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Abstract

Diffuse interreflections mean that surface shading and shape are related in ways that are
difficult to untangle; in particular, distant and invisible surfaces may affect the shading
field that one sees. The effects of distant surfaces are confined to relatively low spatial
frequencies in the shading field, meaning that we can expect signatures, called shading
primitives, corresponding to shape properties. We demonstrate how these primitives can
be used to support the construction of useful shape representations. Approaches to this
include testing hypotheses of geometric primitives for consistency with the shading field,
and looking for shading events that are distinctive of some shape event. We show that
these approaches can be composed, leading to an attractive process of representation
that is intrinsically bottom up. This representation can be extracted from images of real
scenes, and that the representation is diagnostic.

1 Background

Changes in surface brightness are a powerful cue to the shape of a surface; the study
of extracting shape information from image shading starts with [12] and is comprehen-
sively summed up in Brooks’ book [13]. The approach views shading as a local effect;
surface brightness is modelled as a product of a visibility term and a non-negative func-
tion of the Gauss map, leading to a partial differential equation—the image irradiance
equation—whichexpresses the relationship between surface geometry and image bright-
ness. Shape from shading theories that view shading as a local effect are now widely
agreed to be unsatisfactory, for three reasons: the local shading model omits the effects
of diffuse interreflections, a source of substantial effects in the brightness of surfaces;
the underlying shape representation, a dense depth map, contains excess detail for most
recognition applications; and the necessary assumptions are unrealistically restrictive.
New models of shape from shading can be obtained by changing either the type of shape
representation sought in the shading field [9], or the model of shading [18, 19, 16].

1.1 Distant surfaces and their effects

Very few techniques for extracting shape information from shading fields are robust to
the effects of diffuse interreflections—some approaches appear in [28, 21, 27, 29]. A prob-
lem arises outside controlled environments, however, because there may be surfaces that
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Fig. 1. A patch with a frontal view of an infinite plane which is a unit distance away and carries a
radiosity is shown on the left; this patch is small enough that its contribution to the plane’s
radiosity can be ignored. If the patch is slanted by with respect to the plane, it carries radiosity
that is nearly periodic, with spatial frequency . We refer to the amplitude of the component
at this frequency as the gain of the patch. The graph shows numerical estimates of the gain for
patches at ten equal steps in slant angle, from 0 to , as a function of spatial frequency on the
plane. The gain falls extremely fast, meaning that large terms at high spatial frequencies must be
regional effects, rather than the result of distant radiators. This is why it is hard to determine the
pattern in a stained glass window by looking at the floor at foot of the window.

are not visible, but radiate to the objects in view (so called “distant surfaces”). Mutual
illumination has a characteristic smoothing effect; as figure 1 shows, shading effects that
have a high spatial frequency and a high amplitude generally cannot come from distant
surfaces.

The extremely fast fall-off in amplitude with spatial frequency of terms due to dis-
tant surfaces (shown in figure 1) means that, if one observes a high amplitude term at
a high spatial frequency, it is very unlikely to have resulted from the effects of distant,
passive radiators (because these effects die away quickly). This effect suggests that the
widely established convention (e.g. [3, 14, 17]) of classifying effects in shading as due
to reflectance if the spatial frequency is high (“edges”) and the dynamic range is rela-
tively low, and due to illumination otherwise, can be expanded. There is a mid range of
spatial frequencies that are largely unaffected by mutual illumination from distant sur-
faces, because the gain is small. Spatial frequencies in this range cannot be “transmitted”
by distant passive radiators unless these radiators have improbably high radiosity. As a
result, spatial frequencies in this range can be thought of as regional properties, which
can result only from interreflection effects within a region.

