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Abstract

Tree-structured probabilistic models admit simple, fast in-
ference. However, they are not well suited to phenomena
such as occlusion, where multiple components of an object
may disappear simultaneously. Mixtures of trees appear to
address this problem, at the cost of representing a large
mixture. We demonstrate an efficient and compact repre-
sentation of this mixture, which admits simple learning and
inference algorithms.

We use this method to build an automated tracker for
Muybridge sequences of a variety of human activities.
Tracking is difficult, because the temporal dependencies
rule out simple inference methods. We show how to use
our model for efficient inference, using a method that em-
ploys alternate spatial and temporal inference. The result
is a tracker that (a) uses a very loose motion model, and so
can track many different activities at a variable frame rate
and (b) is entirely automatic.

1. Introduction
One of the main difficulties in object recognition is the vari-
ability of appearance of an object of interest. The reasons
for these variations include the articulated nature of an ob-
ject, variations in aspect, and occlusions. However, artic-
ulated objects can be represented as assemblies of rigid
parts. For example, a human body is often represented as
an assembly of cylinders which move with respect to each
other. Such a representation suggests a bottom-up approach
to recognition: first, we identify candidate primitives as im-
age regions that may correspond to the object parts; then,
these regions are grouped into assemblies that satisfy con-
straints on the relative configuration of the parts. If the ob-
ject is known to be in the image, it can be localized by find-
ing the assembly that is the most similar to the object of
interest.

We cannot evaluate each group of candidate primitives
due to the large number of such groups, and thus need
an efficient grouping method. Such a method is provided
by tree-structured probabilistic models which admit simple,
fast inference [2, 7]. However, they are not well suited to
phenomena such as occlusion and aspect variation, where
multiple components of an object may disappear simulta-
neously. This problem can be addressed with mixtures of
trees [3], with each component modeling a particular as-
pect. By imposing constraints on the structure of mixture
components, we can represent the large number of compo-
nents efficiently and compactly. Such a representation ad-

mits simple learning and inference algorithms.
We use mixtures of trees to model people, and track them

in Muybridge sequences of a variety of human activities.
Tracking is difficult, because the temporal dependencies
rule out simple inference methods. The problem is often
simplified by imposing tight motion models and/or manual
initialization [1, 6], neither of which can be used in a fully
automatic tracker on Muybridge sequences, which have low
and variable frame rate. Instead, we combine the mixture-
of-trees model for a human body with a weak motion model,
and show how to use our model to search for human con-
figurations in motion sequences efficiently, using a method
that employs alternate spatial and temporal inference. The
result is a tracker that (a) uses a very loose motion model,
and so can track many different activities at a variable frame
rate and (b) is entirely automatic.

2. Modeling with trees
Consider an object that is formed from a set of primitives.
We will detect such an object by first detecting the primi-
tives, and then grouping them into assemblies. For instance,
we can look for people as collections of body parts. There is
little hope of reliably detecting individual primitives with-
out looking at a configuration as a whole. Instead, we pro-
pose not to find the primitives accurately, but rather find a
set of possible configurations for each primitive, and use the
grouping process to determine which element of a candidate
set is in fact a part of an object. For instance, we can find
several image regions that could correspond to an arm in the
image of a person, and use grouping to determine which of
those in fact corresponds to an arm – perhaps, a region that
is adjacent to something that looks like a torso.

Let us suppose that an object is a collection ofK primi-
tives, {X1 . . .XK}, each of which can be treated as a vector
representing its configuration (e.g., position and orientation
in the image). Given an image, the local detectors will pro-
vide us with a finite set of possible configurations for each
primitive Xk . We will refer to each of these K sets as a
set of candidate primitives; the objective is to build an as-
sembly by choosing an element from each candidate set, so
that the resulting set of primitives satisfies some global con-
straints (e.g., limbs must be attached to the torso).

