Scalable Motion Simulation

65

Stephen Chenney

Okan Arikan

D. A. Forsyth

University of California, Berkeley
schenney@cs.berkeley.edu

Simulation is an important method for animating virtual environments,
but its computational cost limits the size and complexity of highly
dynamic worlds. We are developing new algorithms for simulation
culling that are applicable to objects that move over large distances
and exhibit group behaviors, such as the approach described here for
cars in a city. Through culling, we can scale simulation to very large
environments while paying little for motion out of view.

In previous work,1 we describe simulation culling for independent
objects with small spatial ranges, which precludes cars in a city.

For simulation level-of-detail, other authors2,3,4 have used cheap proxy
simulations that still work for every object on every frame and compute
full group behaviors on the approximated motion. For dependent,
wide-ranging objects, we improve upon previous results in two ways:

¢ Only objects in view are fully simulated on every frame, while objects
out of view are updated at a lower frequency with much lower cost.

® Probabilistic models are used to capture the overall effect of
group behaviors on objects out of view without explicitly tracking
interactions.

We experient with automatically generated cities populated by cars
that roam the streets making random turns at each intersection. The
cars obey the rules of stop-sign intersections and avoid collisions by
adjusting their speed. On each frame, the potentially visible roads
are made known to the car simulation, which then maintains a list
of potentially visible cars. Every other car makes a guarantee, marking
roads that it may be on up to some future expiration time. The
guarantees are computed by doing breadth-first search on the road
network to locate roads the car may be able to reach in the future.
Bounds on maximum velocities allow us to say how long it will take
to reach any given road, and hence compute expiration times.

On each frame we perform the following operations:

* Make new guarantees for all cars with expired guarantees.

e Determine the location of each car whose guarantee includes
potentially visible roads, and, if visible, add the car to the potentially
visible set or make a new guarantee.

Caption:

e Simulate the potentially visible cars as normal.

e Remove any cars that are no longer visible from the potentially
visible set and make guarantees for them.

To position a car when its guarantee overlaps the view, we associate
a probability distribution with the travel time for each roa, and do
random walk with sampled travel times. The distributions are based
on statistics gathered from an off-line simulation of all the cars, so
they directly encode the cumulative effects of group behaviors. Also
associated with each road are various approximation functions that
allow us to set the state of the car after it has been out of view.

Without culling, we can simulate at most a few hundred cars on a PC.
With culling, we can scale up to thousands of cars. The performance
of a culling algorithm is best defined by its efficiency, which is the
ratio of work done for systems in view to total work done. We see
efficiencies ranging from 86% to 96% in experiments performed with
a constant-sized city and a variable number of cars. In experiments
using larger cities with up to 2,400 cars, efficiencies fall to 35%
because we track all the objects that may ever be seen in the world.
In future work, we expect to address this by tracking only those objects
the viewer has seen recently and adding and deleting other objects
as needed.

References

1. Chenney, S. Ichnowski, J. & Forsyth, D. (1999). Dynamics modeling and culling.
IEEE Computer Graphics and Applications, 19 (2), 79-87.

2. Grzeszczuk, R., Terzopoulosm, D., & Hinton, G. (1998). NeuroAnimator: Fast neural
network emulation and control of physics-based models. Computer Graphics, Proc.
of SIGGRAPH 98, 9-20.

3. Carlson, D.A. & Hodgins, J.K. (1997). Simulation levels of detail for real-time
animation. Graphics Interface '97, 1-8.

4. Yu, Q. & Terzopoulos, D. (1999). Synthetic motion capture: Implementing an
interactive virtual marine environment. The Visual Computer, 377-394.

Screen snapshots from a city simulation. The top image shows all of the city, popu-
lated by 100 cars with culling turned off. Red roads are potentially visible, and the

shaded cone indicates the viewer's location. The middle image is a close up while
culling is in progress. Only cars on or near the visible roads are being simulated. The
green shades indicate how many non-visible cars may be on the other roads. The

bottom image is the walkthrough view corresponding to the middle map. Note the
car stopped at the intersection waiting for another to pass.

Conference Abstracts and Applications

SkeTrcHEs & ApPLICATIONS