2 Primitives

Object representation is a fundamental problem in recognition tasks. In particular, one
would like to have some ability to abstract objects—recognise them at a level above that
of specific instances. The classical approach to alleviating difficulties with abstraction
is to view recognition in terms of assemblies of stylised primitives. In this view, which



has been espoused in a variety of forms [1, 2, 20, 22], objects are represented as assem-
blies of shapes taken from a collection of parametric families with “good” properties.
A classical difficulty with this view of representation is that it is hard to know what the
primitives should be.

One important feature of geometric primitives is that their appearance is stereo-
typed. In particular, the most useful form of primitive is one where it is possible to test
an assembly of image features and say whether it is likely to have come from a primi-
tive or not. A second feature of a useful primitive is that it is significant. For example,
a cylinder is a significant property, because many objects are made of crude cylinders.
A third useful property is robustness; cylindrical primitives are quite easy to find even
in the presence of some deformations.

In the work described in [8], it was shown that viewing objects as assemblies of prim-
itives can be used successfully, if crudely, to find images containing horses. The program
first finds the primitives—in this case, cylindrical body segments, which appear in an im-
age as regions that are hide-like in colour and texture and have nearly parallel and nearly
straight sides—and then tries to form assemblies of the primitives that are consistent
with the animal’s joint kinematics. Our horse finder has low recall—about 15%—but
marks only 0.65% of pictures without horses, and has been extensively tested on a large
set of images [7].

The weakness in this program lies in the fact that there are so many sets of nearly-
parallel, nearly-straight edges (potentially body segments) that, if the number is not re-
duced, the kinematic tests become overwhelmed. For the horse finder, this problem can
be alleviated by requiring that only segments that have hide-like pixels in the interior
could be body segments. This approach can be made more general, by considering the
fact that shading across a cylinder-like surface is quite constrained.

2.1 Shading primitives

Traditional shape from shading requires an impractical local shading model to produce a
dense depth map. For our purposes a dense depth map is heavily redundant—instead, we
will concentrate on finding stylised events in the shading field that are strongly coupled
to shape, which we call shading primitives. In [16], Koenderink observed that deep holes
and grooves in surfaces have characteristic shading properties—they are usually dark,
because it is “hard” to get light into them. This is clearly an important component of the
appearance of surfaces. For example, the lines on human foreheads—geometrically so
trivial that they tend not to appear in depth maps—are easily visible and used by humans
for communication because they almost always have a small attached shadow, which
gives them high contrast. These shadows are largely independent of the details of the
local shape of the surface—a deep groove will be dark, and the shape of the bottom of the
groove is irrelevant. The appearance of grooves is stereotyped—grooves almost always
appear in images as narrow, dark bars—and so they are easily found. This combination
of significance, robustness, and stereotypical appearance is precisely what is required
from a primitive.

There are two forms of test in which a shading primitive might appear. In the first
case, one uses shading to test an hypothesis about shape; the test must be constructed
to be robust to light reflected from distant surfaces, and to yield useful results. As we



show, tests meeting these requirements can be built, because one knows what kind of
shape is expected. In the second case, the shading is the primary object that establishes
the hypothesis; for example, grooves have a characteristic appearance that can be found
using a template matching like approach. Typically, complex objects will require mul-
tiple tests, and we show in section 4 that one can build composite representations using
shading primitives.

3 Shading on a primitive

Cylinders are natural primitives for programs that attempt to find people or animals, like
the horse-finding program above. The geometric approach to finding image regions that
could represent cylinders involves finding boundaries, constructing local symmetries be-
tween boundary points (as in [4, 13]) and then constructing collections of symmetries
that have the same length and whose centers lie roughly on a straight line to which they
are roughly perpendicular.

In this case, exploiting shading is easy because there is already an hypothesis as to the
underlying geometry (as in [10]). In particular, we can test the shading along a symmetry
to see whether it is consistent with the shading across a limb.

