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Abstract

We describe a method of producing ray-traced images of 2D environments at interactive rates. The 2D environment
consists of a set of disjoint, convex polygons. Our technique is based on the visibility complex [17,19] [Pocchiola M,
Vegter G. Proc Int J Comput GEOM Applic 1996;6(3):279}308. Rivière S. Visibility computations in 2D polygonal
scenes. PhD thesis, Univ. Joseph Fourier, Grenoble I, France], a data structure in a dual space where a face of the
visibility complex corresponds to a contiguous set of rays in the primary space with the same forward and backward
views. Sweeping the viewing ray around a viewpoint corresponds to walking along a trajectory on the visibility complex.
Producing a ray-traced image is equivalent to walking along and maintaining a set of trajectories. Generating ray-traced
images with the visibility complex is very e$cient since it uses the coherence among the rays e!ectively. We have
developed a new algorithm for the randomized incremental construction of the visibility complex. The advantage of using
an incremental algorithm is that the history of the incremental construction yields an e$cient ray-query data structure,
which is required for casting secondary rays. The performance of our algorithm is analyzed and a comparison is made
with the classical ray-tracing algorithm. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ray tracing accurately simulates re#ection, refraction
and lighting e!ects, thereby rendering appealingly accu-
rate images. The main drawback is that rendering is slow.
A casual look at the set of rays reveals that there is an
apparent coherence, i.e., many adjacent rays encounter
the same set of re#ecting/refracting media in the same
order (Fig. 1). This coherence is di$cult to exploit dir-
ectly, however, since knowing when this coherence is
broken by an obstacle is not a trivial matter.

This coherence can be thought of in terms of `sweepsa
of a set of rays. Sweeping a set of rays through a set of
obstacles motivates a special data structure that can
e$ciently report when a ray will encounter an obstacle.
Such a data structure is cumbersome in the primary
space where the objects reside. However, the representa-
tion becomes very clean when we work in a dual space,
i.e., a space where each point corresponds to a line in

the primary space. Sweeping a ray in the primary space
is equivalent to walking along a trajectory in a dual
space.

Traditional visibility algorithms have worked almost
exclusively in the primary space. By shifting our attention
to a dual space, a seemingly di$cult problem of ray
coherence becomes particularly easy to visualize and
represent. In this paper, we will present how the visibility
complex data structure can be used to e$ciently produce
ray-traced images of 2D environments. Visibility compu-
tations in 2D environments have many real-world
applications, since much of the world around us is essen-
tially 2D or 21

2
D (e.g., #oor plans).

The rest of this paper is organized as follows. We "rst
review previous work on the visibility complex and other
relevant topics. Then, we brie#y describe the visibility
complex data structure and how it can be implemented in
a novel way, i.e., as a cylindrical partition of a set of dual
objects. We present the analysis of the construction time
of the visibility complex, and also the point-location cost
associated with the visibility complex. Then, we describe
how the visibility complex can be used to perform ray
tracing and present empirical results. In the future works

0097-8493/99/$ - see front matter ( 1999 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 7 - 8 4 9 3 ( 9 9 ) 0 0 0 9 3 - X



Fig. 1. The set of rays are swept until one of the rays encounters
an obstacle.

section, we describe novel techniques to reduce the size of
the visibility complex.

2. Previous work

Speeding up ray tracing typically involves either rep-
resenting a group of objects in a hierarchy of bounding
boxes, or decomposing the free space into a quad-
tree/octree or a kd-tree that can be traversed e$ciently
[1]. Since these data structures reside in the primary
space, they do not directly capture the coherence among
the rays. For example, we de"ne a contiguous set of eye
rays to be equivalent if their ray trees are topologically
equivalent. In primary space, it is di$cult to represent
this equivalence class exactly, and it is almost always
represented conservatively.

Arvo and Kirk's ray classi"cation algorithm [2] is
closer in spirit to our algorithm. This algorithm associ-
ates a 5-tuple with each ray, decomposes the 5D space
into hypercubes, and then associates each hypercube
with a set of candidate objects. However, decomposing
the 5D dual space into hypercubes can be ine$cient,
since the boundary at which the visible object changes
typically does not lie along the hypercube boundary. Ray
re-classi"cation technique is reminiscent of the screen
(Section 7); both techniques reduce memory requirement
at the expense of potentially performing multiple queries
per ray.

Beam tracing [3] takes advantage of ray coherence by
grouping a set of equivalent rays into a `beama. The
main drawback of this algorithm is that it has to perform
object-space polygon clipping algorithm every time
a beam encounters an obstacle. These beams quickly

break into many small beams, and each beam may have
a complicated shape.

A popular method of generating mirrored images is to
re#ect the viewpoint across the mirror, render the scene
from the virtual viewpoint and map the view onto the
mirror [4}6]. Refraction can be approximated in a sim-
ilar way. One drawback of this method is that the algo-
rithm must keep track of which pixels correspond to
which mirror, which is potentially costly. Also, these
algorithms typically over-render the re#ected/refracted
scene. This technique achieves a substantial speed up
over classical ray tracing, but its rendering speed has not
yet reached interactive rates. Another popular method of
rendering mirrors is to create a re#ected copy of the
environment across the mirror and render the scene,
appropriately clipped [6]. This method is surprisingly
tricky to implement (e.g., objects behind the mirror must
not appear in the mirror's re#ection and re#ected object
must not appear in front or to the side of the mirror, all of
which must be handled by clipping in the rendering
engine), and handles inter-re#ecting mirrors poorly.