The global constraints can be captured in a distribu-
tion P (X1 . . .XK ), which will be high when the assembly
looks like the object of interest, and low when it doesn’t.
Assuming exactly one object present in the image, we can
localize the object by picking the configuration for each
primitive from the corresponding candidate set so that the
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resulting value of P is maximized. In general, this max-
imization requires a combinatorial correspondence search
whose computational cost is prohibitively large (unless K
is small, e.g. [10]). It is possible, however, to constrain our-
selves to a family of distributions P for which correspon-
dence search is efficient. This is the case if P corresponds
to a tree-structured graphical model.

If P (X1 . . .XK) is represented with a tree, correspon-
dence search is efficiently accomplished with a Viterbi al-
gorithm whereby the nodes of the tree are swept from leaves
to the root. If there areM candidate configurations for each
of the K primitives, then the search takes O(KM2) time,
whereas for a general distribution P the complexity would
be O(MK).

3. Learning the tree model
In addition to making correspondence search efficient, the
conditional independences captured in the tree model sim-
plify learning, by reducing the number of parameters to be
estimated, due to the factorized form of the distribution:

P (X1 . . .XK) = P (Xroot)
∏
k �=root

P (Xk | Pak),

where Xroot is the node at the root of the tree, and Pak
denotes the parent of the node Xk . Learning the model in-
volves learning the structure (i.e., the tree edges) as well
as the parameters of the prior P (Xroot) and conditionals
P (Xk | Pak). We learn the model by maximizing the log-
likelihood of the training data
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where xnk and pani are the configurations of the kth primitive
(Xk) and its parent (Pai) in the nth training assembly. If the
structure of the tree is known, the terms within parentheses
can be maximized independently of each other, yielding the
maximum-likelihood approximations for the prior and con-
ditionals. If we now assume that these approximations are
in fact the true prior and conditionals, then the expected
value of the log-likelihood is

−N [H(Xroot) +
∑
k �=root

H(Xk | Pak)],

whereH(Xroot) andH(Xk | Pak) denote entropy and con-
ditional entropy, respectively. We seek the tree structure that
maximizes the log-likelihood of the data, or, equivalently,
minimizes the entropy of the distribution whose marginals
are constrained by the data.

To learn the tree structure with a fixed root Xroot, we
learn the conditionals P (Xk | Pak) and then find the min-
imum spanning tree in the directed graph, whose edge
weights are the appropriate conditional entropies. This tree
can be found efficiently [8].

4. Mixtures of trees
The tree representation of an object allows for efficient
learning and search. However, it is difficult to use a tree

to model cases where some of the primitives constituting
an object are missing – due to occlusions, variations in
aspect or failures of the local detectors. One approach is
to marginalize over missing correspondences [7], so that a
conditional P (Xk | Pak) is set to an appropriate constant if
Xk and/or Pak is absent. However, in this case a missing
primitive will “break” the assembly, by rendering the de-
scendants of a missing primitive independent from the rest
of the assembly. Furthermore, this solution ignores the fact
that the presences or absences of primitives influence each
other (for example, if an upper arm segment is missing, it
is often due to the pose of a person, which will cause the
lower arm segment to be absent as well).

Mixtures of trees, introduced in [3], provide an alterna-
tive solution. In particular, we can think of assemblies as
being generated by a mixture model, whose class variable
specifies what set S of primitives will constitute an object,
while conditional class distributions PS({Xk : k ∈ S})
generate the configurations of those primitives. The mix-
ture distribution is

P ({Xk : k ∈ S}) = π(S)PS({Xk : k ∈ S}),

where π(S) is the probability that a random view of an ob-
ject consists of those primitives. This mixture has 2K com-
ponents – one for each possible subset S of primitive types.
Learning a mixture of trees involves estimating the mixture
weights π(S), as well the structure and the distributions
PS(Xroot) and PS(Xk | Pak) for each of the component
trees.

In [3], tree mixtures are learned using an EM algorithm,
the M-step involving optimization of the tree structure and
distribution parameters. We cannot take this approach, how-
ever: since we require a component for each set of primi-
tives constituting an object, the mixture has 2K components
and, if each component is represented explicitly, cannot be
learned or even represented unless K is small. One so-
lution might be to select a small number of mixture com-
ponents (or subsets S of primitives) that adequately repre-
sent the variations in the object appearance. Instead, we
keep all of the 2K components, but represent them implic-
itly and compactly. To do this and to make learning and
inference efficient, we must constrain the structure of the
mixture and thus enforce conditional independences similar
to those present in a single tree.