3.1 Method

Testing whether the shading across a symmetry represents the shading across a limb
cross-section requires a classifier of some form. To determine this classifier, we devel-
oped a simple geometric model of a limb cross-section, and then applied a simple shad-
ing model to the limb model to generate typical shading cross-sections. We then used
these analytically determined shading cross-sections to train a classifier. Passing the seg-
ment under test to the classifier tells us whether the shading is consistent with that on a
limb.

The geometrical model of a limb is approximately cylindrical, with a few variations.
The cross-section of the limb is taken to be elliptical, with a randomly chosen aspect ra-
tio, and the major axis at any angle to the observer. Since limbs are certainly not perfectly
elliptical in cross-section, we add a couple of bumps or grooves to the surface. Using
our shading model, we calculate the shading distribution on this shape as in figure 2. It
is these theoretical predictions of shading, rather than experimental data, which are used
to train the classifier. However, the theoretical model does have some parameters, such
as the range of aspect ratios, and number and size of bumps, which were tuned to give
a reasonable match to the experimental data.

To predict the shading on our geometrical limb model, we use the same shading
model as in [11]. The radiosity at any point on the limb is modelled as the sum of two
components: the first due to distant radiators, which is uniform (because any spatial fre-
quency high enough to be non-uniform over the support of the cylinder was suppressed
by the low gain at high spatial frequencies); and the second due to a single point source,
modeled as a source at infinity. This is a version of a model suggested by Koenderink
[15] and also used by Langer et al.[18].



Fig. 2. Typical limbs from our model. In each case, the plot shows the upper cross-section of the
limb, while the image below it shows the shading that will be result on a limb of that shape. The
bumps on the surface are intended to capture muscle definition.

Because the limb has translational symmetry, we can model the “sky” (distant radi-
ators) as an infinitely long half cylinder above the limb with its axis collinear with that
of the limb. We can then write the brightness at a point on the limb as:

where and are the polar angles of the edges of the unobscured sky (measured from
the zenith), is the polar angle of the the normal at , is the polar angle of the point
light source, and and are the brightnesses of the ambient and point light sources.
This simple model allows us to predict the radiosity given a particular limb shape.

In images, limbs appear in a variety of sizes. In order to compare limbs of differ-
ent sizes, we linearly interpolate between the samples we have to create a cross section
of a given width. We then project this cross section onto the most significant principal
components of the positive training data, in order to generate a data point in a lower-
dimensional feature space. In addition to the principal components, we also consider
the residual, a measure of the amount of variation in the signal which is not captured
by the principal components. Signals similar to those yielding the principal components
will be described fairly completely by the projection onto those principal components.
However, signals unlike the positive data will not be described very well by the projec-
tion onto the principal components, and the difference between the original signal and
its projection onto the space of principal components will be quite large. It is the energy
of this difference which we call the residual.

For our classifier, we trained a support vector machine [5] using the projection onto
principal components and the residual. In contrast to the use of SVMs in [24] and [23],
we culled our positive training data from the results of our theoretical shading model ap-
plied to the geometrical limb model. Negative training data consisted of randomly ori-
ented lines selected from randomly chosen images.



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Principal minors of principal component transformation matrices

D
et

er
m

in
an

t

Principal minor

Theoretical, real positives     
Negatives, real positives       
Negatives, theoretical positives

Fig. 3. The first thirty leading principal minors of the mappings between negative, real positive
and theoreticalpositive data. The determinant is a measureof the similarity between the subspaces
described by the first principal components in each set. The positives are very similar through
the first fifteen components, while the negatives differ significantly from both positive sets after
only eight components.