In [7], Ofek and Rappoport discuss how to generate
scenes containing re#ections on curved objects at interac-
tive rates. Potentially re#ected scene objects are tessel-
lated and a virtual vertex is computed for each resulting
scene vertex. Ofek and Rappoport report rendering time
per frame to be less than 1 second per frame, although the
number of re#ectors is typically very small (less than 5).

In [8], Teller and Alex attempt to perform ray casting
in real time through frustum casting. This algorithm is
a combination of the beam tracing technique [3] and
Warnock's algorithm [9] where the frustum is recursively
subdivided until either no element intersects the frustum,
one element obscures all other elements in the frustum, or
the frustum covers one pixel. This technique produces
maximum frame rate of 5 frames/s at 129]129 maximum
resolution, with only primary and shadow rays cast. The
scenes are very simple, consisting of a building #oorplan
where each wall meets the #oor and the ceiling.

In [10], Bala et al. describe an interactive ray-tracing
algorithm in 3D. In this algorithm, radiance values are
lazily collected into linetrees, and these collected values
are quadrilinearly interpolated to approximate the radi-
ance value with a guaranteed error bound. These line-
trees are reprojected as the user's viewpoint changes in
order to accelerate the visibility determination at a pixel.
This algorithm renders scenes at minimum 20}30 s per
frame, and uses a lot of memory in order to cache the
radiance values (around 100 Mbytes).

A survey of ray-shooting algorithms in 2D, 3D and
higher dimensions can be found in [11,12]. In [13],
Pocchiola and Vegter present a 2D ray-shooting algo-
rithm which runs in O(log m) time using O(m#k) space,
where the environment consists of disjoint convex objects
with m simples arcs in total. Here, k is the size of the
visibility complex. This algorithm involves performing
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Fig. 2. This "gure illustrates the geometric interpretation of the
projective dualization. Let P be the closest point to the origin
that lies on the line Ax#By#C"0. Let DOPD"d. The point
dual to this line is 1/d units away from the origin, and lies on the

line OP on the opposite side of the origin.

point-location queries on planar sub-complexes of the
visibility complex, where the (directed) free bitangents of
the pseudo-triangulation act as one-sided obstacles. In
[14], Szirmay-Kalos and MaH rton prove that given n
objects in 3D, any ray-shooting algorithm has worst-case
running time of X(log n) and any logarithmic algorithm
must use at least X(n4) storage and pre-processing time.
One way of answering ray-shooting queries in 3D is to
perform point-location on a data structure in PluK cker
dual space. Examples of these algorithms can be found in
[15,16]

The original paper on the visibility complex by
Pocchiola and Vegter describes how the visibility complex
of curved convex objects can be constructed in
O(n log n#k) optimal time and O(k) working set, where
n is the number of objects and k is the number of free
bitangents among the objects, which is proportional to
the size of the visibility complex [17]. In [18], Pocchiola
and Vegter present a practical construction algorithm for
the visibility complex which runs in O(n log n#k) time
and O(n) space, using greedy pseudo-triangulation. (The
environment consists of n disjoint convex obstacles of
constant complexity.)

In [19,20], Rivière presents a practical construction
algorithm for the visibility complex of convex polygonal
objects using topological sweep. This algorithm runs in
O(n log n#k) time. In [21], Rivière describes how to
maintain the view along a trajectory, given an initial view
at the beginning of the trajectory. In [19,21], Rivière
hardly mentions anything about performing point-loca-
tion in the visibility complex. As we will see in this paper,
point-location plays a crucial role in handling re#ec-
ted/refracted rays.

In [22], Durand et al. present the "rst attempt at build-
ing a visibility complex of 3D objects. This algorithm
utilizes a dualization scheme where the region boundaries
in the dual space are curved surfaces, which complicates
the implementation. To our knowledge, no implementa-
tion of this algorithm exists. In [23], Durand et al. de-
scribes the visibility skeleton, which comprises the 0-faces
and the 1-faces of the 3D visibility complex. This data
structure can be used to solve various problems involving
visibility computations, including discontinuity meshing.
Since this data structure is restricted to only zero and one
dimensional elements, we cannot compute the view from
an arbitrary view point using this data structure.

3. The visibility complex

In this section, we brie#y describe the visibility com-
plex data structure and how we represent the visibility
complex in a novel way, i.e., as the cylindrical partition of
a set of `sheetsa.

We represent lines as points in the projective dual of
the projective plane, i.e., the line Ax#By#C"0 in the

primary space maps to the point (A, B, C) in the dual
space in homogeneous coordinates. This dualization has
a geometric interpretation shown in Fig. 2. As this geo-
metric interpretation illustrates, as a line approaches the
origin, its dual point approaches the point at in"nity. (In
[19], Rivière uses a slightly di!erent dualization scheme
where vertical lines map to the points at in"nity.) This
dualization scheme has many useful properties. For
example, this mapping works backwards as well; the
family of lines that pivot around the point (A/C, B/C) in
the primary space maps to the line Ax#By#C"0 in
the dual space. This representation has the advantage
that the family of lines passing through plane polygons
becomes a polygon and the family of lines through
a point becomes a line segment, so the geometry in the
dual space is easy to represent and use.

Let ¸
O

be the set of lines that intersect the object O. If
we dualize every line l3¸

O
, the set of points MD(l)Dl3¸

O
)

forms a `sheeta S
O

in the dual space (Fig. 3).
Now, the set of rays leaving O may see a number of

di!erent objects. We divide the sheet S
O

into di!erent
`regionsa depending on which object the ray sees. For
example, in Fig. 4, the set of rays seeing O

2
is collected

into the region labeled O
2
, and the rest of the rays that do

not see anything map to a region labeled `BSa, which
stands for the `blue skya.
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Fig. 3. `Sheeta S
O

in the dual space corresponding to the set of
lines interesting the object O in the primary space.