5. Trees with shared structure
In a tree model, fixing a value of a node renders its descen-
dants conditionally independent from the other nodes in the
model. This property makes learning and the correspon-
dence on trees efficient; to achieve similar efficiency, and
simply to be able to represent the huge number of mixture
components, we require our model to possess similar con-
ditional independence structure.

In particular, if we specify the configuration of a primi-
tive Xk and assert that Xk is a part of the object, then we
want the set of primitives X1 . . .XK to break into groups
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Figure 1: Using a generating tree to derive the structure for
a mixture component. The dashed lines are the edges in the
generating tree, which spans all of the nodes. The nodes
of the mixture component are shaded, and its edges (shown
as solid) are obtained by making a grandparent “adopt”
a node if its parent is not present in this tree (i.e., is not
shaded). Thus mixture components are encoded implicitly,
which allows efficient representation, learning and infer-
ence for mixtures with a large number of components.

so that primitives in different groups are conditionally in-
dependent. To achieve this, we use a single generating tree
which is used to generate the structures of all of the mixture
components.

A generating tree is a directed tree T whose nodes are
X1 . . .XK , with Xroot at the root. For a given struc-
ture of T , we learn the prior P (Xroot) and conditionals
P (Xk | Xj) where Xj is any ancestor of Xk (not nec-
essarily the parent). Additionally, we denote by [Xk] the
event thatXk is one of the primitives constituting a random
view of the object, and learn the distributions P ([Xroot])
and P ([Xk] | [Pak]), where Pak is the parent of Xk in the
generating tree.

We represent π(S) using a graphical model with struc-
ture provided by the generating tree T :

π(S) = P ([Xroot])
∏
k �=root

P ([Xk] | [Pak]),

where the distributions are learned by counting occurrences
of each primitive and pairs of primitives in the training data.

The tree PS consists of all the edges (Xj → Xk) such
thatXj is an ancestor ofXk in the generating tree, and none
of the nodes on the path from Xj to Xk is in the set {Xk :
k ∈ S}. This means that, if the parent of node Xk is not
present in a view of the object, then Xk is “adopted” by
its grandparent, or, if that one is absent as well, a great-
grandparent, etc. If we assume that the rootXroot is always
a part of the object, then PS will be a tree, since Xroot will
ensure that the graphical model is connected. An example
of obtaining the structure of a mixture component is shown
in figure 1.

The distributionPS is the product of the prior PS(Xroot)
and conditionals PS(Xk | Xj) corresponding to the tree
edges. To ensure conditional independences in the mix-
ture, we require that if an edge (Xj → Xk) is present in
several mixture components then the corresponding condi-
tionals are the same; similarly, we require that PS(Xroot)

be independent of S. To this end, we set PS(Xk | Xj) =
P (Xk | Xj) to be the conditional distribution learned from
all of the data, and similar for PS(Xroot) = P (Xroot).

As in the case of a single tree, we need to determine
the optimal structure for the mixture components. Since
they are all derived from a single generating tree T , only its
structure needs to be learned, and we do that by minimizing
the entropy of the mixture distribution. Therefore, we pre-
fer distributions that are more concentrated, and dislike less
informative ones, which have high entropy.

Let us use the notation [Xj → Xk] to denote the
event that a mixture component contains the edge (Xj →
Xk) (for a fixed T , the probability of this is a prod-
uct of marginals; for instance, if Xj is Xk’s grandparent
then Pr([Xj → Xk]) = Pr([Xj]) · Pr([Pak] | [Xj]) ·

Pr([Xk] | [Pak])). Then, the entropy of the mixture is

H(P ) =

K∑
k=1

H([Xk] | [Xj])

+
∑∑
k,j

Pr([Xj → Xk]) ·H(Xk | Xj),

where the first term on the right-hand side represents the
amount of information that the mixture model P captures
about the presence or absence of primitives, and the second
term represents the amount of information that is captured
about the relative configurations of pairs of primitives.