3.2 Results

In order to validate our geometric limb model, we compared the principal components
of the images from the model, images of real limbs, and real images of things that aren’t
limbs. The principal components were ordered from most significant to least significant,
and we then determined the matrix which transforms one set of principal components
into another. The first rows and columns of this matrix give the best map from the first

principal components in the first set to the first principal components in the second
set. The th leading principal minor (the determinant of this matrix) indicates the
reduction in volume of a polytope in the first subspace when projected onto the second
subspace. If the two subspaces are similar (so the matrix is nearly a rotation) there
will be very little reduction in volume, and the determinant will be close to one. If the
subspaces are orthogonal, the polytope will collapse, and the determinant will be close to
zero. Figure 3(a) shows the first thirty leading principal minors for the mappings between
the three data sets. While the negatives and positives cease to describe the same subspace
after only a few principal components, the theoretical and real positive data have a very
strong correlation through fifteen principal components. This is a strong indication that
our theoretical model is capturing the essential characteristics of shading on real limbs,
because the principal components span the same space.

Since we are using this classifier as a tool to discard cross-sections which are appar-
ently not from a limb, we require the false negative rate to be low—while it is always



possible to discard a section at a higher level, once discarded at a low level, it will be
very difficult to retrieve. Thus, we choose a 5% false negative rate on real cross-sections,
which allows the classifier to reject 57% of negatives. While this is certainly not perfect,
this does represent a significant reduction in the number of segments to be passed on for
further analysis.

3.3 Shading tests as a system component

The contribution of any visual cue should be evaluated in the context of a larger task. We
have proposed to use shading cues to evaluate the hypothesis that a cylindrical primitive
is present in a recognition system to find people or animals. It is natural to ask whether
this improves the overall recognition process. It is difficult to give a precise answer to
this question, because the learned predicates that determine whether an assembly of seg-
ments represents a person or animal are currently extremely crude. This means that we
have no measure of performance that can be reliably assigned to any particular cause.

However, it is possible to estimate the extent of the contribution that testing shad-
ing makes. The standard problem with assembling symmetries is that the process pro-
duces vast numbers of symmetries, which overwhelm later grouping stages. One mea-
sure of success for measurements of shading is that they reduce this number of sym-
metries, without removing assemblies that could represent limbs. Since we see a shad-
ing test as more likely to be helpful in understanding large image segments (obtained
using, for example, Shi’s [25] normalized cut method), rather than in segmentation it-
self, we can apply this test on images of isolated human figures. For each of 20 images
showing human figures in quite complex poses, taken from [26], we measured the rate at
which the shading test rejected symmetries without losing body segments. To determine
whether the test rejects important symmetries, we identified by hand the human body
segments (upper arm/leg, lower arm/leg and torso) which did not have corresponding
image segments and were visible with clear boundaries in the image. The requirement
for clear boundaries ensures that errors in edge detection are not ascribed to the shading
test. While this test is notably subjective, it allows some assessment of the performance
of the shading cue, which is generally good—in the presence of shadows, muscle def-
inition and the like, about half (median rejection rate is 39%) of the set of symmetries
in a given image is rejected. The median rate at which segments are missed in an im-
age is about one per two images; 10 of the images have no segments absent, five have
one segment absent, and five have two absent. There appears to be some correlation with
pose, which probably has to do with reduced contrast for body segments occluding other
segments.

These shading tests are currently being used in a program that seeks to extract a hu-
man figure from an image. The shading test eliminates a large number of segments which
are clearly not human limbs, without rejected significant numbers of actual limb seg-
ments.

4 Composite shading primitives

In [11], we developed a technique for finding grooves and folds. We applied our shad-
ing model to a geometrical model of the shape, and used these theoretical predictions
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Fig. 4. Over a test set of 20 images, symmetries are accepted by the shading test at a median rate
of 61%. (a) A typical image from our test set. Notice that there is muscle definition, hair and light
shadowing on the body segments, and that segments shadow other segments. The other figures
on the bottom illustrate our process. Edges are shown in figure (b); figure (c) shows all symme-
tries found. Notice the large number of symmetries, and the spurious symmetries linking the legs.
Figure (d) shows the symmetries that pass the shading test. Notice that the number of symmetries
has gone down substantially, and that body segments are all represented. Figure (e) shows the
segments manually determined to correspond to body segments; we have accepted that the arms,
being straight, correspond to single long segments, and that one thigh is not visible as a segment,
so we regard this output as containing all body segments.

to train a support vector machine to recognize grooves or folds. In that work, we were
merely concerned with finding isolated shading primitives. However, difficult recog-
nition tasks require rich representations (or, equivalently, multiple cues with multiple
tests). It is therefore natural to compose tests for shading primitives. In this section, we
demonstrate building a representation for a back as a near elliptical cylinder with a groove
in it, by composing the tests for grooves and for limbs.