Fig. 4. The set of points on the sheet S
O

are separated into
di!erent `regionsa according to the object visible along the
corresponding ray. When viewing rays are swept around a view-
point, the dualization of the viewing rays form a line segment in
the dual space. The set of regions encountered by these dual
points correspond to the view around the viewpoint.

Fig. 5. (a) Given a "xed ray direction, the free space can be
decomposed into areas of constant forward and backward
views. (b) The corresponding cross-section of the visibililty com-
plex. The solid line segments correspond to the cross-section of
a sheet. Each side of a sheet is decomposed into separate regions.
Each area in (a) corresponds to a unique region in (b).

Fig. 4 also shows a viewpoint, and the set of viewing
rays that pivot around the viewpoint. The dualization of
these rays correspond to a line segment in the dual space
(marked `tracea in the "gure). We can therefore easily
compute the view around a view-point by `walkinga
along the trace on a sheet, and noting which regions are
encountered.

Suppose ray r
1

leaves an object O along the line
Ax#By#C"0, and r

2
leaves O in the opposite direc-

tion along the same line. Notice that r
1

and r
2

dualize to
the same coordinates, (A/C, B/C). To represent the dual
point of r

1
separately from the dual point of r

2
, we

associate r
1
and r

2
with di!erent sides of the sheet. In our

representation, the rays that are directed clockwise
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Fig. 6. (a) A viewing ray is swept around a viewpoint. At the
marked rays 1, 2, 5, the forward or the backward view cha-
nges. (b) In the dual space, we can maintain the forward view of
the viewing ray by `walkinga along the marked trajectory. At
the marked point 2, we must decide whether to stay on the same
sheet, or to hop onto a di!erent sheet.

(counter-clockwise) with respect to the origin map to the
upper (lower) side of the sheet. Therefore, the upper and
the lower side of a sheet are divided into separate sets of
regions. These sets of regions (organized according to the
sheet to which they belong) and their adjacency relation-
ships de"ne the visibility complex.

Let us examine a cross-section of the visibility complex
by examining a set of parallel rays (Fig. 5). This set of rays

dualizes to points along a line perpendicular to the rays
that contains the origin (Fig. 2). We de"ne the forward
(backward) view of the ray as the object visible from the
ray origin along (opposite) the ray direction. Let us
visualize the cross-section by examining these viewing
rays and see how many distinct forward and backward
views these rays can have. Each contiguous set of rays
which share the same forward and backward views map
to a region in the visibility complex. (A region is equiva-
lent to a face of the visibility complex, as described in
[17]). Fig. 5 illustrates this concept.

As we sweep a viewing ray around a veiwpoint, the
forward and backward views change at discrete ray posi-
tions (Fig. 6). We can maintain the forward view of the
viewing ray by `walkinga the visibility complex. Sweep-
ing a viewing ray around the viewpoint corresponds to
the dual point translating along a line. Fig. 6 shows the
cross-section of the visibililty complex along this line.
When the dual point encounters a region boundary, it is
sometimes necessary to decide whether to stay on the
same sheet, or to hop onto a di!erent sheet (e.g., at point
2 in Fig. 6).

If one examines the cross-sections shown in Figs. 5 and
6, one discovers that it corresponds to a trapezoidal
decomposition of a set of line segments. Therefore, the
visibility complex can be visualized as a set of `prismsa
delimited by a set of sheets, and the cross-section of
theses prisms look like Figs. 5(b) and 6(b). If we subdivide
each region into trapezoids, the prisms are decomposed
into cylinders, and the visibility complex corresponds to
a cylindrical partition [24] of the sheets (described in the
next section), which is precisely the representation we use
in our implementation.

4. Construction algorithm and analysis

This section describes our construction algorithm for
the visibility complex. The visibililty complex is construc-
ted in the same way as cylindrical partition. The con-
struction algorithm of the cylindrical partition is loosely
based on the construction algorithm given in [24], and
the analysis of the running time of the algorithm and the
size of the data structure uses many ideas found in [24].

Fig. 7 illustrates cylindrical partition. A set of polygons
are de"ned in Fig. 7(a). To construct a cylindrical parti-
tion of these polygons along the z-direction (coming out
of the page), we "rst construct the primary walls as
follows. From every point that lies on a polygon edge, we
vertically extend a line segment in both positive and
negative z-directions until the line segment encounters
the "rst polygon. If no polygon stops the line segment, it
is vertically extended forever. The union of these vertical
segments de"nes the primary walls. Notice that the pri-
mary walls divide the upper (lower) side of each polygon
into seperate regions based on which polygon is directly
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Fig. 7. Cylindrical partition: (a) a set of polygons are de"ned.
After we de"ne a cylindrical partition of these polygons along
the z-direction (coming out of the page), the upper side of the
quadrilateral is shown in (b).

above (below) each point. Each of these regions uniquely
belongs to a parallelepiped extruded along the z-axis. We
further re"ne each parallelepiped by performing trap-
ezoidal decomposition on the region along the y-direc-
tion. These walls parallel to the yz-plane are called
secondary walls. Fig. 7(b) shows the upper side of the
quadrilateral after the primary and secondary walls have
been constructed. The primary walls are shown in solid
lines, and the secondary walls are shown in dashed lines.
Now, each parallelepiped has been subdivided into a set
of `cylindersa. These cylinders and the adjacency rela-
tionships among them de"ne the cylindrical partition.
For further details, the reader is referred to [24].