Unlike the case of a single-tree case, where the optimal
structure is obtained by solving the minimum spanning tree
problem, in the case of a mixture we are not aware of any ef-
ficient algorithms guaranteed to yield the optimal solution.
Instead, we use a greedy algorithm that starts with an initial
structure of T and repeatedly applies local mutations (such
as reassigning a node to a different parent), each of which
increases the entropy, and stops when no further increase is
possible.

6. Grouping using mixtures of trees
Assuming that exactly one object is present in the image,
we need to localize it – that is, select a subset of prim-
itive types and the configurations for those primitives so
that the resulting assembly is likely to appear in a ran-
dom view of the object, but not in a random view of some-
thing else. Thus, we find the assembly for which the pos-
terior Pr(object | assembly) is the largest. Maximizing
this posterior is equivalent to maximizing the Bayes Factor
B = P ({Xk})/Pneg({Xk}), where the likelihood in the
numerator is the probability of a configuration in a random
view of the object, and the denominator is the probability
of seeing it in the background. Conditional independence
structure of our tree mixture model, combined with an ap-
propriately chosen model of the background, makes Bayes
factor maximization efficient.

We model background as a collection of independent
primitives: the number of primitives in a non-object has a
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geometric prior, the type of a primitive is k with probability
βk , and the distribution on the configuration of each prim-
itive is uniform in the region of interest and is common to
all of the primitives. Therefore, Pneg({Xk : k ∈ S}) =∏
k∈S(αβk) where βk is found as the fraction of a particu-

lar type of primitive among all the candidates in images of
non-objects, and α is the parameter that is estimated so that
the classification error is minimized.

Because of the independent structure of Pneg, the Bayes
factor can be obtained by associating the term (αβk)−1 with
each member of Xk’s candidate set, and multiplying those
terms into the likelihood P ({Xk}). Thus, the Bayes factor
has the same decoupled structure as the likelihood, which
allows us to find the assembly that maximizes it efficiently,
using Dynamic Programming.

As in the case of the single tree, the main idea is that,
conditional on a particular primitive selected as Xk in an
assembly, the likelihood is a product of two parts – one in-
volving only the nodes of the subtree rooted at Xk , and the
other involving only the other nodes – and each of the two
can be maximized independently. Therefore, we perform
optimization using a Viterbi algorithm on tree T , visiting
children before parents. The optimization at a node involves
the selection of not only the best primitives to choose from
the children’s candidate sets, but also of the edges to be in-
cluded in the tree, since a node can be a child of Xk in a
mixture component whenever it is a descendant of Xk in
the generating tree T .

The total running time of this optimization is, as in the
single-tree case, O(M2#edges), whereM is the size of can-
didate sets, and #edges = O(K2) since we need to consider
all the edges joining a node of T with its descendant. Max-
imization of the Bayes factor allows us not only to local-
ize an object if it’s present, but also to perform detection:
To determine if the image contains the object of interest,
we compare the maximum value of the Bayes factor with a
threshold.

7. Tree root as a coordinate frame
In the above discussion, we required that the root Xroot al-
ways be a part of the object, so that each mixture component
has a connected structure. However, we would prefer to al-
low any primitive to be absent. We achieve this by intro-
ducing a new primitive type,X0, and make it the root of the
tree. This primitive is not detected in the image; rather, it
can be thought of as a global coordinate frame roughly rep-
resenting the configuration of the object as a whole (such
as the position and orientation of a person in the image).
We add X0 to each training assembly during learning; for
detection, a number of candidates are created that span the
necessary range of global configurations (in case of detect-
ing people, this means a range of positions and orientation,
rather widely spaced because X0 represents the global con-
figuration only loosely in the training data).

In addition to keeping the mixture trees connected, the
inclusion of the global frame allows us to specify distribu-

tions invariant with respect to transformations such as rota-
tions and translations. For example, the likelihood of a body
configuration should not change if the entire configuration,
including X0, is translated and rotated. This invariance is
achieved by associating a local coordinate frame with each
primitiveXj , and making the conditionalP (Xk |Xj) func-
tions of the relative configuration ofXk inXj ’s coordinate
frame. Because X0 is the root of the tree, the configura-
tion of the entire object is relative to X0, and we make our
distribution invariant to a set of transformations by condi-
tioning it on the global frame of reference, that is, replacing
P ({Xk : x ∈ S}) with P ({Xk : x ∈ S} |X0).

