we need to con-
sider both the radiance distribution due to illumination by a point
source at infinity, and that due to isotropic ambient illumination®.
Since the operator that takes illumination to observed radiance dis-
tribution is linear in illumination, we may simply consider the form of
a weighted sum of these effects in evaluating our results.

Figure 15 shows the effects of mutual illumination on the radiance
distribution for a concave cylinder, computed for a point source of
illumination at infinity which points directly into the cylinder. In par-
ticular, notice that the radiance distribution flattens noticeably. Figure
16 shows the radiance distribution resulting when the only illuminant
is isotropic ambient illumination, where the radiance of centre surface
facets is lower than that of facets on the side of the cylinder. Both these
effects may be qualitatively understood by considering the st term in
the Neumann series. The surface facets near the patches marked A
in figure 14 will “see” more of the other facets more efficiently than
those near the patch marked B because of the cosine term in the ker-
nel. In the case of isotropic ambient illumination, the initial radiance
is the same for all facets, so that mutual illumination effects will make
the central facets look darker than those at the edges, whereas in the
case of a point source at infinity, the central facets remain brighter
than the edge facets, but brighter to a lesser extent than a reflectance
map model would predict. In this case, therefore, the first term of the
Neumann series provides a good guide to the overall effects of mutual
illumination.

Since the solution is linear in the light sources, we may claim that
the distribution observed experimentally arises as a weighted sum of the
effects, and it is easy to see from the figures that such a weighted sum
gives qualitatively the same shape as the observed distribution,shown
in figure 13. There remains a large qualitative difference between the
radiance profiles observed for a white concave cylinder, and for a black
one. Since this qualitative difference in the radiances is strongly cou-
pled to albedo and to properties of the illumination, it seems possible
to use the radiance either in concert with albedo information to cor-
rect shape estimates, or in concert with more accurate sources of shape
information to recover albedo, using some form of “dictionary” struc-
ture. In fact, it can be shown that for a concave hemi-cylinder, mutual
illumination effects are independent of the radius of the cylinder.

3.4 Blocks world

Recently, Gilchrist [4] proposed that mutual illumination effects help
people achieve surface lightness judgements. This suggestion is based
on an experiment where he prepared small rooms, one white, one black,

1This was unnecessary when we were considering a corner, because the initial
radiance on each plane due to a point source at infinity is constant, and isotropic
ambient illumination simply adds an offset.
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and filled each with objects of the appropriate colour. In particular,
no changes in the retinal image could be ascribed to changes in sur-
face properties. These rooms were then shown under different lighting
conditions to human subjects, who could make good reports of surface
lightness, despite the apparent poverty of the stimulus. Gilchrist points
out that there are enormous differences in the qualitative behaviour of
sections of images of each room.

We have built two similar rooms and imaged them. Figure 17 shows
a typical image of the black room, and figure 18 shows a typical image
of the white room. Notice in particular that there are many reflexes
in figure 18, whereas figure 17 shows no sign of the effects of mutual
illumination at all.

Figure 20 shows a section of the image intensity for the white room.
Compare this with figure 19 which shows a similar section for the black
room. Notice how, although the average grey levels are roughly similar,
figure 19 shows a very much greater dynamic range than does figure
20, an effect apparently due to the high level of fairly isotropic ambient
illumination generated by the white surfaces in the image of the white
room. Furthermore, figure 20 shows a number of sloping edges that
cannot be predicted with the simplest irradiance model. However in
figure 19, typically the grey levels change sharply, and are coupled to
surface orientation in the obvious way.

3.5 Convex cylinders

In this set of experiments, we took a number of images of white convex
half-cylinders on black and on white backgrounds. We show here the
most interesting effects from this series. These we compare with results
obtained by numerically solving the mutual illumination equation. The
geometry and terminology that we use are illustrated in figure 21.

Figure 23 shows a section of the image intensity measured for a
white cylinder on a black planar background, with the camera perpen-
dicular to the background. The light is at approximately 45 degrees
to the background. The image intensity function is what one would
expect. Figure 24 shows what happens when we replace the black
background with a white background. Notice in particular the loss of
dynamic range, and the large reflex where the cylinder meets the plane.

Figure 24 shows another interesting effect that one obtains with this
geometry. Consider the section of the cylinder that is self-shadowed;
all the surface facets in this section see the entire background plane,
whereas the facets in the cylinder’s cast shadow see only the shadowed
section of the cylinder. As a result, we obtain a small but significant
reflex in the self-shadow area. This reflex is marked in figure 24. This
reflex raises a number of interesting possibilities. Consider, for the mo-
ment, this geometry illuminated only by a point source at infinity. In
fact, as the self shadow region is not illuminated, any radiance here is
due to mutual illumination, and as a result there are only odd order
terms in the Neumann series. Under these circumstances and for a suf-
ficiently large background plane, this reflex is an effect of the first order
term in the Neumann series. In this case, the size of the background
plane means that, intuitively, it radiates a lot of light onto the self
shadow region. Third order effects must come from this light, reflected
into the cast shadow region, and re-reflected, and are insignificant. As
a result the effect of the background plane dominates all other effects.
This reflex must occur in this geometry in all cases where there is a
cast shadow which is sufficiently smaller than the background.