4.1. Constructing the visibility complex

To construct the visibility complex, the visibility com-
plex is initialized with a cylinder H

I/*5*!-
delimited by two

(in"nite) sheets corresponding to the blue sky. In prac-

tice, we clip every sheet to a bounding box. If we restrict
the viewpoint (or the virtual viewpoint, as explained in
the next section) to lie within a bounding box in the
primary space, then we can calculate the minimum size of
the dual bounding box with the following property:
whatever lies outside the dual bounding box will map to
less than a pixel in the "nal rendered image.

Once the visibility complex is initialized, we incremen-
tally add the sheets in a random order. Let Ni denote the
set of objects we have added so far, and let H(Ni) denote
the cylindrical partition of Ni. After adding the sheet N,
the cylindrical partition will be updated to H(Ni`1)
where Ni`1"MNiXNN. The following pseudo-code ex-
plains how H(Ni) is updated to H(Ni`1). LN represents
the sheet boundary of N:

Update Cylindrical Partition (H(Ni), N)M

Find the cylinder containing the "rst vertex of LN
`Travel and splita along LN
Mark the cylinders lying inside LN
Split the marked cylinders into upper and lower
cylinder
CC Process the upper cylinders
Mark the region boundaries to be deleted
Delete the marked region boundaries in a random
order
CCProcess the lower cylinders
Mark the region boundaries to be deleted
Delete the marked region boundaries in a random
order
Return (H(Ni`1))

N

When the sheet N is added, we "rst perform point-
location (shown later) to "nd the cylinder containing the
"rst vertex of the sheet boundary LN, and `travel and
splita along LN while maintaining the cylindrical parti-
tion. After `travel and splita, we mark the cylinders lying
inside LN, and split them into two (one adjacent to the
upper side of N and one adjacent to the lower side of N).
Let H@(Ni) denote the cylindrical partition existing at this
point. If we look at the upper side of N (the lower side is
handled in exactly the same way), some of the region
boundaries must be deleted, and the cylinders adjacent
to deleted edges must be updated accordingly. In order to
update these cylinders, we mark the region boundaries to
be deleted and delete them in a random order. Deleting
a region boundary is analogous to deleting a line segment
from trapezoidal decomposition, as described in [24].
When all the marked region boundaries are deleted, we
obtain H(Ni`1).

4.2. Point location

One important by-product of the randomized in-
cremental construction is that we obtain an e$cient
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point-location data structure by recording the history of
construction. (An e$cient point-location query is crucial
to ray tracing application, as shown in the next section).
Let n be the number of sheets to be inserted and let us
assume that each sheet has a bounded number of edges
(i.e., the corresponding polygon in the primary space has
a bounded number of edges). For every cylinder that has
ever existed during the incremental construction se-
quence, we create a node in the history. If a cylinder is
`splita by an inserted sheet edge into O(1) child cylinders
during the incremental construction, we create links from
the node corresponding to the split cylinder to the nodes
corresponding to the child cylinders. Also, if one of the
region boundaries adjacent to a cylinder is deleted, the
cylinder is merged into O(n) child cylinders, and we create
links from the corresponding node to the child nodes.

The following pseudo-code outlines how the point
location is performed. To "nd the cyllinder containing
the query point p, we call Point-Location (InitialNodeIn-
History, p)

Point-Location(Node, p) M
if (Node has no child node) M

Return(Node)
N else M

ChildNode"child node containing p
Return(Point-Location(ChildNode, p))

N
N

To determine the cylinder containing the query point,
we start from the initial node in history, and follow the
child links (i.e., determine the child cylinder that contains
the query point) until a node corresponding to an unde-
stroyed cylinder is reached. If the current node is linked
to O(n) child nodes, we can perform a binary search
among the list of child nodes in O (log n) time since the
child cylinders can be uniquely ordered from left-to-right.
This point-location process takes O (log3 (n)) average
time if we apply the standard analysis found in [24,25].
(We can also prove that this average bound holds with
high probability [24]).

4.3. Analysis

We will now present the bound on the average con-
struction time. Let us de"ne the size of the structural
change from H(Ni) to H(Ni`1) as the sum of the face-
lengths of the destroyed cylinders f3H(Ni) and the face-
lengths of the newly created cylinders g3H(Ni`1). Here,
face-length denotes the number of faces in all dimensions.
The total structural change denotes the sum of the struc-
tural changes over the entire insertion sequence.

Given a "xed insertion sequence, the above construc-
tion algorithm runs in

O (n log3(n)#(total structural change) ) log(n))

average time. Following the derivation found in [24], the
expected size of total structural change is

E[size of total structural change]"O A
n
+
j/1

E[DH(Nj)D]
j B

where Nj is a random subset of j sheets and
DH(Nj)D"+

g|H(Nj)
face-length (g). Note that DH(Nj)D"

H( j2) in the worst case, in which case the expected size of
total structural change is bounded by +

j
H( j)"H(n2). In

practice, DH(Nj)D may be sub-quadratic and the average
time complexity of the construction algorithm may be
much better than the worst case.

Similarly, we can derive the expected size of history
(i.e., total number of nodes and links) as

O A
n
+
j/1

E[number of cylinders in H(Nj)]

j B
times log(n), with Nj de"ned as above. This average size is
no worse than O(n2 log n).