8. Tracking
We have applied our model of a person to human figure
tracking. Tracking is a difficult problem, as both spatial and
temporal constraints must be combined: we need to find
objects that both look like people and move like people.
Often, the problem is made easier by making the model
tighter in the spatial dimension (manual tracker initializa-
tion) and in the temporal one (tight motion model). While
these simplifications make tracking easier, they seem some-
what unreasonable for many applications: if a user wants
to find moving people in video sequences, he should not
have to manually mark their joint locations or specify the
precise way in which they move. In fact, the data we are
using, collected by Muybridge [5] over 100 years ago, has
a very low and variable frame rate and a rather loose align-
ment between frames (which are photographs taken by sep-
arate cameras, synchronized to go off in a sequence), which
makes a tight motion model inapplicable. The large limb
motions between frames also mean that the pose in a frame
specifies only a vague prior for the next frame, and thus
the resampling step of particle filtering [6] may involve an
expensive search. On the other extreme, one can model
only the spatial configuration of a person and ignore tempo-
ral links (e.g., [7], who perform tracking independently for
pairs of frames, using local motion fields). This approach,
while efficient, is unable to enforce motion consistency over
time. For example, a human body can be found in the left
half of a frame and the right have of the following frame,
even though such motion is not physically possible.

We deal with these problems by combining a mixture-of-
trees model for a person with a weak motion model, which
does not assume any particular type of activity, but simply
bounds the motion of each body part. While exact inference
in this model is difficult, it can be done approximately, by
alternating optimization over space and over time.
8.1. Detecting body parts
People are modeled as assemblies of body parts. We con-
sider 9 types of body parts: the torso, and the upper and
lower halves of each limb. We assume to know the scale of
the person and thus can look for body parts as roughly rect-
angular image segments of a fixed size that satisfy certain
appearance constraints. The models photographed by Muy-
bridge wear little or no clothes, thus allowing us to ignore
the problems associated with loose or textured clothing. We

4



Figure 2: Motion information is essential to inferring the person’s configuration correctly. Temporal coherence was not used
for tracking this sequence, thus the best assembly was independently found for each frame. The big red rectangle represents
the torso, while the smaller ones correspond to limbs. The resulting track is not physically possible, as illustrated by the
motion of the torso.

detect limbs by template matching, using two separate tem-
plates for the torso and the limbs, each of which emphasizes
long regions that are bright along the axis and darker closer
to the boundaries and have edges of an appropriate orien-
tation on either side. The body part locations are found by
convolving the image with a template in a range of orienta-
tions, followed by non-maximum suppression of responses.
We keep the body parts where a local maximum with re-
spect to position and orientation is achieved, provided the
response value is sufficiently large.

Since each body part has a direction (so that we know
which end is the shoulder and which is the elbow), each
of the detected image regions is converted into 2 candidate
body parts, with the opposite orientations. Each primitive
is parameterized by the coordinates of its two ends. Such
a parameterization allows us to define simple conditionals,
even though it is redundant (since the size of each limb is
fixed).

8.2. Modeling the body
In order to learn a mixture-of-trees model for a human body,
we must specify the form of conditionals P (Xk | Xj). We
want our model to be invariant with respect to translation
and rotation. This is achieved if the conditionals are rep-
resented as P (Xk | Xj) = P (u1, v1, u2, v2) where (ui, vi)
are the coordinates of the ith end of the segment represented
by Xk, in the frame of reference positioned and oriented
according to the segment Xj . This is in fact a conditional
distribution for Xk since (ui, vi) are obtained from the pa-
rameters of Xk by rotation and translation, which preserve
volume. The distribution P (u1, v1, u2, v2) is modeled as a
Gaussian with a full covariance matrix, and is learned from
a set of training assemblies, obtained by detecting candidate
segments in a set of images, and manually selecting the cor-
rect limbs. The training data set was quite different from the
test set. First, the images used for training were taken from
a book of models [9], featuring people wearing swimsuits
against white background. Only frontal views of stand-

