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Abstract

We formulate colour constancy as a problem of
Bayesian inference, where one is trying to represent
the posterior on possible interpretations given image
data. We represent the posterior as a set of samples,
drawn from that distribution using a Markov chain
Monte Carlo method. We show how to build an ef-
ficient sampler.

This approach has the advantage that it unifies the
constraints on the problem, and represents possible
ambiguities. In turn, a good description of possi-
ble ambiguities means that new information, instead
of producing contradictions, is easily incorporated by
resampling existing samples. The method s demon-
strated on the case where surfaces seen in two distinct
images are later discovered to be the same. We show
examples using images of real scenes. Keywords:
Colour constancy, Markov chain Monte Carlo, Prob-
abilistic reasoning, Inference

The image appearance of a set of surfaces is af-
fected both by the reflectance of the surfaces and by
the spectral radiance of the illuminating light. Recov-
ering a representation of the surface reflectance from
image information is called colour constancy. Compu-
tational models customarily model surface reflectances
and illuminant spectra by a finite weighted sum of
basis functions and use a variety of cues to recover
reflectance, including (but not limited to!): specular
reflections [9]; constant average reflectance [2]; illu-
minant spatially frequency [8]; low-dimensional fami-
lies of surfaces [10]; physical constraints on reflectance
and illumination coefficients [4, 3]. Each cue has well-
known strengths and weaknesses. The most complete
recent study appears to be [1], which uses the cues
to make Bayesian decisions that maximise expected
utility, and compares the quality of the decision; inac-
curate decisions confound recognition [5].

A reliable estimate of surface colour is possible only
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under highly specialised conditions, but representa-
tions of possible error and ambiguity are far more im-
portant for system building. For example, the hypoth-
esis that a fire engine is present is probably insupport-
able unless the colour representation could be red (or
green, in some states!). Furthermore, if we decide a
fire-engine really is present, we should be able to use
that information adjust our estimate of surface colour
for other surfaces. These observations justify studying
colour constancy in a framework of probabilistic infer-
ence. This approach has the advantage that, instead
of comparing cues, we can combine them.

Notation: we write ¢ for a vector, whose i’th com-
ponent 1s ¢; and M for a matrix whose 7, j’th compo-
nent is M;;. o

Comment: Current CVPR production does not
allow for colour figures. A version of this paper with
colour figures can be found at the author’s home page
http://www.cs.berkeley.edu/daf.

1 Bayesian inference by sampling

The great importance of Bayes’ rule is that gener-
ative models — which give the way that data is pro-
duced, given the state of the world — can be turned
into recognition models just by multiplying by the
prior. All but the silliest choices of prior are over-
whelmed by data in the kinds of problem we wish to
solve. Information can be extracted from the poste-
rior by drawing a large number of samples from that
distribution using Markov chain Monte Carlo meth-
ods. A typical MCMC algorithm is the Metropolis-
Hastings algorithm, which would produce in this case
a sequence of hypotheses, by taking an hypothesis of
state 7; and proposing a revised version, T;. The new
hypothesis Ti41 is either T; or T/, depending (ran-
domly) on how much better the posterior associated
with T} is. In particular, we accept the new state with



probability

Prop(T} — T;)Posterior(1})
> Prop(T; — T)Posterior(T;)

a = min(1

where Prop(T; — T7}) is the probability of proposing
state T} given one is in state T;.

Once sufficient iterations have completed, all sub-
sequent T; are samples drawn from the posterior; the
number of iterations required to achieve this is often
called the burn in time. These samples may or may
not be correlated; if this correlation is low, the method
is said to miz well. The formalism is extremely broad
with respect to the structure of the state space (for
example, the dimension of the state space may not be
known a priori) [6]. Note the convenient fact that the
algorithm uses only ratios of posteriors, so that the
normalising constant is irrelevant.

Metropolis-Hastings algorithms should be viewed
as a kind of souped up hypothesize and test process,
so that current vision algorithms are a natural source
of proposals. The crucial improvement is that we
can use different, incompatible algorithms as distinct
sources of proposals, and the samples we obtain rep-
resent the posterior and so incorporate all available
measurements.