4.1 Local Properties

After finding the groove and localising it, we determine its width. Once we know how
much of the figure has been affected by the presence of the groove, we can discount that
part of the cross-section (which we do by “filling in” the groove) and can then determine
whether the rest of the cross-section is consistent with the shading on a “limb”.

The centre of the groove is easily found by non-maximum suppression. Currently, we
only find the widths of vertical grooves, but it is easy to perform this search at arbitrary
orientations, since the groove finder works at all orientations.

We search for grooves from finest to coarsest scale, linking response from scale to
scale. Because the intensity pattern associated with a groove decays fairly smoothly at its
boundaries, the response to a groove is essentially constant as the scale of the matching
process increases, until the scale exceeds that of the groove, when the response decays



slowly (see figure 5(b)). As a result, by matching from finest to coarsest scale we can
reject noise responses (which do not have corresponding matches at coarser scales) and
estimate the width of the groove. We fit the groove response data with two linear seg-
ments: the first, horizontal; and the second, the true line of best fit to the last values. The
intersection between these lines gives us an estimate of the width of the groove.
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Fig. 5. The process of finding the width of a groove. (a) The intensity values perpendicular to the
line of the groove. (b) The response of the groove detector at different scales to the groove at

in (a). The response is constant for small groove sizes, and then starts to drop when
the size of the detector matches the size of the groove. We fit two line segments to the data, and
their intersection gives the size of the groove. The calculated extent of the groove is shown by the
bar in (a). (c) The response of the groove detector to the putative groove at in (a). In fact,
this is simply the edge of the figure, and not a groove. Thus, the groove detector has an almost
constant response over all widths. Any putative groove with this signature is rejected.

This procedure actually improves our groove detection ability. While the groove finder
does respond to the edge of a figure, it responds equally well at all scales—since there is
no groove, it never sees the edge of the groove (see figure 5(c)). This means that, unlike
real grooves, there will be no knee in the curve, allowing us to reject boundary points.

Once we have found a groove and determined its width, we can discount its effect
on the shading of the back. For simplicity, we set the intensity values within the groove
by linearly interpolating betwen the intensity values on either side of the groove, which
gives an effect rather like filling in the groove (figure 6). While there are probably better
ways of interpolating over the groove—one might use the expectation maximisation [6]
algorithm to fill in this “missing” data—our approach gives perfectly acceptable results.
In fact, in our current implementation, we have not actually found it necessary to dis-
count the effect of the grooves. However, we expect that as our tests become more accu-
rate, it will be necessary to account for the presence of the groove in the shading pattern
across the back.

Results Figure 7 shows three typical images in the left column. In the middle column,
the grey sections indicate cross-sections with limb-like shading. The top image, of a
back, gives a positive response for most of the length of the back. The segments con-
taining hair are not considered to be limb-like. The middle image is of a very flat back,
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Fig. 6. The process of groove detection and interpolation. (a) The original image. (b) Grooves
in the image. The centres of the grooves are marked in black, and the widths are marked in grey.
Currently,we do not follow the groove down the back while searching for widths, but it is expected
that this process will allow the groove detector to jump the gaps. (c) The image with grooves filled
in. The intensities at either side of the groove are interpolated linearly across the width of the
groove.

with almost uniform shading, which therefore does not match the model of shading on
a cylinder. It may be possible to extend our model to capture this behaviour as well. The
bottom image is a fishing lure, which has many sections with limb-like shading, since
its shape is roughly cylindrical, with a groove-like reflectance pattern in the centre.