ing people were used for training (unlike the Muybridge
sequences used in testing, which contain lateral views as
well), and the body parts used for training were detected
using a different method than described above. Neverthe-
less, we have obtained a model of a human body that allows
a wide range of configurations and captures connectivity re-
lations among human limbs. A mixture of trees was learned
by minimizing entropy; not surprisingly, the rootX0 has the
torso as the only child, whose children were the upper arms
and legs, each of which has the corresponding lower limb
as the child. This tree structure is widely used (e.g., [2])
but now also shown to be optimal in terms of the amount of
information it captures.
8.3. Modeling a moving person
Consider an image sequence containing a moving person.
We will represent the person in each of the F frames as an
assembly of primitivesA1 . . .AF , and define the likelihood
of the sequence to be

P (A1 . . .AF | track) ∝
F∏
f=1

P (Af) × Ptemp(A1 . . .AF ),

where P (Af) = P (Af | person, X0) is the likelihood of
an individual assembly and Ptemp(A1 . . .AF ) is the term
that ensures temporal coherence. We use an indicator func-
tion such that Ptemp(·) = 1 if the motion of each limb
between any two frames does not exceed a certain bound
(which grows with the time interval between the frames),
and = 0 if these constraints are not satisfied.

The temporal constraints captured in Ptemp(·) are es-
sential for enforcing motion coherence. Although ignoring
them (e.g. [7]) would result in a model that allows efficient
exact inference, tracking in difficult sequences

In our experiments, we consider the problem
of extracting the assembly sequence most likely
to correspond to a moving person. This involves
maximization of the Bayes factor B(A1 . . . AF ) =
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Figure 3: Examples of tracking a person. In all of the sequences the tracker has correctly determined the general position of
the person, even though they engage in a variety of activities and undergo changes in aspect. Top two sequences are correctly
tracked, while the others also contain some frames where the inferred configuration is incorrect.

P (A1 . . .AF | track)/Pneg(A1 . . . AF ) where Pneg is the
distribution for an assembly sequence not corresponding to
a person. As in the single-image case, we model segment
configurations in non-human assemblies as independent;
therefore, the Bayes factor decouples:

B(A1 . . .AF ) ∝
F∏
f=1

P (Af)

Pneg(Af )
× Ptemp(A1 . . .AF ).

In the absence of temporal constraints, this would be sim-
ply the product of single-frame Bayes factors B(Af ) =
P (Af)/Pneg(Af ) which do not interact with each other
and could thus be maximized independently as in Section 6.
However, ignoring temporal constraints results in sequences
of assemblies with an inconsistent temporal behavior, which
could not correspond to a moving person (figure 2).

The constraints on limb motions add links to our model
that make maximization difficult: each limb is now con-
nected not only to all of its ancestors and descendants in its
own frame, but also to the limbs of the same type in other
frames. Thus, all of those will interact, resulting in large
groups of mutually interacting variables (cliques) and mak-
ing exact inference in such a model very expensive. Never-
theless, we can obtain a local maximum of the Bayes factor
by performing a sort of a coordinate ascent. Each ascent
step maximizes the Bayes factor with respect to some of the
limbs while keeping the rest unchanged. We use two types
of an ascent step: a spatial step, where we maximize the
Bayes factor with respect to the configuration Af in frame
f , while keeping assemblies in the other frames unchanged;
and a temporal step, where we choose the best configuration
for a body part of a particular type in each frame, without
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Figure 4: Tracking crawling children. In both sequences, the tracker attempted to automatically infer the configuration of a
person. Even though the training data contained neither children nor crawling people, the track has been identified correctly
in the top sequence. In the bottom sequence, the tracker confused the arms and the legs, which would not happen if the head
was used as one of the primitives. Comparing the top sequence with the one in figure 2 clearly demonstrates the importance
of temporal constraints, imposed by the loose motion model, in tracking the configuration correctly.

disturbing the other body parts. Both of these steps can be
made efficiently with a Viterbi algorithm.