4.4. Search path compaction

As we noted previously, point-location is performed in
O (log3(n)) average time. We have developed a technique
to `compacta the search path so that point-location can
be performed in O (log2(n)) time. This technique works as
follows. If we examine the construction algorithm and its
history, we can see that we can create links directly from
the node corresponding to the (destroyed) cylinder in
H@(Ni) to the nodes corresponding to its child cylinders in
H(Ni`1). A cylinder C

#)*-$
3H(Ni`1) is a child of a cylin-

der C
1!3%/5

3 H@(Ni) if they overlap in space. Note that
these child cylinders can be uniquely ordered from left-
to-right. We call this technique `search path compac-
tiona, which decreases the point-location cost to
O (log2(n)) average time. This average query time holds
with high probability. The cost we pay for smaller query
time is that the number of links is no longer linearly
proportional to the number of nodes. Therefore, the
O (n2 log n) upper bound on the expected size of history
no longer holds when search path compaction is applied.
As we will demonstrate in Section 7, in practice the size of
the history typically decreases by a small percentage by
performing search path compaction.

4.5. Degeneracy

Our current implementation does not work well with
degenerate con"gurations: we require that the input
polygons be disjoint and no three vertices of the input
polygons may be collinear. This does not mean that the
visibility complex inherently cannot handle these
degeneracies, however. There are techniques to treat the
degeneracies arising from inaccuracies of numerical
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Fig. 8. Di!erent types of transmitting media and the corre-
sponding virtual viewpoints are illustrated. In (a), the line
A

13*.!3:
x#B

13*.!3:
y#C

13*.!3:
"0, which is the initial line of

the sweep, is re#ected to form A
3%&-

x#B
3%&-

y#C
3%&-

"0. In
order to sweep the secondary re#ected ray, we perform point-
location on the dual point (A

3%&-
/C

3%&-
, B

3%&-
/C

3%&-
) to "nd the

cylinder which contains this point, and walk the sheets starting
from that cylinder. In (b), the initial line A

13*.!3:
x#B

13*.!3:
y#

C
13*.!3:

"0 is refracted to form A
3%&3

x#B
3%&3

y#C
3%&3

"0.
We again perform point-location on the dual point
(A

3%&3
/C

3%&3
, B

3%&3
/C

3%&-
) to "nd the cylinder which contains the

point, and walk the sheets starting from that cylinder. In (c),
a screen is shown, which directly passes the light without alter-
ing it. A screen, although visually uninteresting, plays an impor-
tant role in reducing the size of the visibility complex.

calculations [19]. Also, it is possible to handle input
polygons that overlap. Suppose polygons P

1
and P

2
overlap over the region P

1
WP

2
. In the dual space, this

con"guration can be handled by fusing the sheets D(P
1
)

and D(P
2
) along the dual region D(P

1
WP

2
) which must

be handled specially. Incorporating these techniques into
our implementation remains a future work.

5. Ray tracing with the visibility complex

When the visibility complex is walked to produce the
current view, three major classes of rays must be handled
separately, namely, primary rays, re#ected secondary
rays and refracted secondary rays. Concurrently sweep-
ing the primary ray and the secondary rays (as shown in
Fig. 1) can be achieved by maintaining a sorted array
where each element corresponds to a (primary or second-
ary) ray. The array is maintained in a sorted order ac-
cording to the generation of the ray, i.e., the primary ray
corresponds to the "rst element of the array, the second-
generation ray corresponds to the second element, and so
on. Each element of the array maintains its current posi-
tion in the visibility complex, as well as its trace (the
direction along which the dual point is walked).

5.1. Primary rays and reyected rays

As shown in Section 3, sweeping the primary ray
around the viewpoint (A

71
/C

71
, B

71
/C

71
) corresponds to

walking along the trace

A
71

x#B
71

y#C
71
"0

in the dual space. To sweep a re#ected secondary ray, we
re#ect the view point across the mirror to generate a vir-
tual viewpoint at (A

771
/C

771
, B

771
/C

771
) (Fig. 8(a)). The

trace corresponding to this re#ected secondary ray is
along

A
771

x#B
771

y#C
771

"0.

Suppose a primary ray is swept around the viewpoint
and encounters a re#ecting medium when its orientation
in the primary space is

A
13*.!3:

x#B
13*.!3:

y#C
13*.!3:

"0

(Fig. 8(a)). Then, we generate the re#ected secondary ray
at

A
3%&-

x#B
3%&-

y#C
3%&-

"0,

determine which cylinder contains the dual point
(A

3%&-
/C

3%&-
, B

3%&-
/C

3%&-
) in the visibility complex, and start

walking the new trace from this point. In order to deter-
mine which cylinder contains (A

3%&-
/C

3%&-
, B

3%&-
/C

3%&-
), we

use the point-location data structure outlined in the
previous section.

5.2. Refracted rays

To sweep a refracted secondary ray, we generate a vir-
tual veiwpoint according to the tangent law [3] which
closely approximates Snell's law when the incidence
angle is small. The tangent law states that

g
1

tan h
1
"g

2
tan h

2
,
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where h
1

is the angle of incidence, h
2

is the angle of
refraction, and g

1
and g

2
are the indices of refraction.

Using the tangent law, the refracted rays meet at a virtual
focus. When the viewpoint is at a distance D

1
units away

from the medium, the virtual focus is D
2
"1/gD

1
units

away from the medium, where g"g
1
/g

2
(relative index

of refraction), and the line joining the viewpoint and the
virtual focus is perpendicular to the plane of the medium.

Using the tangent law, we can calculate the position of
the virtual veiwpoint. If the refracting medium is of
thickness d, then the virtual viewpoint is translated
(g!1)d units closer to the plane of the refracting me-
dium, along the direction perpendicular to this plane. To
simplify the implementation, we have restricted the view-
point to lie outside the refracting medium. When the
angle of incidence becomes large, the tangent law no
longer closely approximates Snell's law; we currently use
the tangent law for all angles of incidence. Correctly
handling (or more closely approximating) refraction in
this case remains a future work.

