CS 598 Topics in Statistical Learning
CS 598 Topics in Statistical Learning
Notes
- Week 1: There was no week 1 meeting
- Week 2: Linear Regression
My notes
- Week 3: Linear Methods in Classification
My notes
Reading
- The Kernel Trick
- C.J.C. Burges, ``A Tutorial on Support Vector Machines for Pattern
Recognition, '' Data Mining and Knowledge Discovery, 2, 121Ð167 (1998)
-
C. Campbell, ``Kernel methods:a survey of current techniques,'' Neurocomputing 48 (2002) 63Ð84
-
B. Scholkopf, A. Smola, K-R Muller, ``Nonlinear Component Analysis as a Kernel Eigenvalue
Problem,'' Neural Computation 10, 1299Ð1319 (1998)
-
S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K.R. Mullers, ``Fisher discriminant analysis with kernels,''
Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop
41-48
- The Relevance Vector Machine
- Discriminative Parsing
-
B Taskar, D Klein, M Collins, D Koller, C Manning, "Max-margin parsing" Proc. EMNLP, 2004
-
M Collins, N Duffy, "Convolution kernels for natural language," Advances in Neural Information Processing Systems, 2002
-
M. Collins and N. Duffy, "Parsing with a Single Neuron: Convolution Kernels for Natural Language
Problems", Technical Report, University of California at Santa Cruz., 2001
- SVM's, Loss, and RKHS
- Manifold Learning - 1
- Joshua Tenenbaum, Vin de Silva,John C. Langfor, A Global Geometric Framework
for Nonlinear Dimensionality
Reduction, Science, 290, 2319-2323, 2000
-
Sam T. Roweis and Lawrence K. Saul, Nonlinear Dimensionality Reduction by
Locally Linear Embedding, Science, 290, 2323-2326, 2000
-
Think Globally, Fit Locally:
Unsupervised Learning of Low Dimensional Manifolds
Lawrence K. Saul,
SamT. Roweis,
Journal of Machine Learning Research 4 (2003) 119-155
-
Out-of-Sample Extensions for LLE, Isomap,
MDS, Eigenmaps, and Spectral Clustering
Yoshua Bengio, Jean-Francüois Paiement and Pascal Vincent
D«epartement dÕInformatique et Recherche Op«erationnelle
Universit«e de Montr«eal
Montr«eal, Qu«ebec, Canada, H3C 3J7
{bengioy,paiemeje,vincentp}@iro.umontreal.ca
Technical Report 1238,
D«epartement dÕInformatique et Recherche Op«erationnelle
July 25, 2003
- Structure Learning and related
- An End-to-End Discriminative Approach to Machine Translation, P. Liang, Alexandre Bouchard-Cote, D. Klein and B. Taskar. Association for Computational Linguistics (ACL06), Sydney, Australia, July 2006.
-
Word Alignment via Quadratic Assignment, S. Lacoste-Julien, B. Taskar, D. Klein, and M. Jordan. Human Language Technology conference - North American chapter of the Association for Computational Linguistics (HLT-NAACL06), New York, June 2006.
-
Structured Prediction, Dual Extragradient and Bregman Projections, B. Taskar, S. Lacoste-Julien, and M. Jordan. Journal of Machine Learning Research (JMLR), Special Topic on Machine Learning and Large Scale Optimization.
Max-Margin Markov Networks, B. Taskar, C. Guestrin, V. Chatalbashev and D. Koller. Journal of Machine Learning Research (JMLR), to appear.
-
Structured Prediction via the Extragradient Method, B. Taskar, S. Lacoste-Julien, and M. Jordan, Neural Information Processing Systems Conference (NIPS05), Vancouver, British Columbia, December 2005. [Longer version]
- Subgradient Methods for Maximum Margin Structured Learning
Nathan D. Ratliff
J. Andrew Bagnell
Martin A. Zinkevich
-
Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data. D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, A. Ng. International Conference on Computer Vision and Pattern Recognition (CVPR05), San Diego, CA, June 2005.
- Semi-Supervised Learning and related
-
A. Blum and T. Mitchell, Combining labeled and unlabeled data with co-training Proceedings of the eleventh annual conference on Computational learning, 92 - 100, 1998
- K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. Blei, and M. Jordan,
Matching Words and Pictures, Journal of Machine Learning Research 3 (2003) 1107Ð1135
-
Kamal Nigam1 , Andrew Kachites Mccallum2, 3 , Sebastian Thrun4 and Tom Mitchell5
Classification from Labeled and Unlabeled Documents using EM
Journal Machine Learning
Issue Volume 39, Numbers 2-3 / May, 2000
-
Unsupervised improvement of visual detectors using cotraining
Levin, A. Viola, P. Freund, Y.
This paper appears in: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on
Publication Date: 13-16 Oct. 2003
- Some more Manifold learning
- Some more Structure Learning
- I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large Margin Methods for Structured and Interdependent Output Variables, Journal of Machine Learning Research (JMLR), 6(Sep):1453-1484, 2005.
- F. Kang, R. Jin, and R. Sukthankar, "Correlated Label Propagation with Applications to Multi-Label Learning", CVPR 2006
- Transductive Learning
- Variational Methods
- Gaussian Processes