It is therefore possible to write down a simple equation for the reflex
in terms of the extent of the plane, the lightness of the surfaces, and
the orientation of surface facets as a function of arc-length along the
section: this equation corresponds to the first term of the Neumann
series, and is the exact solution for this reflex. This suggests that,
at least for certain simple geometries, this reflex can be a source of
shape information in a self shadowing region, where shape from shading
techniques are not applicable. We can employ the result of section

2.4.2 to see that, referring to the geometry and terms in figure 21, this
equation is:

p " =Ly
N(I) = N0§

[ s+ s" cos(a) @

(5% + s.5*. cos(a) + 5*2)% s*=Lao



wherea(s) = 5 — 2, s=r.cos”'(1-2)and 0 <z <.

This equation accurately predicts the shape of the reflexes observed
(see figure 24 and figure 26), and places strong constraints on the shape
of a surface within a self shadowed region, in which conventional shape
from shading techniques cannot operate. We believe, therefore, that
cues of this type may be extremely valuable to programs with advanced
shape perception skills. In particular, Koenderink and Van Doorn [8]
note that artists are accustomed to reproduce this reflex in an exag-
gerated form as a shape cue, which suggests that humans may employ
it in some way.

Since the reflex occurs only in the self shadow region of the cylinder,
we may also raise the intriguing possibility that one may use such effects
to discover self shadow regions.

4 Implications for machine vision

We have shown the typical effects of mutual illumination in real images.
In particular, it is easy to see that mutual illumination effects provide a
strong cue for absolute surface lightness estimation, and can confound
shape perception if it is based solely on reflectance map techniques.

Our data seem to indicate that the most important effects occur
in concave regions. So far, we have succesfully employed a simple
lighting model of the combination of a source at infinity and ambient
illumination to obtain our results. From observations of the radiance
distributions in cast shadow regions of our images, we feel that isotropic
ambient illumination is probably a fairly good model of global mutual
illumination effects, as the radiance in these regions appears to be
constant, and relatively independant of surface orientation.

In this paper we have demonstrated mutual illumination effects at
the intersection of two planes, at the intersection of a plane and a con-
vex cylinder, in a smooth concave region, and in a complex polyhedral
scene. This demonstrates some effects that can result from mutual
illumination in different geometries:

Isotropic ambient illumination

This effect, which we showed in the blocks world images, appears
to be typical of complex scenes containing only light objects. Mu-
tual illumination appears to be an important source of isotropic
ambient illumination.

Step edges with a reflex

These signatures occur at concave polyhedral edges. The size
of the effect provides a cue to lightness. These edges are an at-
tractive example of the interaction of shape and lightness cues.
For obvious reasons, these reflexes do not occur at convex edges.
Clearly, edge detectors that are optimised to respond to step
edges may not detect certain object boundaries on such scenes,
and will miss much important information. It isimportant, there-
fore, to concentrate effort on building edge detection systems that
will respond to a range of features, in the vein of the ideas de-
scribed in, for example, [2].

Reflexes in self shadow regions

Strong reflexes occured in the self shadow regions of a convex
cylinder on a white planar background. We have demonstrated
that these reflexes contain potentially strong shape cues.

It should be clear that the dependence of mutual illumination effects
on scene geometry is such that one cannot use a reflectance map tech-
nique to account for them. A good example of this failure is that of the
intersection of two planes, where patches with a constant surface nor-
mal have different radiance values. This implies that the photometric
invariants described by Koenderink and Van Doorn (7] do not apply
to objects where mutual illumination effects manifest themselves, as
this approach relates the singular behaviour of the field of isophotes to
that of the Gauss map by assuming that radiance is purely a function
of the Gauss map. Furthermore, the fact that radiance at a point is
not purely a function of the surface normal at that point implies that
conventional photometric stereo techniques (Horn’s book [6] is a good
general reference for these techniques) will produce inaccurate shape
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representations for many objects.

It appears to us that the most productive approach to solving the
considerable problem of recovering shape information from radiance
effects involves constructing a “dictionary” of the most common generic
mutual illumination effects, and using this dictionary to recognise and
estimate surface shape. This work leaves a number of issues open;
amongst the most important are:

To what extent is the first order term in the Neumann series a
useful approximation to mutual illumination effects, that is, to
the whole series?