2 Probabilistic colour constancy
We assume that surfaces are flat, so that there is

no shading variation due to surface orientation and
no interreflection. There are four components to our
model:

A viewing model: we assume a perspective view
of a flat, frontal surface, with the focal point posi-
tioned above the center of the surface. As spatial res-
olution is not a major issue here, we work on a 50 x
50 pixel grid for speed. ’

A spatial model of surface reflectances: be-
cause spatial statistics is not the primary focus of this
paper, we use a model where reflectances are constant
in a grid of boxes, where the grid edges are not known
in advance. A natural improvément would be the ran-
dom polygon tesselation of [7].

A spatial model of illumination: for the work
described in this paper, we assume that there is a
single point source whose position is uniformly dis-
tributed within a volume around the viewed surface.

A rendering model: which determines the re-
ceptor responses resulting from a particular choice of
illuminant and surface reflectance; this follows from

standard considerations.
2.1 The rendering model
We model surface reflectances as a sum of ba-

sis functions ¢;(A), and assume that reflectances are
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Left:
dered using a linear intensity scale that thresholds the

Figure 1: a typical synthetic Mondrian, ren-
specularity. Center: the proposal distribution for x
and y position of the specularity, obtained by image fil-
tering and shown with the highest value white. Right:
a rendering of a typical sample for this case, using
the sample’s illuminant; a successful sampler produces
samples that look like the image.

piecewise constant:

ns

s(z,y,A) = ) _oi(z,y)6;(A)

7=0

Here oj(z,y) are a set of coefficients that vary over
space according to the spatial model.

Similarly, we model illuminants as a sum of (pos-
sibly different) basis functions ; and assume that
the spatial variation is given by the presence of
a single point source positioned at p. The dif-
fuse component due to the source is eq(e,y, A, p) =

d(z,y,p) Yoo €&¥i(A) where ¢; are the coefficients of
each basis function and d(z,y,p) is a gain term that
represents the change in brightness of the source over
the area viewed. The specular component due to
the source is: em(:c Y, A, p) =m(z,y,p) S icg €ithi(A)
where m(z,y,p) is a gain term that “represents the

change in specular component over the area viewed.
Standard considerations yield a model of the k’th
receptor response as:

pi(z,y) = d(z,y,p) Zga,kemj(z, y) + m(z,v,p) Z hikei
t,J i

where
gk = [ oeOBNG; (NN, hi = [ (Wi (VA
and pg () is the sensitivity of the k’th receptor class.
The illuminant terms d(z,y,p) and m(z,y,p) follow
from the point source model; m(z,y,p) is obtained
using Phong’s model of specularities.

Our model of the process by which an image is gen-

erated is then: sample the number of reflectance steps
in z and in y (k; and ky respectively) from the prior;
now sample the posmon of the steps (e, and e, re-
spectively) from the prior; for each tile, sample the
reflectance for that interval from the prior (o} for the

m’th tile; sample the illuminant coefficients ¢; from



Figure 2: Top: images of the same set of patches on a Mon-
drian of coloured paper patches, photographed under white,
blue, purple, red, aqua and yellow light and scanned from [4],
used as inputs to the sampler. Center: renderings of typical
representations obtained by the sampler, in each case shown
under the coloured light inferred (so that in a successful result,
the inferred representation looks like the image above it). Note
the accuracy of the spatial model, and the robustness to image
noise. Bottom: renderings of typical representations under the
same light, so that a successful result implies similar renderings.

the prior; sample the illuminant position p from the

prior; and render the image, adding Gaussian noise
of known standard deviation. This gives a likelihood,
P(irpage|k$,ky,gx,gy,cr;",c,-,g) The posterior is pro-
portional to:

P(imagelkz, ky, e , e, 07 e, p)m(kug )m(kvy)m(s,) X

(s, [I erimeone
metiles
where we write 7 for a prior.
2.2 Priors and practicalities

We specify the spatial model by giving the number
of edges in the = and y direction separately, the po-
sition of the edges, and the reflectances within each
block. We assume that there are no more than seven
edges (8 patches) within each direction, purely for ef-
ficiency. The prior used is a Poisson distribution, cen-
sored to ensure that all values greater than seven have
zero prior, and rescaled. Edge positions are chosen us-
ing a hard-core model: the first edge position is cho-
sen uniformly; the second is chosen uniformly, so that
the number of pixels between it and the first is never
fewer than five; the third is chosen uniformly so that
the number of pixels between it and the second and
between it and the first is never fewer than five; and so
on. This hard-core model ensures that edges are not
so close together that pixel evidence between edges is
moot.