Refracting media are handled in the same way as
re#ecting media (Fig. 8(b)). When a primary ray encoun-
ters a refracing medium at

A
13*.!3:

x#B
13*.!3:

y#C
13*.!3:

"0

in the primary space, we generate the refracted secondary
ray at

A
3%&3

x#B
3%&3

y#C
3%&3

"0,

determine which cylinder contains the dual point
(A

3%&3
/C

3%&3
, B

3%&3
/C

3%&3
) in the visibility complex, and start

walking the new trace from that point. Again, the point-
location data structure is used to determine which cylin-
der contains (A

3%&3
/C

3%&3
, B

3%&3
/C

3%&3
).

Once the virtual viewpoint (A
771

/C
771

, B
771

/C
771

) is
created for the refracted ray, the trace lies along

A
771

) x#B
771

) y#C
771

"0

in the same way as a re#ected secondary ray (Fig. 8(b)).
Although it is theoretically possible to use Snell's law

in order to handle refraction, using Snell's law has several
drawbacks. First of all, the trace of the refracted ray in
dual space lies along a curve rather than a line, which
complicates the implementation. Refracting a refracted
ray is much more di$cult than handling just one refrac-
tion. Due to these drawbacks, we decided to use the
tangent law in our implementation.

5.3. Screens

Fig. 8(c) illustrates a `screena which passes light rays
without altering them. We can imagine screens as refrac-
ting media with zero depth. The signi"cance of screen lies
in its ability to reduce the size of the visibility complex
and its history, as will be explained in Section 7.

5.4. Walking the visibility complex

Once the array of traces and the dual points are in-
itialized, the dual points are walked in lock step, i.e., at
each time step, the dual point with the shortest walk is
determined and every dual point walks this shortest
distance. A subtle point to notice is that we cannot
directly compare these distances in the dual space to "nd
the shortest distance; these distances must be translated
into angles before they can be compared. When a dual
point encounters a region corresponding to a re#ect-
ing/refracting medium, we spawn a new trace and replace
the next element in the array with the new trace. Now, we
must update the rest of the array by recursively applying
the same procedure to the new trace. Once the array is
initialized, the dual points are walked in lock step again.

Although our implementation currently does not
handle shadow rays, they can be handled in exactly the
same way as the re#ected/refracted rays: When an eye ray
"rst hits an object, we initialize a shadow ray from the
light source pointing toward the intersection. When the
primary and secondary eye rays are swept, these shadow
rays are swept concurrently. The trace of a shadow ray
lies along a line. We can also build a bidirectional ray
tracer by sweeping light rays around each light source
and recording the radiance values at each intersection.
Building a bidirectional ray tracer using the visibility
complex is particularly attractive, since the light rays are
swept in object-precision and thus obviates the need to
deal with sampling issues.

6. Experimental results

In this section, we empirically measure the running
time and the memory usage of our algorithm, and present
the analyses. For Figs. 9}11 ,the test case used was a set
of triangles scattered around the plane (Fig. 20). The
plane is divided into N by N imaginary grids, and a tri-
angle is randomly placed within each grid. With this
con"guration, the size of the visibility complex can po-
tentially grow at H(n2), since each object may see the
maximum number of objects. As Fig. 9 strongly suggests,
the growth rate of the size of the visibility complex in this
con"guration is actually linear. Fig. 9 also shows the size
of the history. As we can see, search path compaction
actually decreases the size of history by a small percent-
age in practice. The size of history grows substantially
faster than the size of the visibility complex. To combat
this high growth in memory usage, we propose tech-
niques to cut down the size of the data structures in
Section 7.

Fig. 10 shows the construction time of the visibility
complex, plotted against the number of objects. The
construction time remains fairly modest at less than
3 min for up to 256 objects. As expected, search path
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Fig. 9. This graph shows how the size of the visibility complex
and its history grows as the number of objects increases. The size
of the visibility complex is shown in solid line, the size of the
history with no search path compaction is shown in dashed line,
and the size of the history with search path compaction is shown
in dotted line. As can be seen in this graph, the size of the history
dominates the memory usage.

Fig. 10. This graph shows how construction time behaves as the
number of objects increases. The construction time with no
search path compaction is shown in solid line, and the construc-
tion time with search path compaction is shown in dotted line.
The time requirement is fairly small, at less than 3 min for 256
objects. The sharp increase in the growth rate around 200
objects can be attributed to thrashing in virtual memory.

Fig. 11. This graph shows how the frame rate varies as the
number of objects increases. For this graph, we rendered scenes
along a trajectory 3 times in a row. The frame rate from the "rst
trial is shown in dotted line, the second trial in dashed line, and
the third trial in solid line. This increase in frame rate as the
trials progress can be attributed to the working set being fetched
from the disk into RAM. As can be seen from the graph, the
working set is paged out of RAM at around 50 objects. This
graph also illustrates that the working set in all cases are fairly
small; in all cases, the implementation maintains a frame rate
close to 30 frames/s on the third trial.

compaction adds to the construction time. The amount
of overhead is fairly small, however. At around 200
objects, the construction time suddenly increases as
a sharper rate. This can be attributed to the size of the
data structures exceeding the size of RAM. To generate
Figs. 9 and 10, we used a 200 MHz Pentium machine
with 128 Mbyte of RAM running Linux.