4.2 Global properties

As we have seen, the shading field along a single cross-section can give us some indica-
tion as to whether the cross-section comes from a back. However, it is a much more pow-
erful test to look at the global structure, and compare the spatial relationship of grooves
and limb symmetries.

Method Because the groove detector is sensitive to orientation, we run the groove de-
tector over the image at different orientations. Currently, we are doing this at only one
scale. We find the centres of the groove by finding a high response, and stepping along
the groove in the direction corresponding to the orientation with the highest response.
Repeating this process until the response drops below a threshold allows us to trace out
potential grooves. This process yields many potential grooves, only some of which cor-
respond to the spine. To remove spurious grooves, we trained a support vector machine
on two images, where grooves corresponding to the spine are marked as positives, and
all others are marked as negatives. The features we used in the classifier were the num-
ber of points in the groove, the ratio of the number of points to the distance between the
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Fig. 7. Testing cross-sections locally for shading patterns. (a) The original image. (b) Horizon-
tal cross-sections of (a) with limb-like shading patterns are marked in grey. The breaks in the re-
sponses could be corrected by using some sort of hysteresis in the matching process. (c) Grooves
in the image. The centre of each groove is marked in black, and the groove extent is marked in
grey. The top row shows a back with a shading pattern consistent with the model. The middle row
shows a shading pattern inconsistent with the model—the back is very flat, which creates very lit-
tle variation in the intensity across the image. The bottom row shows a fishing lure, which has a
shading pattern somewhat similar to many backs.



endpoints, average deviation from a straight line, and average difference between the
orientation at a given point and the tangent to the groove.1

Using the symmetry finder discussed in subsection 3.3, we now determine which
pairs of possible spine grooves and symmetry axes are consistent. The spine should be
approximately parallel to the sides of the back, close to the symmetry axis, and have a
region of support overlapping with the region of symmetry.

Results The spine groove classifier is effective at extracting grooves which may corre-
spond to the spine. Out of ten images, it fails to find the spine in three cases, because the
groove making up the spine is incorrectly connected to other grooves (see figure 9(a)).
However, a better groove following procedure—one that tries to find straight grooves—
should allow us to find the spine in these cases. In many cases, the classifier picks up the
sides of the figure, since these are reasonably straight, and, out of context, are similar to
spine grooves. However, these are rejected using spatial reasoning.

Overall, the conjunction of the groove primitive and the limb primitive works well.
Out of seven test images in which we can find the spine, we end up with a single con-
sistent axis of symmetry in four cases (figure 8), and two possible axes of symmetry in
two more cases. In the last case, a single spurious horizontal groove allows four sym-
metry axes to pass the consistency tests, in addition to the two symmetry axes consistent
with the actual spine groove (figure 9(d)). These horizontal symmetries, however, may
be considered an artefact of the airbrushing of the image.

Out of four control images, two have one possible spine groove, which is not con-
sistent with any axis of symmetry. In the dice example (figure 10), the edge of one die is
marked as a possible groove, and is consistent with the symmetry formed by two parallel
edges. However, a test that compares the orientations of the grooves as compared to the
orientation of the symmetry cross-sections should reject such axis-groove pairs—a true
groove will have dark and light on opposite sides from the dark and light sides from the
overall shading pattern. In this case, they are on the same side, so we should be able to
reject the image.

5 Conclusions and future work

In this paper, we have demonstrated a practical use for a recognition technique based on
shape from shading. Using a geometrical model of a limb, and a simple shading model,
we are able to reject a large number of possible limb segments suggested by a symmetry
finder. As a part of a program which finds geometric primitives and pieces them together
to construct a body, this performs the valuable task of reducing the number of image
segments which need to be considered as part of the kinematic chain.