The constraints on reflectance and illuminant coef-
ficients are encoded in the prior. We use a prior that
is constant within the constraint set and falls off expo-
nentially with an estimate of distance from the con-
straint set. Because the constraint sets are convex,
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Figure 3: The proposal distribution for edge birth in the =
direction (left) and the y direction (right) for the Mondrian
imaged under white light in figure 2. Note that the filtering
process leads to strong peaks near the edges; this means that the
proposal process is relatively efficient, but does not completely
rule out edges away from strong responses, if other evidence
can be found for their presence (the likelihood component of
the posterior).

they can be expressed as a set of linear inequalities;
for surface reflectance we have C ¢ + b > 0 and for
illuminant we have C e > 0. If the coefficients in these
inequalities are normalised (i.e. the rows of the matri-
ces are unit vectors), then the largest negative value
of these inequalities is an estimate of distance to the
constraint set.

We use six basis elements for illumination and re-
flectance so that we can have (for example) surfaces
that look different under one light and the same un-
der another light. This phenomenon occurs in the real
world; our exploration of ambiguities should repre-
sent the possibility. We represent surface colour by
the colour of a surface rendered under a’known, white
light.

3 Sampling the posterior
Proposals are made by a mixture of five distinct

move, chosen at random. The probability of propos-
ing a particular type of move is uniform, with the ex-
ception that when there are no edges, no deaths are
proposed, and when the number of edges in a par-
ticular direction is at a maximum, no births are pro-
posed. An important advantage to this approach is
that, within each move, we can assume that the val-
ues of variables that we are not changing are correct,
and so apply standard algorithms to estimate other
values. We omit calculations — which follow the lines
of [6] — for lack of space.

Birth of an edge: For each direction, we apply a
derivative of Gaussian filter to the red, green and blue
components of the image and then divide the response
by a weighted average of the local intensity; the result
is squared and summed along the direction of interest.
This is normalised to 0.8, and 0.2 of a uniform distri-
bution is added. This process produces a proposal
distribution that has strong peaks at each edge, and



at the specularity, but does not completely exclude
any legal edge point. For a given state, this proposal
distribution is zeroed for points close to existing edges
(for consistency with the hard core model), and a pro-
posed new edge position is chosen from the result. A
new reflectance must be chosen for each of the new
patches created by the birth of an edge. Currently, we
average the receptor responses within each new patch,
and then use the (known) illuminant to estimate a re-
flectance that comes as close as possible to achieving
this average value, while lying within the constraint
set. We then add a Gaussian random variable to the
estimated reflectance value.

Moving the light: Proposals for a new z, y posi-
tion for the light are obtained by filtering the image.
We apply a filter whose kernel has the same shape as
a typical specularity and a zero mean to the r, g and
b components separately; the responses are divided
by mean intensity, and the sum of squared responses
is rescaled to form a proposal distribution. The ker-
nel itself is obtained by averaging a large number of
specularities obtained using draws from the prior on
illuminant position. Proposals for a move of the light
in z are uniform, within a small range of the current
position.

Death of an edge: The edge whose death is pro-
posed is chosen uniformly at random. The death of an
edge causes pairs of surface patches to be fused; the
new reflectance for this fused region is obtained using
the same mechanism as for a birth.

Moving an edge: An edge to move is chosen
uniformly at random. Within the region of available
points (governed by the hard-core model — the edge
cannot get too close to the edges on either side of it)
a new position is proposed uniformly at random. This
is somewhat inefficient, compared with the use of fil-
ter energies as a proposal distribution. We use this
mechanism to avoid a problem posed by a hard-core
model; it can be difficult for a sampler to move out
of the state where two edges are placed close together
and on either side of a real edge. Neither edge can
be moved to the real edge — the other repels it —
and a new edge cannot be proposed in the right side;
furthermore, there may be little advantage in killing
either of the two edges. Proposing uniform moves al-
leviates this problem by increasing the possibility that
one of the two edges will move away, so that the other
can move onto the right spot.