Fig. 11 shows the rendering rate of our implementa-
tion. All of our examples are rendered at 800]800 res-
olution. The triangles are rendered as extruded columns,
as shown in Fig. 20. The triangles are rendered without
re#ections or refractions. As Fig. 11 shows, the rendering
rate depends heavily on whether the working set is cur-
rently residing in the main memory. This observation
motivates an intelligent pre-fetching strategy for walking
the visibility complex, which is left as future work. To
generate the rendering rates, an SGI O

2
workstation was

used. Fig. 11 suggests that even when the visibility com-
plex and its history take a lot of memory, the working set
to render scenes along a trajectory is actually small, since
our implementation maintains a frame rate close to 30
frames/s on the third trial for all case.

Fig. 12 describes rendering rate in the hall of mirrors
environment (Fig. 21). The rendering time per frame is
plotted against the maximum depth of the ray tree. To
compare the performance of our implementation against
a conventional ray tracer, we have implemented a 2D ray
tracer which encodes the set of objects in a quadtree. The
quadtree is subdivided until each leaf node contains at
most one object. A quadtree leaf node maintains pointers
to its four neighbors, and each neighbor is at the same
level or higher in the quadtree hierarchy. To walk the
quadtree, we determine through which of the four sides
we exit the current quadtree leaf node, and examine the
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Fig. 12. This graph was obtained by rendering scenes of the
`Hall of Mirrorsa environment while traveling along a traject-
ory. The solid curves show the rendering time per frame for the
visibility complex, as the depth into the ray tree grows. The
upper solid curve was obtained without search path compac-
tion, and the lower solid curve was obtained with search path
compaction. Note that the rendering time increases with scene
complexity, unlike the case of the conventional ray tracer
(dashed curve).

Fig. 13. The average scene complexity is shown in solid line. The
average number of quadtree nodes traversed by a ray per frame
is shown in solid line.

corresponding neighbor node. If this neighbor node is
not a leaf, then we recursively follow the child link until
we reach a leaf node. Our aim was to empirically com-
pare the performance of our visibility complex implemen-
tation with a standard 2D ray tracer which uses a generic
spatial decomposition technique. Thus, our comparison
between the performance of our implementation and
a standard 2D ray tracer is only a rough one; perfor-
mance of either implementation can be improved by code
optimization and other techniques. Both our implemen-
tation and the 2D ray tracer using quadtree rendered
frames at 800]800 resolution. Since the conventional
ray tracer works in 2D, 800 rays were cast to render each
scene. Our implementation using the visibility complex
produces images in object precision, which are then ren-
dered at 800]800 resolution.

As shown in Fig. 12, the rendering time of the conven-
tional ray tracer increases linearly with the maximum
depth of the ray tree, while the rendering time of the
visibility complex grows with the scene complexity. In all
but one case, the visibility complex outperforms the con-
ventional ray tracer, by e!ectively capturing the coher-
ence among the rays.

In Fig. 13, the average scene complexity of the hall of
mirrors environment is shown in solid line. The scene
complexity of an image is de"ned as the number of
x-coordinates where a visual event happens, i.e., either
a primary ray or one of the secondary rays encounters
a new object. The average number of quadtree nodes

traversed by a ray per frame is shown in dotted line.
From this graph, we can see that the running time of our
implementation roughly corresponds to the scene com-
plexity, and the running time of the quadtree-based ray
tracer roughly corresponds to the average number of
quadtree nodes traversed by a ray in the hall of mirrors
environment.

Fig. 14 is obtained by walking an enviornment con-
taining screens, mirrors and refracting media (Fig. 22),
again at 800]800 resolution. The frame rates are plotted
as the number of objects are increased. The maximum
depth of the ray tree is set at 5. In this scene, our
algorithm runs up to 3.5 times as fast as the classical ray
tracer. The visibility complex achieves 10.5 to 14.9
frames/s on an SGI O

2
workstation.

Fig. 15 shows the average scene complexity of the
environment containing screens, mirrors and refracting
media in solid line. Again, the running time of our imple-
mentation roughly corresponds to the scene complexity.
The average number of quadtree nodes traversed by a ray
per frame is shown in dotted line. In this enviornment,
the average number of quadtree nodes shows a weak
correlation with the frame rate. Part of the reason is that
we must also take into account the processing that hap-
pens when a ray intersects an object, i.e., when it inter-
sects a mirror, the orientation of the re#ected ray must be
calculated, etc.

Fig. 16 describes how the size of the active set changes
as the number of objects grow for our ray tracer. The
active set is de"ned to be the set of cylinders that are
touched in order to render a frame. This "gure illustrates
that the size of the active set remains roughly constant as
the number of objects are increased.
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Fig. 14. This graph was obtained by rendering scenes along
a trajectory, where the environment contains mirrors, screens
and refracting media. As the number of objects grows, the
number of frames per second for the visibility complex and the
conventional ray tracing remain roughly stable. The visibility
complex maintains a frame rate up to 3.5 times that of the
conventional ray tracer.

Fig. 15. The average scene complexity is shown in solid line. The
average number of quadtree nodes traversed by a ray per frame
is shown in solid line.

Fig. 16. The asterisks represesnt the average number of cylin-
ders in the history and the visibility complex that are touched to
render a frame, plotted against the number of objects. The
crosses represent the average number of cylinders in the visibil-
ity complex that are touched to render a frame. As can be seen in
the graph, the average number of active cylinders is modest and
remains stable.

7. Current and future work

As Fig. 9 shows, the size of the visibility complex and
its history is substantial. Therefore, the usefulness of
the visibility complex depends on how to e!ectively cut
down the memory usage. We have developed two tech-
niques to decrease the memory usage, namely, placing
screens and instancing the visibility complex.