Secondly, we suggested that it is possible to compose different shading primitives
in order to create a more powerful decision mechanism. We showed the feasibility of
composing the groove primitive with the limb primitive to get a clear description of a
back.

1 The orientation is determined by the maximum response at a given point, while the flow of the
groove is determined by the maximum response at surrounding points.
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Fig. 8. By using spatial reasoning, we can find which grooves are consistent with the groove due to
the spine down the middle of the back. Top row: The original image. Bottom row: All grooves are
marked with a dotted line. Grooves which could be spine grooves are marked with dashed lines.
Spine grooves consistent with the axis of symmetry are solid lines. The axis of symmetry, with its
length and width, are described by the rectangle.

The shading model does not take into account the effects of shadows cast by other
objects. In general, it is exceedingly difficult to account for such shadows, since the ob-
ject casting the shadow will not always be visible. However, the model is robust to the
effects of some shadows. In figure 4, the shading test does accept even limb segments
which are partially in shadow from other limb segments.

In its present form, our shading model assumes that the reflectance of the surface is
approximately constant. However, the essential characteristics of shading will remain
across reflectance boundaries, so, in principle, there is no reason why we could not find,
for example, a lycra-clad arm (since lycra is tight, the shape of the arm wearing lycra will
be the same as the naked arm). Because changes in reflectance tend to be high-frequency
changes, we can isolate these changes and concentrate on the mid-frequency shading
effects as cues to surface shape.

Up to this point, we have demonstrated three shading primitives: folds, grooves, and
limbs. We would like to extend the “shading dictionary” to include many more primi-
tives which may be combined together to create useful, abstract representations of shape
to aid in object recognition. Many shading primitives likely have very significant spatial
relationships, which we would like to exploit. For example, it is relatively rare to see a
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Fig. 9. Examples of problems with the symmetry groove reasoning. Image (a) has too many other
grooves, making it too difficult to find the spine groove. Image (c) has many spurious symme-
tries (probably due to airbrushing) and one spurious horizontal groove, causing several spurious
symmetry-groove pairs. This could be rejected by examining how the shading pattern changes as
one moves up and down the groove. Note that the spine grooves are marked, with the symmetry
axis that would be consistent with that.

Fig. 10. Control images. The edge of the die is marked as a possible groove, and is consistent with
the symmetries found from the other edges of the die. By testing the orientations of the groove
and symmetry axis, such false positives should be rejected. While the dustpan has a single groove
which might be a spine, it is not in the correct position with respect to other edges in the images,
and is therefore inconsistent with an image of a back.



single fold in clothing worn by people—typically there are several folds. (See figure 11.)
Furthermore, these folds do not come in arbitrary orientations; instead, they tend to be
approximately parallel. Because these spatial relationships between primitives exist, we
envision a robust description of objects in terms of these groups of primitives.

Fig. 11. Folds in clothing have a very characteristic structure, which can be predicted from theo-
ries of buckling of shells. By grouping sets of folds with common directions, we can obtain some
clue as to whether a clothed person may be found in an image. The figure on the right shows one
of about twenty groups of parallel folds that are automatically extracted from the image. Note that
the extent of the folds roughly corresponds to the region occupied by the torso in the image.

The suggestion of extending the shading dictionary to include more primitives raises
the question about what kinds of things are useful primitives. A useful primitive has a
distinctive shading pattern which results from some class of geometric shapes. Further-
more, once one has selected a primitive, how can one best model it? The geometric mod-
els for folds, grooves and limbs all had several parameters which were tuned to give bet-
ter performance. It is unclear how to tune the parameters for a given model to improve
the performance.

As in all classification problems, the problem of feature selection is a difficult one. It
is not clear that we have chosen the best features in this work, and the question remains
as to how to select features that will best describe a given shading primitive. With the set
of features we are currently using, when the classifier gives unexpected results on given
data, it can be very difficult to understand this misclassification.
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