Change reflectance and illumination: It is
tempting to use a Gibbs sampler, but the chain moves
extremely slowly if we do this, because Gibbs sam-
pling is well known to behave badly with correlated
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Figure 4: The first two components of surface reflectance sam-
ples, plotted on the same axes for four different surfaces. Each
sample is colour keyed to the image from which it was obtained;
red samples for the red image, etc, with black corresponding to
the white image. The circles show samples of the reflectance
coefficients for the blue surface at the top left corner of the
Mondriaan; the stars for the yellow surface in the second row;
the plusses show samples for the orange surface in the top row
of the Mondriaan and the crosses for the red surface in the bot-
tom row. Notice that the smear of samples corresponding to a
particular surface in one image intersects, but is not the same
as, the smear corresponding to that surface in another. This
means that the representation envisages the possibility of their
being the same, but does not commit to it.

variables (which explains its poor reputation in vision
circles). Instead, we sample reflectance and illumina-
tion simultaneously using a method due to [12]. The
state space for this proposal is reflectance and illumi-
nation; we append a set of independent Gaussian ran-
dom variables (w) of no external significance to obtain
a posterior of the form exp(—G(gi,09...€61,€65...) —
(1/2)wTw). The log of this posterior has the form of
the Hamiltonian for a particle in an energy field. We
now use two types of proposal move: advance time for
this particle; and choose new momenta (which can be
done by Gibbs sampling, because each w; is indepen-
dent of every other, and of the state variables). This
method moves to maxima of the posterior about as
fast as gradient descent, and then samples around the
maxima. If the state is far from a maximum, then the
state moves down the energy field, gathering momen-
tum, which is then thrown away by the second type
of move, so the particle will tend to get trapped in
maxima and explore them.

Burn in and mixing: The sampler described
here has been run on many synthetic images where
“ground truth” is known, and in each case reaches a
small neighbourhood of ground truth — i.e. “burns
in” — within about 1000 samples. The experimen-
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Figure 5: The first two components of surface reflectance sam-
ples, plotted on the same axes for four different surfaces. These
come from the samples of figure 4, resampled under the as-
sumption that the blue surface in the top left hand corner of
the Mondriaan is the same for each image. We use the same
representation and axes as in that figure. Notice that this sin-
gle piece of information hugely reduces the ambiguity in the
representation.

tal data shown below suggests the sampler mixes well.
The sampler converges if started from a random sam-
ple from the prior, but this is slow and unnecessarily
inefficient. A good guess at edge positions follows by
choosing a set of edges at maxima of the edge proposal
distributions, censored to ensure the hardcore model
applies. Similarly, a start point for the light position
follows by choosing the maximum likelihood position
from the proposal distribution; once the specular po-
sition is known, an estimate of illuminant colour fol-
lows. Finally, for each patch we obtain a reflectance
estimate from the average colour within the patch and
the illuminant colour. This yields a start point from
which the sampler converges relatively quickly.
3.1 Resampling

Assume that we have a sampled representation of
the posterior for two distinct images. We are now told
that a patch.in one image is the same as a patch in
another — this should have an impact on our inter-
pretation of both images. The sampled representation
is well suited to determining the effect of this infor-

mation.

In particular, we have samples
of P(g,,state a|1mage a) and P(g,,state bLmage b)
where we have suppressed the details of the rest of
the state in the notation. We interpret “the same”
to mean that each patch is a sample from a Gaussian
distribution with some unknown mean « and a known
standard deviation. We would like to obtain sam-
ples of P(g,state a,state bjimage a,image b). Now
we have that P(image a, image b|state a,state b, a) is
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Figure 6: On the top, samples of reflectances returned for
each patch on the Mondrian using the images of figure 2, under
each light, rendered under white light. There are four hundred
samples per patch and per illuminant, each rendered as a small
square; thus, a patch for which there is very little information
shows a salt-and-pepper style texture. The columns show sam-
ples for the same patch under different illuminants; each row
corresponds to an illuminant (in the order aqua, blue, purple,
red, white and yellow). Notice the very substantial variation
in appearance; white pixels denote samples which saturated.
Notice also that for each patch there are samples that look sim-
ilar. The center figure illustrates the samples obtained when
all samples are resampled, assuming that the right (blue) patch
is the same patch in each image. The bottom figure illustrates
the samples obtained when all samples are resampled, assuming
that the sixth (yellow) patch is the same patch in each image.
Notice the substantial reduction in variance; while this con-
straint does not force the other patches to look the same, they
do because they are in fact the same surface.