Screens: As we have seen in the previous section, the
size of the visibility complex can grow very quickly. As
[17] shows, the size of the visibility complex is propor-
tional to the number of free bitangents in the primary
space. Given n objects, we can have H(n2) free bitangents
in the worst case. We have also seen that the average size
of history can be as big as O(n2 log n) (with no search
path compaction performed).

However, using a device called a screen, we can reduce
the size of the visibility complex. Recall that a screen
passes light through without altering them, therefore
screens are invisible objects that do not change the "nal
rendered image. Since the size of the visibility complex is
proportional to the number of free bitangents, placing
a screen can reduce the size of the visibility complex by
blocking maximum number of free bitangents while in-
troducing minimum number of new free bitangents.
Thus, the bene"t gained by introducing a screen is

(d of free bitangents cut)
!D vertices visible from v

1
D

!D vertices visible from v
2
D,

where v
1

and v
2

denote the endpoints of the screen.
In the best case, a screen can block H(n2) free bitan-

gents while introducing at most O(n) new free bitangents.
This happens, for example, when there are two columns
of objects each consisting of n/2 objects. If each objects in
the left column is visible from each object in the right
column and vice versa, the number of free bitangents is
H(n2), assuming each object is of bounded size. Placing
a screen in between these two columns blocks H(n2) free
bitangents while introducing H(n) new free bitangents.
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Fig. 17. This "gure illustrates how the screens can reduce the
size of the visibility complex and its history. As the number of
screens increases, the total size of the visibility complex de-
creases since screens cut more free bitangents than it creates.
Screens also reduce the number of free bitangents that happen
over the insertion sequence, so the size of the history becomes
smaller as well.

Fig. 18. This "gure illustrates that the construction time of the
visibility complex decreases as more screens are introduced.
Since screens block many bitangents through the insertion se-
quence, the screens prevent the construction of many vertices
over the insertion sequence, and therefore improve the construc-
tion time.

Fig. 19. The frame rate typically decreases as the screens are
introduces, since the rendering algorithm must sweep several
rays concurrently, rather than just the primary ray. As Fig. 11
also illustrates, the algorithm displays a degree of cache coher-
ence, because the frame rates are higher at the third run-through
than the "rst run-through. When screens are placed, the size of
the visibility complex becomes smaller, so the frame rates remain
relatively stable among the "rst, second and the third run-
throughs. When no screen is inserted, the size of the visibility
complex is much larger, so the frame rate varies a lot among the
"rst, second and the third run-throughs.

A screen can also reduce the size of the history by
restricting the number of free bitangents that can arise
during the insertion sequence. In order to e!ectively
reduce the size of history, the screens should be placed
before the objects. Once the screens are inserted, the set
of input objects are inserted in a random order.

Fig. 17 shows the reduction in memory usage through
the use of screens. To generate Figs. 17}19, the test case
of Fig. 20 was used with 144 triangles arranged in
a 12]12 array. The screens are placed along the grid
boundaries in a kd tree-like fashion. The objects are
added after the screens are placed. As the graph shows,
introducing screens achieves signi"cant savings in terms
of both the size of the visibility complex and the history.
Fig. 18 shows that the construction time decreases as well
through the introduction of screens. When the screens are
introduced, the frame rate typically decreases (Fig. 19).

Currently, the screen locations are chosen by the user.
A promising future research direction is develop an algo-
rithm/heuristic to calculate the optimal screen place-
ment. This is currently an active area of research.

Instancing the visibility complex: The second technique
involves instancing the visibility complex, i.e., the visibil-
ity complex can be de"ned hierarchically. For example,
in order to construct the visibility complex for a #oor-
plan, one needs to only de"ne the visibility complex for
one canonical room, and this canonical visibility complex
can serve as a representation of every room. The canonical
room can undergo arbitrary a$ne transformation, since
the only properties that we require from the transforma-
tion is that it preserves incidence and collinearity. We are
also actively pursuing this line of research.

Other improvements: Firstly, there is no need to per-
form point-location at either specular re#ections or re-
fractions; instead, the point-location can be performed by
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Fig. 20. The user interface of our implementation. The view from the current viewpoint is shown on the right, and the bird's eye view is
shown on the upper left corner. Lower left corner shows the visibility complex with the trace highlighted in red.

Fig. 21. Snapshot of the `Hall of Mirrorsa test environment.
Fig. 22. Snapshot of the test environment containing mirrors,
screens and refract.
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locally walking the complex. This technique may lead to
an improvement in rendering rate. Secondly, all the cal-
culations we have demonstrated apply to illumination
e!ects as well; the visibility complex should yield an
e$cient forward and bidirectional ray tracer. The bi-
directional ray tracing using the visibility complex is
attractive since all the shading information is calculated
in object precision, thereby avoiding sampling problems.
Thirdly, the visibility complex interacts well with line-
based representations of objects (like the lumigraph of
[26,27]); inserting such an object into our world involves
not much more than pointer indirections. Finally, a dy-
namic radiosity algorithm using the visibility complex is
described in [28]. It will be interesting to combine our
ray-tracing implementation with radiosity computation
to generate more physically accurate renderings.

8. Conclusion

In this paper, we have described a novel construction
algorithm of the visibility complex, which yields an e$-
cient point-location data structure as a by-product.
Then, an algorithm is described which can generate ray-
traced images by concurrently walking the visibility com-
plex along several trajectories. We empirically measured
the performance of our implementation, and compared it
to a conventional ray tracer with quadtree-based space
decomposition scheme. Then, we have presented promis-
ing future research directions, including screens and in-
stancing the visibility complex. These techniques can
potentially give us large savings in memory usage.
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