We have demonstrated a geometry (convex cylinder on a plane
background) where a reflex is essentially a first order effect. Is
this true of many geometries? Can geometric information be
extracted from the shape of this reflex?

Is it possible, if only under restricted circumstances, to recover
surface shape using the mutual illumination equation?

e What constraints on surface lightness and on shape can be recov-
ered using mutual illumination in less restricted geometries than
those shown?

To what extent does the human visual system recognise and ex-
ploit information derived from mutual illumination?

5 Conclusion

We have derived the equation governing mutual illumination, demon-
strated numerical solutions to mutual illumination problems, and have
shown that these solutions are similar to effects occurring in real pic-
tures. Our data imply that shape from shading based on the image
irradiance equation may make real errors on images of concave objects.
Furthermore, our data indicates that edge detectors that respond to
only step edges will perform badly on polyhedral scenes, and will waste
information.

We have discussed the cues that mutual illumination effects pro-
vide the vision system, and shown how its effects may help achieving
decisions about shape and about surface lightness.
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Figures

1. For this object, there is no order p contribution from facet A in
the Neumann series for the radiance at facet B. However, there
is a contribution of order p?.
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2. Terminology and geometry for the derivation of the form of the
kernel for a single translational symmetry along y.

Facet
&
[
Facet a.
+
4 L)
FA.
ba, «
-~

s

3. Geometry and terms for section 2.4.2, showing two planar facets
at an angle o

4. An image of a white 90 degree corner. The illuminant was ‘d1—
rected off the angle bisector. The effects of the reproduction
process make it difficult to see the haloes which are normally
perceived on either side of the corner.
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. Image intensity observed across a white 90 degree corner, for an
illuminant directed off the angle bisector. This is the typical
shape for a concave polyhedral edge.
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6. Geometry and nodes used to predict image intensity for a 90
degree corner.
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7. Image intensity predicted by the finite element method for a
white 90 degree corner with the illuminant directed parallel to
one plane, for a range of albedoes. Note that the reflexes become
more nronounced with albedo

50

8. A specimen control: image intensity observed across a black 90
degree corner, for an illuminant directed along the angle bisector.
The control images ensure that effects observed were not simply
a product of light source effects. These images involved imaging
black corners, identical to the white corners imaged, using exactly
the same imaging geometry and light source as used in imaging
the white corner. All the control images of corners have this
form, an essentially flat radiance profile. The small bump in the
black corner image occurs because the corners were constructed
by folding cardboard, with the result that there is a line of surface
facets perpendicular to the camera.
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9. Image intensity observed across a white 90 degree corner, simi-
lar to figure 4, but with the illuminant directed along the angle
bisector. Note the pronounced roof edge.
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10. Image intensity predicted using the finite element method for a
white 90 degree corner with the illuminant directed along the
angle bisector, for a range of albedoes. Note that the reflexes
become more pronounced with albedo. The flattened top to the
reflexes shown is an artifact of the display technique resulting
from linking the nodal values of the constant nodes employed in

the finite element program.

11. Image of a wnite concave cylinder on a black background, for an
illuminant pointine directlv into the cviinder

300 -

250

200 -

150 -

100

50 4

0

0 100 200 300 400 500 600

12. Observed radiance profile for a black concave cylinder on a black
background.
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13. Observed radiance profile for a white concave cylinder on a black
background. Note the pronounced flattening of the radiance pro-
file compared with that in figure 12.
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14.

Geometry and node locations for finite element solution for con-

B

cave cylinder.
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15. Radiance profiles predictéd by finite element metho_d for a con-
cave cylinder illuminated by a point source at infinity, directed
along the normal to the deepest part of the cylinder, for-a range of
albedoes. Note the pronounced flattening with increasing albedo

of the radiance profile.
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16. Radiance profiles predicted by finite element method for a con-
cave cylinder under isotropic ambient illumination, for a range of
albedoes.



17. Image of a black room, containing black objects. The black line
indicates the sectj { sre 19

18. Image of a white room, containing white objects. The black line
indicates the section represented by figure 20

150
100

50

0 T T T T T T

100 200 300 400 500 600
19 Section of image intensity for figure 17.
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20. Section of image intensity for figure 18. Notice just how pro-
nounced the effects of the reflexes are.
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21. Geometry and terms for equation 4.
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22. Image of a
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ex white half-cylinder on a white backn
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Image intensity measured for a convex white half-cylinder on a
black background.
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Image intensity measured for a convex white half-cylinder on «

white background. Note the significant reflexes at both cylinder
boundaries, which are circled.
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. Geometry and node locations for finite element method for con-
vex half-cylinder on planar background, showing illuminant di-
rection. self shadowed region. and cast shadow.
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Image intensity predicted using finite element method for a con-
vex white half-cylinder on a white background, for a range of
albedoes. There is very good agreement with the intensity ob-
served for this geometry (figure 24).