Maximizing the Bayes factor over space: Given as-
semblies in each frame except Af , it is easy to choose the
configurationAf that maximizes B(A1 . . .AF ). First, a set
of candidate body parts of each type in frame f is narrowed
by eliminating those inconsistent with the assemblies in
other frames. Then, the single-image Bayes factor B(Af )
is maximized, as in Section 6, by selecting body parts from
the narrowed candidate sets.

Maximizing the Bayes factor over time: Let us use
Torso as an example of the body part whose configuration
is to be optimized in all the frames. Given a set of candidate
parts of each type in each frame, we look for a sequence of
assemblies such that the product of the single-frame Bayes
factors,

∏F
f=1 B(Af ) =

∏F
f=1 P (Af)/Pneg(Af ), is max-

imized, subject to temporal coherence of the Torso. As the
first stage of this optimization, we maximize B(Af ) sepa-
rately for each frame and each choice of Torso (including its
absence), using a version of the method of Section 6. Then,
we choose a Torso (possibly a missing one) in each frame
so that the product of corresponding Bayes factors is max-
imized, subject to the constraints on motion of the Torso.

This step is accomplished with a Viterbi algorithm.
To maximize the Bayes factor B(A1 . . . AF ), we first

choose an initial sequence of assemblies, by considering
body parts in order and choosing the best configuration for
that part in each of the frames, subject to the temporal con-
straints. Then, the Bayes factor is repeatedly maximized
over space and time until convergence to a local maximum.
In our experiments, we augmented the model and the opti-
mization procedure to allow an assembly to be missing in
an image. We associate a likelihood P (∅) with a missing
assembly, which limits the damage that a poorly detected
assembly can do to the likelihood of the whole sequence.

While our procedure maximizes a function, a few sim-
ple changes (such as replacing maximization with summa-
tion) convert it into a Markov Chain Monte-Carlo sampler.
By drawing samples of the assembly sequence, we would
be able to preserve uncertainty so that we could incorpo-
rate new information, such as more accurate motion models,
into our results later.
8.4. Results
We have applied the mixture-of-trees model combined with
a weak motion model to track a variety of sequences from
the Muybridge collection.

Figure 3 shows several sequences with the tracked as-
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Figure 5: The global frame of reference can be used to impose constraints on the configuration. In (a), the tracker has failed
if the orientation of the body is not constrained. By making all of the candidate global frames (i.e., the root X0 of the tree)
upright, the tracks in (b) are obtained, which represent the person better.

semblies overlaid on top. For these sequences, the candi-
date global frames of referenceX0 (not shown) were placed
at a grid of positions, in the 4 directions spaced by 90◦,
which effectively makes recognition translation- and scale-
invariant, since the global frame only loosely represents the
configuration of the body in the training data. People are
tracked in a variety of activities; in all of the shown se-
quences the body position is correctly tracked, although in
some frame the configuration is not correctly represented.

The global frame of reference can be used to impose con-
straints on the rough location and orientation of a person.
For example, if we know that the person we track is upright,
only the upright global frame needs to be used. This is il-
lustrated in figure 5. Figure 5(a) shows several sequences
where the tracker has failed if all 4 directions for the global
frame were used. All of those tracks can be corrected by
requiring that the global frame be upright, and the results
are shown in figure 5(b).

Because of the weak configuration and motion model,
our tracker is able to follow motions it has not seen be-
fore. In figure 4, two sequences of crawling children (pho-
tographed by Muybridge [4] over a century ago) are tracked.
The healthy child is tracked correctly, even though there
were no children or crawling subjects in the training data.
The handicapped child is tracked incorrectly, since his arms
and legs are confused by the tracker – but, up to that flip,
the configuration is correct. In both of the sequences, we
had to reject the candidate torsos found in the lower third of
the image, due to the spurious torsos and limbs found in the
floor tiles and giving rise to human assemblies.

Comparing figure 4(top) with figure 2 illustrates the im-
portance of temporal coherence in tracking the body cor-
rectly. These two figures contain the same sequence, but
the temporal constraints were ignored to obtain the track in
figure 2. Thus, the performance of the tracker deteriorates
dramatically if a motion model, even a weak one, is not
used.
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