proportional to

[

Now the term inside the integral is:
P(state a, g, ,image a) P(state b,g,,image b)
m(2,) m(gs)

We have two sets of samples, £¢ and ©°. We ensure
that these samples are independent and identically
distributed by shuffling them (to remove the corre-
lations introduced by MCMC). This means that, for
the conditional density for the i’th sample, we have
P(X¢|i) = P(state a,o,,image a). Now we construct
a new sampler, whose state is {7, j, }. We ensure this
produces samples of the distribution
(o

P, (i)la) P(g,(5)|2)m(a)
m(ga(i))m(2s(5))

We now use the i’s and j’s as indexes to our previ-

ous set of samples. We can marginalise with respect

P(image a,state alg ) P(g,|a)x

P(image b, state b|g, )P(g,|2) ) doadoyr(a)

Plapla)Plo,la)

(¢, j, ) =




to g, and g by simply dropping their values from
the sample. The result is a set of samples distributed
according to the desired distribution. Building a sam-
pler that obtains samples of {i, j, @} space according
to the desired distribution involves technical difficul-

ties beyond the scope of this paper.

4 Experimental results
The data set shown in figure 2 consists of images

originally used in [4]. These images of the same set
of patches on a Mondriaan of coloured paper patches,
photographed under white, blue, yellow, purple, red
and cyan light. There are no specularities, so we used
a diffuse model for this data set.

The original data has been lost, so we used versions
scanned from the paper; these images were displayed
on a CRT, photographed from that display, subjected
to four-colour printing and then scanned; it is remark-
able that any constancy is possible under the circum-
stances. A basis was obtained using the bilinear fitting
procedure of [11}. Constraint regions are more diffi-
cult; we obtained a natural coordinate system using
principal components, and then constructed a bound-
ing box in this coordinate system. The box was grown
10 % along each axis, on the understanding that none
of the colours in the Mondriaans of [4] were very deeply
saturated.

Figures 2 and 4 show a set of typical results from
these images. The spatial model identifies edges cor-
rectly. Groups of samples drawn for the same surface
reflectance under different lights intersect, as we ex-
pect. Furthermore, groups of samples drawn for dif-
ferent surface reflectances under the same light tend
not to intersect, meaning that these surfaces are gen-
erally seen as different. Figure 6 shows a rendering of
samples under white light, to give some impression of
the variation in descriptions that results. The sampler
is relatively slow (about one hour for 1000 samples on
a Macintosh 300Mhz G3 in compiled Matlab).

The resampling results are pleasing. Figure 5 shows
results obtained by assuming that a single surface
patch in each of the six images is the same. This re-
sults in very much reduced variance in the rendering
of that patch because the error balls for this surface
patch intersect in a relatively small region. This re-
duced uncertainty about the reflectance of the patch
means that our uncertainty about the illuminant in
each case is also reduced. This means that for a given
tlluminant the variance in reports of the colour of ev-
ery patch must be strongly reduced. What demon-
strates the strength of the model is the fact that from
dluminant to illuminant the variance in reports of
patch colour is also reduced; thus, the algorithm has
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been able to use information that one patch is the
same in each image to obtain a representation that

strongly suggests the other patches are the same, too
(figure 6).

5 Discussion
Because MCMC algorithms produce information

about the range of possibilities implied by an im-
age, integrating other forms of information is simpler.
These algorithms are an attractive tool for integrating
current vision techniques, because the proposal mech-
anism makes it possible to use distinct, apparently
incompatible algorithms and obtain a unified repre-
sentation; furthemore, standard vision techniques —
like looking at gradient magnitude to find edges —
have a natural role as proposal processes. Resampling
means that new information can be seamlessly incor-
porated into a representation, given a rather natural
conditional independence property applies.

Acknowledgements: Thanks to Stuart Russell
for pointing out the significance of MCMC as an in-
ference technique.
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